ANEXO 3. MODELACIÓN EN VISUAL HYDRAULICS. PERFIL HIDRÁULICO

Anexo 3.1. Perfil hidráulico alternativa 1 Cota de inicio 2542.38
Anexo 3.2. Perfil hidráulico alternativa 2 Cota de inicio 2542.38
Anexo 3.3. Perfil hidráulico alternativa 1 Cota de inicio 2540.23
Anexo 3.4. Perfil hidráulico alternativa 2 Cota de inicio 2540.23

Anexo 3.1.Perfil hidráulico alternativa 1 Cota de inicio 2542.38

HP CANOAS Cota 2542-38-22 nov Q16-V9.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
13.6 cms	9.18 cms	--------	

Section Description

Starting water surface elevation

Exit Pipe
Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=343 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

Chlorination Exit Tank

2543.08

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=154.5 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2540.45$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=406.28 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.28 \mathrm{~m}$
Critical depth $=0.093 \mathrm{~m}$
Units on-line $=1$

Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=2.63 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.63 \mathrm{~m}$
Velocity $=0.03 \mathrm{~m} / \mathrm{s}$
Chlorination Tank Weir
2544.02

Weir invert (top of weir) $=2543.83$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.794$
Flow over weir $=3.4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.19 \mathrm{~m}$
Chlorination Tank
2544.02

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=3.4 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=32.01 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.76 \mathrm{~m}$
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=4.02 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=3.98 \mathrm{~m}$
Velocity $=0.11 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate
Opening type $=$ rectangular gate
Opening diameter $/$ width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate $(\mathrm{s})=3.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.11 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control Units on-line $=4$

Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2544.02$
Upstream water level $=2544.02$
Chlorination Enter Tank
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=369.89 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.131 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=4.02 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.02 \mathrm{~m}$
Velocity $=0.04 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
2544.1

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=522 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.05 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.08 \mathrm{~m}$
0

Diameter $=1500 \mathrm{~mm}$
Length $=117 \mathrm{~m}$
Flow $=0.85 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.48 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$

2 Clarifier Orifice

2544.17

Opening type $=$ circular orifice
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2540$
Number of openings $=1$
Flow through opening $(\mathrm{s})=0.85 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.48 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Orifice loss $=0.03 \mathrm{~m}$
Downstream water level $=2544.14$
Upstream water level $=2544.17$
Launder Channel 2 C
2544.18

Launder invert $=2543$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.43 \mathrm{cms}$
Critical depth $=0.2 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=13.6 \mathrm{cms}$
Downstream depth $=1.17 \mathrm{~m}$
Upstream depth $=0.82 \mathrm{~m}$

Weir 2 Clarifier

Invert of V notch $=2545.05$
Angle of V notch $=90$ degrees

Number of notches $=911$
Total flow over weir $=0.68 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=20$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.05 \mathrm{~m}$

2 Clarifier Enter Pipe

2545.17

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=1.42 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.81 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=22.8 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.07 \mathrm{~m}$
Gate Clarifier Distribution Box
2545.18

Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2541$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.42 \mathrm{cms}$
Total area of opening(s) $=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.24 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=22.8 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2545.17$
Upstream water level $=2545.18$
Box 2 Weir
Weir invert (top of weir) $=2545.53$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient $=1.807$
Flow over weir $=1.42 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.41 \mathrm{~m}$
Enter Pipe BOX 2
Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=120.4 \mathrm{~m}$
Flow $=5.7 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=22.8 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.06 \mathrm{~m}$
0
General Box 2 Gate 2546
Opening type $=$ rectangular gate
Opening diameter $/$ width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$
Flow through gate $(\mathrm{s})=3.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.16 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2546$
Upstream water level $=2546$
General box 2 Weir
Weir invert (top of weir) $=2546.38$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=5.7 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.55 \mathrm{~m}$

Aeration Exit pipe

2547.1

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=971 \mathrm{~m}$
Flow $=18.19 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor $=1$
Solids factor $=1$
Velocity $=0.87 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=18.2 \mathrm{cms}$
Friction loss $=0.11 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0
Aeration Exit Channel
2547.1

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=3.8 \mathrm{cms}$
Downstream channel invert $=2542$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=19.16 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.51 \mathrm{~m}$
Critical depth $=0.452 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=22.8 \mathrm{cms}$
Depth downstream $=5.1 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.48 \mathrm{~m}$
Velocity $=0.19 \mathrm{~m} / \mathrm{s}$
AB Tank Weir
Weir invert (top of weir) $=2547.9$

Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir ' ${ }^{\prime}$ ' coefficient $=1.782$
Flow over weir $=0.95 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$
Aeration Basin
2547.97

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=0.95 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=98.61 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.091 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Depth downstream $=8.96 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=8.97 \mathrm{~m}$
Velocity $=0.01 \mathrm{~m} / \mathrm{s}$
Aeration Enter Gate
2547.97

Opening type = rectangular gate
Opening diameter/width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2543$
Number of gates = 1
Flow through gate $(\mathrm{s})=0.95 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.08 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2547.97$
Upstream water level $=2547.97$
AB Distribution Pipe
Pipe shape = Circular
Diameter $=1200 \mathrm{~mm}$

Length $=77 \mathrm{~m}$
Flow $=0.95 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.131 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.3$
Age factor $=1$
Solids factor $=1$
Velocity $=0.84 \mathrm{~m} / \mathrm{s}$
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Friction loss $=0.05 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.1 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0
AB Distribution Box Gate
2548.07

Opening type = rectangular gate
Opening diameter/width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=0.95 \mathrm{cms}$
Total area of opening(s) $=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.15 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 24
Total flow, all units $=22.8 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2548.07$
Upstream water level $=2548.07$

AB Distribution Box Weir

2548.66

Weir invert (top of weir) $=2548.35$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.815$
Flow over weir $=0.95 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.31 \mathrm{~m}$

Aeration Enter Pipe

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=4.53 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor $=1$
Solids factor $=1$
Velocity $=0.52 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.03 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

General aeration box Weir Gate

2548.74

Opening type = rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2544
Number of gates $=1$
Flow through gate $(\mathrm{s})=4.53 \mathrm{cms}$
Total area of opening(s) $=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.45 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=3$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.03 \mathrm{~m}$
Downstream water level $=2548.71$
Upstream water level $=2548.74$

General Aeration Box Weir

2549.73

Weir invert (top of weir) $=2549.26$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.846$
Flow over weir $=4.53 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.47 \mathrm{~m}$
Clarifier Junction Exit Pipe
Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=652 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.56 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.07 \mathrm{~m}$
0

Clarifier Exit Pipe

2549.84

Pipe shape = Circular
Diameter $=1500 \mathrm{~mm}$
Length $=105.4 \mathrm{~m}$
Flow $=0.85 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.48 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$
Clarifier Orifice
2549.87

Opening type $=$ circular orifice
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2545$
Number of openings $=1$
Flow through opening $(\mathrm{s})=0.85 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening(s) $=0.48 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 16

Total flow, all units $=13.6 \mathrm{cms}$
Orifice loss $=0.03 \mathrm{~m}$
Downstream water level $=2549.84$
Upstream water level $=2549.87$
Clarifier Launder
Launder invert $=2547$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.43 \mathrm{cms}$
Critical depth $=0.2 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=13.6 \mathrm{cms}$
Downstream depth $=2.87 \mathrm{~m}$
Upstream depth $=2.55 \mathrm{~m}$

