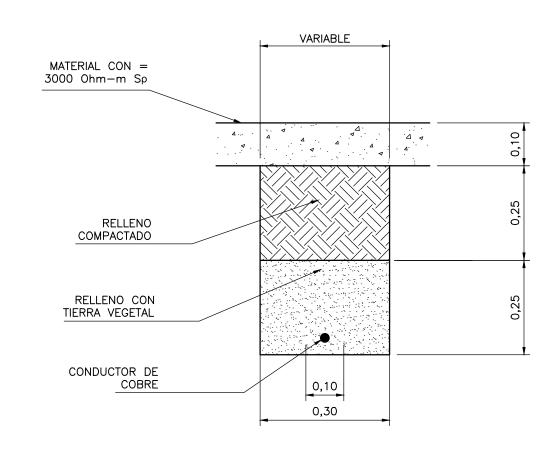


COMPROBACIÓN GRÁFICA MEDIANTE ELEMENTOS FINITOS DE TENSIONES TOQUE (UST) Y PASO (USS) ÁREAS SEGURAS Y PELIGROSAS (Mores máximos Centro del bres de cistopo



ITEM	ESQUEMA	REFERENCIA	CANT.
1	4/0 AWG 4/0 AWG	CONEXIÓN EN X PARA CABLES Cu 4/0 AWG TECNOWELD Ó SIMILAR SG1TN 443 — CARGA 200 g	10
2	4/0 AWG 4/0 AWG	DERIVACIÓN EN T DE CABLE Cu 4/0 AWG PASANTE A CABLE 4/0 AWG TECNA Ó SIMILAR SG1TN 241 — CARGA 150g (COLAS DE MALLA)	14
3	4/0 AWG 2/0 AWG	DERIVACIÓN EN T DE CABLE Cu 4/0 AWG PASANTE A CABLE 2/0 AWG TECNA Ó SIMILAR SG1TN 243 — CARGA 90g (COLAS DE MALLA)	25
4	4/0 AWG ELECTRODO DE Cu ø5/8"x2400 mm	CONECTOR DE CABLE PASANTE Cu 4/0 AWG A ELECTRODO 5/8" TECNA Ó SIMILAR SG1TN 550—CARGA 115g	5
5	2/0 AWG	CONECTOR TERMINAL Cu PARA CABLE 2/0 AWG 3M Ó SIMILAR	40
6		CABLE COBRE BLANDO DESNUDO CuBD # 4/0 AWG	160
7		CABLE COBRE BLANDO DESNUDO CuBD # 2/0 AWG	120
8	639363	BARRAJE EQUIPOTENCIAL DE COBRE ELECTROLÍTICO PLATEADO DE 295×40×5 mm. CON TORNILLOS Y TUERCAS, 6 PERFORACIONES DE Ø14,29 mm REF. DEHN 472207 Ó SIMILAR	5
9		AISLADOR EN RESINA EPOXICA 2"x 2" REF L99969 ERICO O SIMILAR	10
10		CAJA INSPECCIONABLE CON BARRAJE DE DERIVACIÓN EN MANPOSTERÍA DE 660×660×600mm	2
11	J.	ELECTRODO COBRE-COBRE 16 mm (ø5/8") x 2400 mm	5

FERNANDO SILVA G. MAT. No: 0000001407VLL

DATOS SISTEMA DE PUESTA A NORMA IEEE STD 80 — 2	
LARGO DE MALLA	18000 mm.
ANCHO DE MALLA	12000 mm.
ESPACIO DE CUADRICULAS	4000x3000 mm
RESISTIVIDAD DEL TERRENO	11 Ohm-m
RESISTIVIDAD CAPA DE ACABADO	3000 Ohm-m
PROFUNDIDAD DE LA MALLA	500 mm.
ESPESOR DE CAPA DE ACABADO	100 mm.
CORRIENTE FALLA DEL LADO 33 kV	14 kA
TIEMPO DESPEJE DE FALLA	500 ms.

RESULTADOS SISTEMA PUESTA A TIERRA			
TENSIÓN DE PASO PERMITIDO PARA PERSONA 70 kg.	2982,83 V		
TENSIÓN DE PASO	468,14 V		
TENSIÓN DE TOQUE PERMITIDO PARA PERSONA 70 kg.	912,23		
TENSIÓN DE TOQUE	493,12 V		
RESISTENCIA DE TIERRA ESPERADA	0.380hm		
GPR (V)	3140,16 V		

ZANJA PARA MALLA DE TIERRA **DETALLE**

FIRMA

NOTAS:

1. TODAS LAS DIMENSIONES ESTÁN EN METROS A MENOS QUE SE INDIQUE OTRA UNIDAD Y DEBEN SER VERIFICADAS EN CAMPO.

_SUB ESTACIÓN ELÉCTRICA TRATAMIENTO PRELIMINAR 1

LOCALIZACIÓN

2. EL DISEÑO DE LA MALLA SE DESARROLLÓ APOYADOS EN EL SOFTWARE GSA. GROUNDING SYSTEM ANALYSIS.

3. LA RESISTIVIDAD DEL TERRENO ES 11 OHMIOS-METRO. 4. EN CASO QUE LA MALLA DE TIERRA INTERFIERA CON LA OBRA CIVIL, EL CABLE DE LA MALLA PUEDE DESVIARSE DE SU RUTA ORIGINAL O PROFUNDIZARSE.