Weir Clarifier

2550.93

Invert of V notch $=2550.87$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=0.85 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$

Clarifier Enter Pipe

2550.95

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=0.85 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.48 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.02 \mathrm{~m}$

Distribution Box Gate

Opening type = rectangular gate

Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate $(\mathrm{s})=0.85 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.19 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2550.95$
Upstream water level $=2550.95$

Box 1 Weir

2551.42

Weir invert (top of weir) $=2551.13$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=0.85 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 16
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.29 \mathrm{~m}$

Enter Pipe BOX 1

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=110.9 \mathrm{~m}$
Flow $=3.4 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor $=1$
Velocity $=0.54 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$
0

General Box Gate

Opening type $=$ rectangular gate

Opening diameter/width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate(s) $=3.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.19 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2551.45$
Upstream water level $=2551.45$

General box 1 Weir

2552.34

Weir invert (top of weir) $=2551.89$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.843$
Flow over weir $=3.4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.45 \mathrm{~m}$
R Mix to Clarifiers Pipe
2552.39

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=150.43 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

RM Exit Channel

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=204.49 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=6.39 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.39 \mathrm{~m}$
Velocity $=0.07 \mathrm{~m} / \mathrm{s}$

RM Exit Gate

2552.39

Opening type = circular gate
Opening diameter $/$ width $=4000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=4$
Flow through gate(s) $=3.4 \mathrm{cms}$
Total area of opening(s) $=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.07 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2552.39$
Upstream water level $=2552.39$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=3.4 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=59.14 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=4$

Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=7.39 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.39 \mathrm{~m}$
Velocity $=0.06 \mathrm{~m} / \mathrm{s}$

RM Enter Gate

2552.4

Opening type $=$ circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=4$
Flow through gate(s) $=3.4 \mathrm{cms}$
Total area of opening(s) $=12.57 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.27 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2552.39$
Upstream water level $=2552.4$
RM Enter Channel
2552.41

Channel shape $=$ Rectangular
Manning's $\mathrm{n}^{\prime}=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2546.5$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=188.97 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=5.9 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.91 \mathrm{~m}$
Velocity $=0.07 \mathrm{~m} / \mathrm{s}$

Grit Channel to RM Pipe

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$

Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.56 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.03 \mathrm{~m}$
0

Junction Tank Grit Channel

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width/diameter $=45.2 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Downstream channel invert $=2547$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=245.91 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.132 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=5.44 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.44 \mathrm{~m}$
Velocity $=0.03 \mathrm{~m} / \mathrm{s}$

Grit Weir

2553.35

Weir invert (top of weir) $=2553.2$
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.931$
Flow over weir $=1.36 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 10
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.15 \mathrm{~m}$

Grit Channel

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=40.5 \mathrm{~m}$
Channel width/diameter $=6 \mathrm{~m}$
Flow $=0.97 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=50.11 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.139 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=8.35 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=8.35 \mathrm{~m}$
Velocity $=0.02 \mathrm{~m} / \mathrm{s}$

Screening Exit Channel Gate

2553.37

Opening type = rectangular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=1.36 \mathrm{cms}$
Total area of opening(s) $=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.34 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 10
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2553.35$
Upstream water level $=2553.37$

Screen Channel 1-2

2553.37

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.13 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=14.8 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.284 \mathrm{~m}$
Units on-line $=12$

Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=6.17 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.17 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$

Fine Screen

2553.37

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=1.36 \mathrm{cms}$
Bar width $=5 \mathrm{~mm}$
Bar spacing $=10 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=6.44 \mathrm{~m}^{2}$
Downstream depth $=5.37 \mathrm{~m}$
Velocity in channel $=0.13 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.21 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=13.6 \mathrm{cms}$
Rack head loss $=0 \mathrm{~m}$
Screen Channel 2-3
2553.37

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.13 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=14.81 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.284 \mathrm{~m}$
Units on-line $=12$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=6.17 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.17 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$
Medium Screen
2553.38

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=1.36 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$

Bar spacing $=30 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=7.26 \mathrm{~m}^{2}$
Downstream depth $=5.37 \mathrm{~m}$
Velocity in channel $=0.13 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.19 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=13.6 \mathrm{cms}$
Rack head loss $=0 \mathrm{~m}$

Screen Channel 3-4

2553.38

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.13 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=13.38 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.284 \mathrm{~m}$
Units on-line $=12$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=5.58 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.58 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$
Screening Enter Channel Gate
2553.39

Opening type = rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=1.36 \mathrm{cms}$
Total area of opening(s) $=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.34 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line = 10
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2553.38$
Upstream water level $=2553.39$

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=234.37 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.139 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=5.59 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.6 \mathrm{~m}$
Velocity $=0.03 \mathrm{~m} / \mathrm{s}$

Initial Pipe

2553.42

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=0.49 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.02 \mathrm{~m}$
0

Initial Gate

Opening type $=$ rectangular gate
Opening diameter $/$ width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates =1
Flow through gate $(\mathrm{s})=6.8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=20 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.34 \mathrm{~m} / \mathrm{s}$

Flow behavior = orifice, downstream control
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2553.42$
Upstream water level $=2553.44$
Inicial Junction Tank
2553.44

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=185.9 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.312 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=7.44 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.44 \mathrm{~m}$
Velocity $=0.07 \mathrm{~m} / \mathrm{s}$

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
16 cms	9.18 cms	---------	

Section Description

Starting water surface elevation

Exit Pipe

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=343 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor $=1$
Solids factor $=1$
Velocity $=0.67 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.03 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.07 \mathrm{~m}$
0

Chlorination Exit Tank

2543.19

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=154.5 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2540.45$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=423.25 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.31 \mathrm{~m}$
Critical depth $=0.103 \mathrm{~m}$
Units on-line $=1$

Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=2.74 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.74 \mathrm{~m}$
Velocity $=0.04 \mathrm{~m} / \mathrm{s}$
Chlorination Tank Weir
2544.04

Weir invert (top of weir) $=2543.83$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.794$
Flow over weir $=4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.21 \mathrm{~m}$
Chlorination Tank
2544.04

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=4 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=32.18 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.84 \mathrm{~m}$
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=4.04 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4 \mathrm{~m}$
Velocity $=0.12 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate
Opening type $=$ rectangular gate
Opening diameter $/$ width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate(s) $=4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.12 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control Units on-line $=4$

Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2544.04$
Upstream water level $=2544.04$
Chlorination Enter Tank
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=371.95 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.146 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=4.04 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.04 \mathrm{~m}$
Velocity $=0.04 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=522 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.07 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.11 \mathrm{~m}$
0

Diameter $=1500 \mathrm{~mm}$
Length $=117 \mathrm{~m}$
Flow $=1 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$

2 Clarifier Orifice

2544.26

Opening type $=$ circular orifice
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2540$
Number of openings = 1
Flow through opening(s) $=1 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening(s) $=0.57 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Orifice loss $=0.05 \mathrm{~m}$
Downstream water level $=2544.21$
Upstream water level $=2544.26$
Launder Channel 2 C
2544.26

Launder invert $=2543$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.5 \mathrm{cms}$
Critical depth $=0.22 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=16 \mathrm{cms}$
Downstream depth $=1.26 \mathrm{~m}$
Upstream depth $=0.9 \mathrm{~m}$

Weir 2 Clarifier

Invert of V notch $=2545.05$
Angle of V notch $=90$ degrees

Number of notches $=911$
Total flow over weir $=0.8 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 20
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.05 \mathrm{~m}$

2 Clarifier Enter Pipe

2545.19

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=1.57 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.89 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=25.2 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.08 \mathrm{~m}$

Gate Clarifier Distribution Box

2545.2

Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2541
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.57 \mathrm{cms}$
Total area of opening(s) $=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.26 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line = 16
Total flow, all units $=25.2 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2545.19$
Upstream water level $=2545.2$
Box 2 Weir
Weir invert (top of weir) $=2545.53$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient $=1.807$
Flow over weir $=1.57 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.43 \mathrm{~m}$
Enter Pipe BOX 2
2546.04

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=120.4 \mathrm{~m}$
Flow $=6.3 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor $=1$
Solids factor $=1$
Velocity $=0.84 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=25.2 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.08 \mathrm{~m}$
0

General Box 2 Gate

2546.04

Opening type = rectangular gate
Opening diameter $/$ width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$
Flow through gate(s) $=4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.19 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2546.04$
Upstream water level $=2546.04$
General box 2 Weir
Weir invert (top of weir) $=2546.38$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=6.3 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.59 \mathrm{~m}$

Aeration Exit pipe

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=971 \mathrm{~m}$
Flow $=20.59 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor $=1$
Solids factor $=1$
Velocity $=0.98 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=20.6 \mathrm{cms}$
Friction loss $=0.14 \mathrm{~m}$
Fitting loss $=0.07 \mathrm{~m}$
Total loss $=0.21 \mathrm{~m}$
0
Aeration Exit Channel
2547.18

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=4.2 \mathrm{cms}$
Downstream channel invert $=2542$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=19.48 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.54 \mathrm{~m}$
Critical depth $=0.483 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=25.2 \mathrm{cms}$
Depth downstream $=5.18 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.56 \mathrm{~m}$
Velocity $=0.2 \mathrm{~m} / \mathrm{s}$
AB Tank Weir
Weir invert (top of weir) $=2547.9$

Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir ' ${ }^{\prime}$ ' coefficient $=1.782$
Flow over weir $=1.05 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.07 \mathrm{~m}$
Aeration Basin
2547.97

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=1.05 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=98.66 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.098 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Depth downstream $=8.97 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=8.97 \mathrm{~m}$
Velocity $=0.01 \mathrm{~m} / \mathrm{s}$
Aeration Enter Gate
2547.97

Opening type = rectangular gate
Opening diameter/width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.05 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.09 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2547.97$
Upstream water level $=2547.97$
AB Distribution Pipe
Pipe shape = Circular
Diameter $=1200 \mathrm{~mm}$

Length $=77 \mathrm{~m}$
Flow $=1.05 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.131 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.3$
Age factor $=1$
Solids factor $=1$
Velocity $=0.93 \mathrm{~m} / \mathrm{s}$
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.07 \mathrm{~m}$
Total loss $=0.12 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0
AB Distribution Box Gate
2548.09

Opening type = rectangular gate
Opening diameter/width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2543$
Number of gates =1
Flow through gate $(\mathrm{s})=1.05 \mathrm{cms}$
Total area of opening(s) $=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.16 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 24
Total flow, all units $=25.2 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2548.09$
Upstream water level $=2548.09$
AB Distribution Box Weir
2548.68

Weir invert (top of weir) $=2548.35$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.815$
Flow over weir $=1.05 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.33 \mathrm{~m}$

Aeration Enter Pipe

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=5.33 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor $=1$
Solids factor $=1$
Velocity $=0.61 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.07 \mathrm{~m}$
0

General aeration box Weir Gate

2548.79

Opening type = rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2544
Number of gates = 1
Flow through gate(s) $=5.33 \mathrm{cms}$
Total area of opening $(\mathrm{s})=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.53 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=3$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.04 \mathrm{~m}$
Downstream water level $=2548.75$
Upstream water level $=2548.79$

General Aeration Box Weir

2549.78

Weir invert (top of weir) $=2549.26$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.846$
Flow over weir $=5.33 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.52 \mathrm{~m}$
Clarifier Junction Exit Pipe
Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=652 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.1 \mathrm{~m}$
0

Clarifier Exit Pipe

2549.93

Pipe shape = Circular
Diameter $=1500 \mathrm{~mm}$
Length $=105.4 \mathrm{~m}$
Flow $=1 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$

Clarifier Orifice

2549.98

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2545$
Number of openings $=1$
Flow through opening(s) $=1 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.57 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 16

Total flow, all units $=16 \mathrm{cms}$
Orifice loss $=0.05 \mathrm{~m}$
Downstream water level $=2549.93$
Upstream water level $=2549.98$
Clarifier Launder
Launder invert $=2547$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.5 \mathrm{cms}$
Critical depth $=0.22 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=16 \mathrm{cms}$
Downstream depth $=2.98 \mathrm{~m}$
Upstream depth $=2.65 \mathrm{~m}$
Weir Clarifier
2550.93

Invert of V notch $=2550.87$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=1 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$

Clarifier Enter Pipe

2550.96

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=1 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line = 16
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.03 \mathrm{~m}$
Distribution Box Gate
Opening type = rectangular gate

Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate(s) $=1 \mathrm{cms}$
Total area of opening(s) $=4.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.22 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2550.96$
Upstream water level $=2550.97$

Box 1 Weir

2551.45

Weir invert (top of weir) $=2551.13$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=1 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 16
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.32 \mathrm{~m}$

Enter Pipe BOX 1

2551.5

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=110.9 \mathrm{~m}$
Flow $=4 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor $=1$
Velocity $=0.64 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

General Box Gate
2551.51

Opening type $=$ rectangular gate

Opening diameter/width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate(s) $=4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.22 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2551.5$
Upstream water level $=2551.51$

General box 1 Weir

2552.39

Weir invert (top of weir) $=2551.89$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.843$
Flow over weir $=4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.5 \mathrm{~m}$
R Mix to Clarifiers Pipe
2552.46

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=150.43 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.06 \mathrm{~m}$
0

RM Exit Channel

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=206.73 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=6.46 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.46 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$

RM Exit Gate

2552.46

Opening type = circular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=4$
Flow through gate(s) $=4 \mathrm{cms}$
Total area of opening(s) $=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.08 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2552.46$
Upstream water level $=2552.46$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=4 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=59.71 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=4$

Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=7.46 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.46 \mathrm{~m}$
Velocity $=0.07 \mathrm{~m} / \mathrm{s}$

RM Enter Gate

2552.48

Opening type $=$ circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=4$
Flow through gate(s) $=4 \mathrm{cms}$
Total area of opening(s) $=12.57 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.32 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2552.46$
Upstream water level $=2552.48$

RM Enter Channel

2552.48

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2546.5$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=191.35 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=5.98 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.98 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$