5. LAS CONEXIONES DEBEN REALIZARSE CON SOLDADURA EXOTÉRMICA.

6. EL CONDUCTOR DE LAS DERIVACIONES DEBE QUEDAR COMO MÍNIMO A DOS (2) METROS POR ENCIMA DEL PISO TERMINADO. 7. PARA GARANTIZAR LA BUENA CALIDAD DE LAS CONEXIONES CON SOLDADURA EXOTÉRMICA EL INTERVENTOR DEBE VERIFICAR EL BUEN ESTADO DE LOS MOLDES Y

8. LOS GABINETES DE FUERZA Y CONTROL DEBEN CONECTARSE A LA MALLA DE

TENER PRESENTE QUE EL PROMEDIO DE VIDA DE LOS MOLDES PARA

SOLDADURA EXÓTERMICA ES DE 50 SOLDADURAS.

9. TODAS LAS MALLAS DE TIERRA DEBERÁN INTERCONECTARSE A TRAVÉS DEL CONDUCTOR DE PUESTA A TIERRA QUE LLEVARÁ EL BANCO DE DUCTOS A LO LARGO DE SU TRAYECTORIA.

10. A LO LARGO DE LA MALLA ESLABONADA DE CERRAMIENTO DEBEN PREVERSE COLAS DE CONEXIÓN A LA MALLA DE TIERRA. TODOS LOS ELEMENTOS COMO PUERTAS Y DEMÁS ELEMENTOS MÓVILES DEBEN POSEER CONEXIÓN CON LA MALLA POR MEDIO DE CONECTORES ADECUADOS.

11. SE RECOMIENDA REALIZAR MEDICIÓN DE EQUIPOTENCIALIDAD UNA VEZ SE INTERCONECTEN LAS MALLAS DE TIERRA, EN CASO DE NO ESTAR EQUIPOTENCIALIZADAS SE DEBERÁ HACER UNA MALLA DE REFUERZO PARA LOS TRANSFORMADORES DE POTENCIA.

12. LAS DERIVACIONES DE LA MALLA A EQUIPOS DEBEN SER EN CABLE Cu CALIBRE

13. LOS MOTORES DEBERÁN SER ATERRIZADOS CON CABLE Cu CALIBRE 2/0 AWG DESDE BARRAJES EQUIPOTENCIALES QUE VAN CONECTADOS A LA MALLA DE PUESTA

SIM BOLOGÍA:

CONEXIÓN EN X.

CONEXIÓN EN T.

- ELECTRODO NO INSPECIONABLE Ø16 mm (ø5/8") x 2400 mm.

- DERIVACIÓN EN CABLE.

BARRAJE EQUIPOTENCIAL.

- ELECTRODO EN POZO INSPECIONABLE

MALLA DE TIERRA A CONSTRUIR.

CON BARRAJE DE 5/8") x 2400 mm. ø 16mm (ø DERIVACIÓN).

CONVENSIONES DERIVACIONES:

A MARCO DE PUERTA

A CAJA DE EQUIPO

 A REJILLA DE TRANSFORMADOR A PLATINA DE PUESTA A TIERRA

A BARRAJE EQUIPOTENCIAL

A ESTRUCTURA METÁLICA DE SOPORTE

A NEUTRO

CONVENSIONES:

CONCRETO

- ARENA DE PEÑA

TIERRA DE RELLENO

COBRE(Cu)

ESCALA 1:25

ESCALA GRÁFICA

UNIÓN TEMPORAL PTAR CANOAS CONTRATO EAAB No. 1-15-25500-0846-2012 REPRESENTANTE LEGAL Jany Guada Bomandischal

ROBERT GAUDES LIC. No: 3901 ME, USA

ACUEDUCTO
AGUA ALCANTARILADO Y ASEO DE BOCCOTÁ ING. REINALDO PULIDO REGISTRO. No: 3060 H-1 ING. HUGO GÓMEZ REGISTRO. No: 3429

LOCALIZACIÓN MOSQUERA

SISTEMA DE REFERENCIA MAGNA SIRGAS MODIFICACIONES TIPO DE COORDENADAS
PLANAS CARTESIANAS FECHA MODIFICACIÓN NOMBRE ING. RESPONSABLE ORIGEN COORDENADAS ESTE: 82666.481 m COTA: 2552.98 msnm COORDENADAS MEDIAS NORTE: 96250.0 m ESTE: 80500.0 m PLANCHA 1:10.000/246-II-A-2

AGUA ALCANTARILLADO Y ASEO DE BOGOTÁ

GERENCIA CORPORATIVA DE SISTEMA MAESTRO DIRECCIÓN RED TRONCAL ALCANTARILLADO PLANO DE DISEÑO TRATAMIENTO DE AGUAS RESIDUALES | ESCALA:

PTAR CANOAS/VEREDA CANOAS/MUNICIPIO DE SOACHA CONTIENE : S/E TRATAMIENTO PRELIMINAR 1

INDICADA

SISTEMA DE PUESTA A TIERRA

PROYECTO No. PLANO No.

NOMBRE DEL ARCHIVO: E02300TPPT.DWG ENTREGA 100% - VÁLIDO PARA CONSTRUCCIÓN

AGOSTO/2016

E-02-300