Grit Channel to RM Pipe

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=8 \mathrm{cms}$

Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$
0

Junction Tank Grit Channel

2552.52

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width $/$ diameter $=45.2 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2547$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=249.53 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.148 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=5.52 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.52 \mathrm{~m}$
Velocity $=0.03 \mathrm{~m} / \mathrm{s}$

Grit Weir

2553.37

Weir invert (top of weir) $=2553.2$
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir 'C' coefficient = 1.931
Flow over weir $=1.6 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 10
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.17 \mathrm{~m}$

Grit Channel

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=40.5 \mathrm{~m}$
Channel width/diameter $=6 \mathrm{~m}$
Flow $=1.14 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=50.21 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.155 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=8.37 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=8.37 \mathrm{~m}$
Velocity $=0.02 \mathrm{~m} / \mathrm{s}$

Screening Exit Channel Gate

2553.39

Opening type = rectangular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=1.6 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.4 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=10$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2553.37$
Upstream water level $=2553.39$

Screen Channel 1-2

2553.39

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.33 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=14.86 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.316 \mathrm{~m}$
Units on-line $=12$

Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=6.19 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.19 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$
Fine Screen
2553.4

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=1.6 \mathrm{cms}$
Bar width $=5 \mathrm{~mm}$
Bar spacing $=10 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=6.47 \mathrm{~m}^{2}$
Downstream depth $=5.39 \mathrm{~m}$
Velocity in channel $=0.15 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.25 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=16 \mathrm{cms}$
Rack head loss $=0 \mathrm{~m}$
Screen Channel 2-3
2553.4

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.33 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=14.87 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.316 \mathrm{~m}$
Units on-line $=12$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=6.2 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.2 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$
Medium Screen
2553.4

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=1.6 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$

Bar spacing $=30 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=7.29 \mathrm{~m}^{2}$
Downstream depth $=5.4 \mathrm{~m}$
Velocity in channel $=0.15 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.22 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=16 \mathrm{cms}$
Rack head loss $=0 \mathrm{~m}$

Screen Channel 3-4

2553.4

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width $/$ diameter $=2.4 \mathrm{~m}$
Flow $=1.33 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=13.44 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.316 \mathrm{~m}$
Units on-line $=12$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=5.6 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.6 \mathrm{~m}$
Velocity $=0.1 \mathrm{~m} / \mathrm{s}$

Screening Enter Channel Gate

2553.42

Opening type $=$ rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.6 \mathrm{cms}$
Total area of opening(s) $=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.4 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=10$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2553.4$
Upstream water level $=2553.42$

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=235.64 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.155 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=5.62 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.63 \mathrm{~m}$
Velocity $=0.03 \mathrm{~m} / \mathrm{s}$

Initial Pipe

2553.46

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.03 \mathrm{~m}$
0

Initial Gate

Opening type $=$ rectangular gate
Opening diameter $/$ width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates =1
Flow through gate(s) $=8 \mathrm{cms}$
Total area of opening(s) $=20 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.4 \mathrm{~m} / \mathrm{s}$

Flow behavior = orifice, downstream control
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2553.46$
Upstream water level $=2553.48$
Inicial Junction Tank
2553.48

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=187.04 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.347 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=7.48 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.48 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$

HP CANOAS Cota 2542-38-22 nov Q32 - V9.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
21.4 cms	9.18 cms	--------	

Section Description

Starting water surface elevation

Exit Pipe

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=343 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor $=1$
Solids factor $=1$
Velocity $=0.89 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.12 \mathrm{~m}$
0

Chlorination Exit Tank

2543.41

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=154.5 \mathrm{~m}$
Flow $=21.4 \mathrm{cms}$
Downstream channel invert $=2540.45$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=457.24 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.36 \mathrm{~m}$
Critical depth $=0.125 \mathrm{~m}$
Units on-line $=1$

Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=2.96 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.96 \mathrm{~m}$
Velocity $=0.05 \mathrm{~m} / \mathrm{s}$
Chlorination Tank Weir
2544.09

Weir invert (top of weir) $=2543.83$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir ' ${ }^{\prime}$ ' coefficient $=1.794$
Flow over weir $=5.35 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Head over weir $=0.26 \mathrm{~m}$
Chlorination Tank
2544.09

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=5.35 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=32.54 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=1.01 \mathrm{~m}$
Critical depth $=0.358 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=4.09 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.05 \mathrm{~m}$
Velocity $=0.16 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate
Opening type $=$ rectangular gate
Opening diameter $/$ width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate(s) $=5.35 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.17 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control Units on-line $=4$

Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2544.09$
Upstream water level $=2544.09$
Chlorination Enter Tank
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=21.4 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=376.31 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.177 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=4.09 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.09 \mathrm{~m}$
Velocity $=0.06 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
2544.29

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=522 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=1.02 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.12 \mathrm{~m}$
Fitting loss $=0.08 \mathrm{~m}$
Total loss $=0.2 \mathrm{~m}$
0

Diameter $=1500 \mathrm{~mm}$
Length $=117 \mathrm{~m}$
Flow $=1.34 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.09 \mathrm{~m}$

2 Clarifier Orifice

2544.46

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height = not applicable
Invert $=2540$
Number of openings $=1$
Flow through opening $(\mathrm{s})=1.34 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening(s) $=0.76 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=21.4 \mathrm{cms}$
Orifice loss $=0.08 \mathrm{~m}$
Downstream water level $=2544.38$
Upstream water level $=2544.46$
Launder Channel 2 C
2544.47

Launder invert $=2543$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.67 \mathrm{cms}$
Critical depth $=0.27 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=21.4 \mathrm{cms}$
Downstream depth $=1.46 \mathrm{~m}$
Upstream depth $=1.11 \mathrm{~m}$

Weir 2 Clarifier

Invert of V notch $=2545.05$
Angle of V notch $=90$ degrees

Number of notches $=911$
Total flow over weir $=1.07 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=20$
Total flow, all units $=21.4 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$

2 Clarifier Enter Pipe
2545.23

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=1.91 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.08 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=30.6 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.09 \mathrm{~m}$
Total loss $=0.13 \mathrm{~m}$
Gate Clarifier Distribution Box
2545.24

Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2541$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.91 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.32 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 16
Total flow, all units $=30.6 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2545.23$
Upstream water level $=2545.24$
Box 2 Weir
2546.02

Weir invert (top of weir) $=2545.53$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient $=1.807$
Flow over weir $=1.91 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=30.6 \mathrm{cms}$
Head over weir $=0.49 \mathrm{~m}$

Enter Pipe BOX 2

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=120.4 \mathrm{~m}$
Flow $=7.64 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor $=1$
Solids factor $=1$
Velocity $=1.02 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=30.6 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.08 \mathrm{~m}$
Total loss $=0.11 \mathrm{~m}$
0

General Box 2 Gate

2546.15

Opening type $=$ rectangular gate
Opening diameter $/$ width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$
Flow through gate $(\mathrm{s})=5.35 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.25 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2546.14$
Upstream water level $=2546.15$
General box 2 Weir
Weir invert (top of weir) $=2546.38$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=7.64 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=30.6 \mathrm{cms}$
Head over weir $=0.67 \mathrm{~m}$

Aeration Exit pipe

2547.39

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=971 \mathrm{~m}$
Flow $=25.99 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor $=1$
Solids factor $=1$
Velocity $=1.24 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=26 \mathrm{cms}$
Friction loss $=0.22 \mathrm{~m}$
Fitting loss $=0.12 \mathrm{~m}$
Total loss $=0.34 \mathrm{~m}$
0
Aeration Exit Channel
2547.39

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=5.1 \mathrm{cms}$
Downstream channel invert $=2542$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=20.32 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.62 \mathrm{~m}$
Critical depth $=0.55 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=30.6 \mathrm{cms}$
Depth downstream $=5.39 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.77 \mathrm{~m}$
Velocity $=0.24 \mathrm{~m} / \mathrm{s}$
AB Tank Weir
Weir invert (top of weir) $=2547.9$

Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.782$
Flow over weir $=1.27 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=30.5 \mathrm{cms}$
Head over weir $=0.08 \mathrm{~m}$
Aeration Basin
2547.98

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=1.27 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=98.76 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.111 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=30.6 \mathrm{cms}$
Depth downstream $=8.98 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=8.98 \mathrm{~m}$
Velocity $=0.01 \mathrm{~m} / \mathrm{s}$
Aeration Enter Gate
2547.98

Opening type = rectangular gate
Opening diameter $/$ width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2543$
Number of gates = 1
Flow through gate $(\mathrm{s})=1.27 \mathrm{cms}$
Total area of opening(s) $=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.11 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=24$
Total flow, all units $=30.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2547.98$
Upstream water level $=2547.98$
AB Distribution Pipe
Pipe shape = Circular
Diameter $=1200 \mathrm{~mm}$

Length $=77 \mathrm{~m}$
Flow $=1.27 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.131 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.3$
Age factor $=1$
Solids factor $=1$
Velocity $=1.13 \mathrm{~m} / \mathrm{s}$
Units on-line $=24$
Total flow, all units $=30.6 \mathrm{cms}$
Friction loss $=0.08 \mathrm{~m}$
Fitting loss $=0.1 \mathrm{~m}$
Total loss $=0.18 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0
AB Distribution Box Gate
2548.17

Opening type = rectangular gate
Opening diameter/width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate(s) $=1.27 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.2 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
Total flow, all units $=30.6 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2548.16$
Upstream water level $=2548.17$
AB Distribution Box Weir
2548.73

Weir invert (top of weir) $=2548.35$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.815$
Flow over weir $=1.27 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=30.5 \mathrm{cms}$
Head over weir $=0.38 \mathrm{~m}$

Aeration Enter Pipe

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=7.13 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor $=1$
Solids factor $=1$
Velocity $=0.82 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.13 \mathrm{~m}$
0

General aeration box Weir Gate

2548.92

Opening type = rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2544
Number of gates $=1$
Flow through gate $(\mathrm{s})=7.13 \mathrm{cms}$
Total area of opening $(\mathrm{s})=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.71 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=3$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.07 \mathrm{~m}$
Downstream water level $=2548.85$
Upstream water level $=2548.92$
General Aeration Box Weir
2549.9

Weir invert (top of weir) $=2549.26$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.846$
Flow over weir $=7.13 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=21.4 \mathrm{cms}$
Head over weir $=0.64 \mathrm{~m}$
Clarifier Junction Exit Pipe
Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=652 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.87 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.1 \mathrm{~m}$
Fitting loss $=0.07 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0

Clarifier Exit Pipe

2550.16

Pipe shape = Circular
Diameter $=1500 \mathrm{~mm}$
Length $=105.4 \mathrm{~m}$
Flow $=1.34 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.09 \mathrm{~m}$

Clarifier Orifice

Opening type $=$ circular orifice
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2545$
Number of openings $=1$
Flow through opening $(\mathrm{s})=1.34 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.76 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 16

Total flow, all units $=21.4 \mathrm{cms}$
Orifice loss $=0.08 \mathrm{~m}$
Downstream water level $=2550.16$
Upstream water level $=2550.24$
Clarifier Launder
2550.24

Launder invert $=2547$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.67 \mathrm{cms}$
Critical depth $=0.27 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=21.4 \mathrm{cms}$
Downstream depth $=3.24 \mathrm{~m}$
Upstream depth $=2.92 \mathrm{~m}$
Weir Clarifier
2550.94

Invert of V notch $=2550.87$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=1.34 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=21.4 \mathrm{cms}$
Head over weir $=0.07 \mathrm{~m}$

Clarifier Enter Pipe

2551
Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=1.34 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.06 \mathrm{~m}$

Distribution Box Gate

Opening type $=$ rectangular gate

Opening diameter/width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert = 2545
Number of gates $=1$
Flow through gate(s) $=1.34 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.3 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2551$
Upstream water level $=2551.01$
Box 1 Weir
2551.52

Weir invert (top of weir) $=2551.13$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=1.34 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 16
Total flow, all units $=21.4 \mathrm{cms}$
Head over weir $=0.39 \mathrm{~m}$

Enter Pipe BOX 1

2551.61

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=110.9 \mathrm{~m}$
Flow $=5.35 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor $=1$
Velocity $=0.86 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.03 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.09 \mathrm{~m}$
0
General Box Gate
Opening type $=$ rectangular gate

Opening diameter/width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate $(\mathrm{s})=5.35 \mathrm{cms}$
Total area of opening(s) $=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.3 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2551.61$
Upstream water level $=2551.62$

General box 1 Weir

2552.5

Weir invert (top of weir) $=2551.89$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.843$
Flow over weir $=5.35 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Head over weir $=0.61 \mathrm{~m}$
R Mix to Clarifiers Pipe
2552.61

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=150.43 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=1.02 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.08 \mathrm{~m}$
Total loss $=0.11 \mathrm{~m}$
0

RM Exit Channel

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=21.4 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=211.54 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.358 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=6.61 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.61 \mathrm{~m}$
Velocity $=0.1 \mathrm{~m} / \mathrm{s}$

RM Exit Gate

2552.61

Opening type = circular gate
Opening diameter $/$ width $=4000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=4$
Flow through gate(s) $=5.35 \mathrm{cms}$
Total area of opening $(\mathrm{s})=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.11 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2552.61$
Upstream water level $=2552.61$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=5.35 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=60.91 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.358 \mathrm{~m}$
Units on-line $=4$

Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=7.61 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.62 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$

RM Enter Gate

2552.64

Opening type $=$ circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=4$
Flow through gate(s) $=5.35 \mathrm{cms}$
Total area of opening(s) $=12.57 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.43 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.03 \mathrm{~m}$
Downstream water level $=2552.62$
Upstream water level $=2552.64$
RM Enter Channel
2552.64

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=21.4 \mathrm{cms}$
Downstream channel invert $=2546.5$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=196.54 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.358 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=6.14 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.14 \mathrm{~m}$
Velocity $=0.11 \mathrm{~m} / \mathrm{s}$

Grit Channel to RM Pipe

2552.72

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$

Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.87 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.07 \mathrm{~m}$
Total loss $=0.08 \mathrm{~m}$
0

Junction Tank Grit Channel

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width/diameter $=45.2 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$
Downstream channel invert $=2547$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=258.57 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.179 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=5.72 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.72 \mathrm{~m}$
Velocity $=0.04 \mathrm{~m} / \mathrm{s}$

Grit Weir

2553.4

Weir invert (top of weir) $=2553.2$
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.931$
Flow over weir $=2.14 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 10
Total flow, all units $=21.4 \mathrm{cms}$
Head over weir $=0.2 \mathrm{~m}$

Grit Channel

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=40.5 \mathrm{~m}$
Channel width/diameter $=6 \mathrm{~m}$
Flow $=1.53 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=50.43 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.188 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=8.4 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=8.41 \mathrm{~m}$
Velocity $=0.03 \mathrm{~m} / \mathrm{s}$

Screening Exit Channel Gate

2553.44

Opening type = rectangular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=2.14 \mathrm{cms}$
Total area of opening(s) $=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.54 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=10$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.04 \mathrm{~m}$
Downstream water level $=2553.41$
Upstream water level $=2553.44$

Screen Channel 1-2

2553.45

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.78 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=14.99 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.384 \mathrm{~m}$
Units on-line $=12$

Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=6.24 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.25 \mathrm{~m}$
Velocity $=0.12 \mathrm{~m} / \mathrm{s}$

Fine Screen

2553.45

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=2.14 \mathrm{cms}$
Bar width $=5 \mathrm{~mm}$
Bar spacing $=10 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=6.53 \mathrm{~m}^{2}$
Downstream depth $=5.45 \mathrm{~m}$
Velocity in channel $=0.2 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.33 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=21.4 \mathrm{cms}$
Rack head loss $=0 \mathrm{~m}$
Screen Channel 2-3
2553.45

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.78 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=15 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.384 \mathrm{~m}$
Units on-line $=12$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=6.25 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.25 \mathrm{~m}$
Velocity $=0.12 \mathrm{~m} / \mathrm{s}$
Medium Screen
2553.46

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=2.14 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$

Bar spacing $=30 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=7.36 \mathrm{~m}^{2}$
Downstream depth $=5.45 \mathrm{~m}$
Velocity in channel $=0.2 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.29 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=21.4 \mathrm{cms}$
Rack head loss $=0 \mathrm{~m}$

Screen Channel 3-4

2553.46

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.78 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=13.58 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.384 \mathrm{~m}$
Units on-line $=12$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=5.66 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.66 \mathrm{~m}$
Velocity $=0.13 \mathrm{~m} / \mathrm{s}$
Screening Enter Channel Gate
2553.5

Opening type $=$ rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=2.14 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.54 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=10$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.04 \mathrm{~m}$
Downstream water level $=2553.46$
Upstream water level $=2553.5$

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=238.68 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.188 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=5.7 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.7 \mathrm{~m}$
Velocity $=0.04 \mathrm{~m} / \mathrm{s}$

Initial Pipe

2553.55

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

Initial Gate

Opening type $=$ rectangular gate
Opening diameter $/$ width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates =1
Flow through gate $(\mathrm{s})=10.7 \mathrm{cms}$
Total area of opening(s) $=20 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.53 \mathrm{~m} / \mathrm{s}$

Flow behavior = orifice, downstream control
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.04 \mathrm{~m}$
Downstream water level $=2553.55$
Upstream water level $=2553.59$
Inicial Junction Tank
2553.59

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=21.4 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=189.71 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.422 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=7.59 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.59 \mathrm{~m}$
Velocity $=0.11 \mathrm{~m} / \mathrm{s}$

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
32 cms	9.18 cms	---------	

Section Description

Starting water surface elevation
Exit Pipe
Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=343 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor $=1$
Solids factor $=1$
Velocity $=1.33 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.13 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.26 \mathrm{~m}$
0

Chlorination Exit Tank

2543.82

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=154.5 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2540.45$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=520.61 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.46 \mathrm{~m}$
Critical depth $=0.164 \mathrm{~m}$
Units on-line $=1$
Water Surface Elevation
2543.56
2543.82

.

Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=3.37 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=3.37 \mathrm{~m}$
Velocity $=0.06 \mathrm{~m} / \mathrm{s}$
Chlorination Tank Weir
2544.16

Weir invert (top of weir) $=2543.83$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.794$
Flow over weir $=8 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.33 \mathrm{~m}$
Chlorination Tank
2544.17

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=33.18 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=1.32 \mathrm{~m}$
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=4.16 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.13 \mathrm{~m}$
Velocity $=0.24 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate
Opening type $=$ rectangular gate
Opening diameter $/$ width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate(s) $=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.25 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control Units on-line $=4$

Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2544.17$
Upstream water level $=2544.18$
Chlorination Enter Tank
2544.18

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=384.26 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.231 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=4.18 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.18 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
2544.63

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=522 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor = 1
Solids factor $=1$
Velocity $=1.52 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.27 \mathrm{~m}$
Fitting loss $=0.18 \mathrm{~m}$
Total loss $=0.45 \mathrm{~m}$
0
Secondary Clarifier Exit Pipe

Diameter $=1500 \mathrm{~mm}$
Length $=117 \mathrm{~m}$
Flow $=2 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.13 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.09 \mathrm{~m}$
Fitting loss $=0.11 \mathrm{~m}$
Total loss $=0.2 \mathrm{~m}$

2 Clarifier Orifice

2545.01

Opening type $=$ circular orifice
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Opening height = not applicable
Invert $=2540$
Number of openings = 1
Flow through opening(s) $=2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening(s) $=1.13 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Orifice loss $=0.18 \mathrm{~m}$
Downstream water level $=2544.83$
Upstream water level $=2545.01$
Launder Channel 2 C
2545.02

Launder invert $=2543$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=1 \mathrm{cms}$
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=32 \mathrm{cms}$
Downstream depth $=2.01 \mathrm{~m}$
Upstream depth $=1.66 \mathrm{~m}$

Weir 2 Clarifier

Invert of V notch $=2545.05$
Angle of V notch $=90$ degrees

Number of notches $=911$
Total flow over weir $=1.6 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=20$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.07 \mathrm{~m}$
2 Clarifier Enter Pipe
2545.35

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=2.57 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.46 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=41.2 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.16 \mathrm{~m}$
Total loss $=0.23 \mathrm{~m}$
Gate Clarifier Distribution Box
2545.37

Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2541
Number of gates $=1$
Flow through gate $(\mathrm{s})=2.57 \mathrm{cms}$
Total area of opening(s) $=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.43 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 16
Total flow, all units $=41.2 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2545.35$
Upstream water level $=2545.37$

Box 2 Weir

Weir invert (top of weir) $=2545.53$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient $=1.807$
Flow over weir $=2.57 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=41.2 \mathrm{cms}$
Head over weir $=0.6 \mathrm{~m}$
Enter Pipe BOX 2
Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=120.4 \mathrm{~m}$
Flow $=10.3 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor = 1
Solids factor $=1$
Velocity $=1.37 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=41.2 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.21 \mathrm{~m}$
0

General Box 2 Gate

2546.36

Opening type = rectangular gate
Opening diameter $/$ width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$
Flow through gate(s) $=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.38 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2546.34$
Upstream water level $=2546.36$
General box 2 Weir
Weir invert (top of weir) $=2546.38$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=10.3 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=41.2 \mathrm{cms}$
Head over weir $=0.82 \mathrm{~m}$

Aeration Exit pipe

2547.87

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=971 \mathrm{~m}$
Flow $=36.59 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor $=1$
Solids factor $=1$
Velocity $=1.74 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=36.6 \mathrm{cms}$
Friction loss $=0.44 \mathrm{~m}$
Fitting loss $=0.23 \mathrm{~m}$
Total loss $=0.67 \mathrm{~m}$
0
Aeration Exit Channel
2547.87

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=6.87 \mathrm{cms}$
Downstream channel invert $=2542$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=22.24 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.75 \mathrm{~m}$
Critical depth $=0.67 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=41.2 \mathrm{cms}$
Depth downstream $=5.87 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.25 \mathrm{~m}$
Velocity $=0.29 \mathrm{~m} / \mathrm{s}$
AB Tank Weir
2548
Weir invert (top of weir) $=2547.9$

Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir ' ${ }^{\prime}$ ' coefficient $=1.782$
Flow over weir $=1.71 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=41.1 \mathrm{cms}$
Head over weir $=0.1 \mathrm{~m}$
Aeration Basin 2548
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=1.71 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=98.95 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.136 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=41.1 \mathrm{cms}$
Depth downstream $=9 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=9 \mathrm{~m}$
Velocity $=0.02 \mathrm{~m} / \mathrm{s}$
Aeration Enter Gate 2548
Opening type $=$ rectangular gate
Opening diameter $/$ width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2543$
Number of gates = 1
Flow through gate $(\mathrm{s})=1.71 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.14 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
Total flow, all units $=41.2 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2548$
Upstream water level $=2548$
AB Distribution Pipe
Pipe shape = Circular
Diameter $=1200 \mathrm{~mm}$

Length $=77 \mathrm{~m}$
Flow $=1.71 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.131 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.3$
Age factor $=1$
Solids factor $=1$
Velocity $=1.52 \mathrm{~m} / \mathrm{s}$
Units on-line $=24$
Total flow, all units $=41.1 \mathrm{cms}$
Friction loss $=0.15 \mathrm{~m}$
Fitting loss $=0.18 \mathrm{~m}$
Total loss $=0.32 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0

AB Distribution Box Gate
2548.33

Opening type = rectangular gate
Opening diameter/width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.71 \mathrm{cms}$
Total area of opening(s) $=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.26 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
Total flow, all units $=41.2 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2548.32$
Upstream water level $=2548.33$
AB Distribution Box Weir
2548.81

Weir invert (top of weir) $=2548.35$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.815$
Flow over weir $=1.71 \mathrm{cms}$
Weir submergence = unsubmerged
Units on-line $=24$
Total flow, all units $=41.1 \mathrm{cms}$
Head over weir $=0.46 \mathrm{~m}$

Aeration Enter Pipe

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=10.67 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor $=1$
Solids factor $=1$
Velocity $=1.22 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.14 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.28 \mathrm{~m}$
0

General aeration box Weir Gate
2549.24

Opening type = rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2544
Number of gates = 1
Flow through gate(s) $=10.67 \mathrm{cms}$
Total area of opening $(\mathrm{s})=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=1.07 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=3$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.15 \mathrm{~m}$
Downstream water level $=2549.09$
Upstream water level $=2549.24$

General Aeration Box Weir

2550.09

Weir invert (top of weir) $=2549.26$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.846$
Flow over weir $=10.67 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.83 \mathrm{~m}$
Clarifier Junction Exit Pipe
Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=652 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=1.31 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.22 \mathrm{~m}$
Fitting loss $=0.16 \mathrm{~m}$
Total loss $=0.38 \mathrm{~m}$
0

Clarifier Exit Pipe

2550.67

Pipe shape = Circular
Diameter $=1500 \mathrm{~mm}$
Length $=105.4 \mathrm{~m}$
Flow $=2 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.13 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.08 \mathrm{~m}$
Fitting loss $=0.12 \mathrm{~m}$
Total loss $=0.2 \mathrm{~m}$
Clarifier Orifice
2550.85

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2545$
Number of openings $=1$
Flow through opening(s) $=2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=1.13 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 16

Total flow, all units $=32 \mathrm{cms}$
Orifice loss $=0.18 \mathrm{~m}$
Downstream water level $=2550.67$
Upstream water level $=2550.85$
Clarifier Launder
2550.85

Launder invert $=2547$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=1 \mathrm{cms}$
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=32 \mathrm{cms}$
Downstream depth $=3.85 \mathrm{~m}$
Upstream depth $=3.53 \mathrm{~m}$
Weir Clarifier
2550.95

Invert of V notch $=2550.87$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 16
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.08 \mathrm{~m}$

Clarifier Enter Pipe

2551.08

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=2 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.13 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.1 \mathrm{~m}$
Total loss $=0.13 \mathrm{~m}$
Distribution Box Gate
Opening type $=$ rectangular gate

Opening diameter/width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate(s) $=2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.44 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.03 \mathrm{~m}$
Downstream water level $=2551.08$
Upstream water level $=2551.11$

Box 1 Weir

2551.64

Weir invert (top of weir) $=2551.13$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 16
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.51 \mathrm{~m}$

Enter Pipe BOX 1

2551.84

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=110.9 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor $=1$
Velocity $=1.28 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.2 \mathrm{~m}$
0

General Box Gate
2551.87

Opening type $=$ rectangular gate

Opening diameter/width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate(s) $=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.44 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.03 \mathrm{~m}$
Downstream water level $=2551.84$
Upstream water level $=2551.87$

General box 1 Weir

2552.69

Weir invert (top of weir) $=2551.89$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.843$
Flow over weir $=8 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.8 \mathrm{~m}$
R Mix to Clarifiers Pipe
2552.94

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=150.43 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=1.52 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.08 \mathrm{~m}$
Fitting loss $=0.18 \mathrm{~m}$
Total loss $=0.26 \mathrm{~m}$
0

RM Exit Channel

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=222.09 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=6.94 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.94 \mathrm{~m}$
Velocity $=0.14 \mathrm{~m} / \mathrm{s}$

RM Exit Gate

2552.95

Opening type = circular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=4$
Flow through gate(s) $=8 \mathrm{cms}$
Total area of opening(s) $=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.16 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2552.94$
Upstream water level $=2552.95$
RM
2552.95

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=63.57 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=4$

Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=7.95 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.95 \mathrm{~m}$
Velocity $=0.13 \mathrm{~m} / \mathrm{s}$

RM Enter Gate

2553
Opening type $=$ circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=4$
Flow through gate(s) $=8 \mathrm{cms}$
Total area of opening(s) $=12.57 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.64 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.06 \mathrm{~m}$
Downstream water level $=2552.95$
Upstream water level $=2553$
RM Enter Channel
2553.01

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2546.5$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=208.17 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=6.5 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.51 \mathrm{~m}$
Velocity $=0.15 \mathrm{~m} / \mathrm{s}$

Grit Channel to RM Pipe

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=16 \mathrm{cms}$

Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=1.31 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.16 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0

Junction Tank Grit Channel

2553.18

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width/diameter $=45.2 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2547$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=279.36 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.234 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=6.18 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.18 \mathrm{~m}$
Velocity $=0.06 \mathrm{~m} / \mathrm{s}$

Grit Weir

2553.47

Weir invert (top of weir) $=2553.2$
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir 'C' coefficient =1.931
Flow over weir $=3.2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 10
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.27 \mathrm{~m}$

Grit Channel

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=40.5 \mathrm{~m}$
Channel width/diameter $=6 \mathrm{~m}$
Flow $=2.29 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=50.81 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.246 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=8.47 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=8.47 \mathrm{~m}$
Velocity $=0.05 \mathrm{~m} / \mathrm{s}$

Screening Exit Channel Gate

2553.55

Opening type = rectangular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=3.2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.8 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.08 \mathrm{~m}$
Downstream water level $=2553.47$
Upstream water level $=2553.55$

Screen Channel 1-2

2553.56

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=2.67 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=15.25 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.501 \mathrm{~m}$
Units on-line $=12$

Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=6.35 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.36 \mathrm{~m}$
Velocity $=0.17 \mathrm{~m} / \mathrm{s}$
Fine Screen
2553.57

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=3.2 \mathrm{cms}$
Bar width $=5 \mathrm{~mm}$
Bar spacing $=10 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=6.67 \mathrm{~m}^{2}$
Downstream depth $=5.56 \mathrm{~m}$
Velocity in channel $=0.29 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.48 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Rack head loss $=0.01 \mathrm{~m}$
Screen Channel 2-3
2553.57

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=2.67 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=15.28 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.501 \mathrm{~m}$
Units on-line $=12$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=6.37 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.37 \mathrm{~m}$
Velocity $=0.17 \mathrm{~m} / \mathrm{s}$
Medium Screen
2553.58

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=3.2 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$

Bar spacing $=30 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=7.52 \mathrm{~m}^{2}$
Downstream depth $=5.57 \mathrm{~m}$
Velocity in channel $=0.29 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.43 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Rack head loss $=0.01 \mathrm{~m}$

Screen Channel 3-4

2553.58

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=2.67 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=13.86 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.501 \mathrm{~m}$
Units on-line = 12
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=5.78 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.78 \mathrm{~m}$
Velocity $=0.19 \mathrm{~m} / \mathrm{s}$
Screening Enter Channel Gate
2553.66

Opening type = rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=3.2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.8 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.08 \mathrm{~m}$
Downstream water level $=2553.58$
Upstream water level $=2553.66$

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=245.66 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.246 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=5.86 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.86 \mathrm{~m}$
Velocity $=0.07 \mathrm{~m} / \mathrm{s}$

Initial Pipe

2553.78

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=1.14 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.11 \mathrm{~m}$
Total loss $=0.12 \mathrm{~m}$
0

Initial Gate

Opening type $=$ rectangular gate
Opening diameter $/$ width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates =1
Flow through gate(s) $=16 \mathrm{cms}$
Total area of opening $(\mathrm{s})=20 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.8 \mathrm{~m} / \mathrm{s}$

Flow behavior = orifice, downstream control
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.08 \mathrm{~m}$
Downstream water level $=2553.78$
Upstream water level $=2553.86$

Inicial Junction Tank

2553.87

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=196.64 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.551 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=7.86 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.87 \mathrm{~m}$
Velocity $=0.16 \mathrm{~m} / \mathrm{s}$

Anexo 3.2. Perfil hidráulico alternativa 2 Cota de inicio 2542.38

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
13.6 cms	9.18 cms	--------	

Section Description

Starting water surface elevation

Exit Pipe
Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=343 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

Chlorination Exit Tank

2543.08

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=154.5 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2540.45$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=406.28 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.28 \mathrm{~m}$
Critical depth $=0.093 \mathrm{~m}$
Units on-line $=1$

Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=2.63 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.63 \mathrm{~m}$
Velocity $=0.03 \mathrm{~m} / \mathrm{s}$
Chlorination Tank Weir
2544.03

Weir invert (top of weir) $=2543.84$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.794$
Flow over weir $=3.4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.19 \mathrm{~m}$
Chlorination Tank
2544.03

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=3.4 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=32.09 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.76 \mathrm{~m}$
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=4.03 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=3.99 \mathrm{~m}$
Velocity $=0.11 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate
Opening type $=$ rectangular gate
Opening diameter $/$ width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate $(\mathrm{s})=3.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.11 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control Units on-line $=4$

Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2544.03$
Upstream water level $=2544.03$
Chlorination Enter Tank
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=370.81 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.131 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=4.03 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.03 \mathrm{~m}$
Velocity $=0.04 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
2544.11

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=522 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor = 1
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.05 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.08 \mathrm{~m}$
0

Diameter $=1500 \mathrm{~mm}$
Length $=117 \mathrm{~m}$
Flow $=0.85 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.48 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$

2 Clarifier Orifice

2544.18

Opening type $=$ circular orifice
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2540$
Number of openings $=1$
Flow through opening $(\mathrm{s})=0.85 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.48 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Orifice loss $=0.03 \mathrm{~m}$
Downstream water level $=2544.15$
Upstream water level $=2544.18$
Launder Channel 2 C
2544.57

Launder invert $=2544$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.43 \mathrm{cms}$
Critical depth $=0.2 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=13.6 \mathrm{cms}$
Downstream depth $=0.2 \mathrm{~m}$
Upstream depth $=0.2 \mathrm{~m}$

Weir 2 Clarifier

Invert of V notch $=2545.09$
Angle of V notch $=90$ degrees

Number of notches $=911$
Total flow over weir $=0.68 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=20$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.05 \mathrm{~m}$

2 Clarifier Enter Pipe
2545.21

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=1.42 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.81 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=22.8 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.07 \mathrm{~m}$
Gate Clarifier Distribution Box
2545.22

Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2541$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.42 \mathrm{cms}$
Total area of opening(s) $=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.24 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=22.8 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2545.21$
Upstream water level $=2545.22$
Box 2 Weir
Weir invert (top of weir) $=2545.43$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient $=1.807$
Flow over weir $=1.42 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.41 \mathrm{~m}$

Enter Pipe BOX 2

2545.9

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=120.4 \mathrm{~m}$
Flow $=5.7 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=22.8 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.06 \mathrm{~m}$
0

General Box 2 Gate

2545.9

Opening type = rectangular gate
Opening diameter $/$ width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$
Flow through gate $(\mathrm{s})=3.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.16 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2545.9$
Upstream water level $=2545.9$
General box 2 Weir
Weir invert (top of weir) $=2546.28$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=5.7 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.55 \mathrm{~m}$

Aeration Exit pipe

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=971 \mathrm{~m}$
Flow $=18.19 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor $=1$
Solids factor $=1$
Velocity $=0.87 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=18.2 \mathrm{cms}$
Friction loss $=0.11 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0
Aeration Exit Channel
2547
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=3.8 \mathrm{cms}$
Downstream channel invert $=2542$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=18.76 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.51 \mathrm{~m}$
Critical depth $=0.452 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=22.8 \mathrm{cms}$
Depth downstream $=5 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.38 \mathrm{~m}$
Velocity $=0.19 \mathrm{~m} / \mathrm{s}$
AB Tank Weir
Weir invert $($ top of weir $)=2547.79$

Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir ' ${ }^{\prime}$ ' coefficient $=1.782$
Flow over weir $=0.95 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$
Aeration Basin
2547.86

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=0.95 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=97.4 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.091 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Depth downstream $=8.85 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=8.86 \mathrm{~m}$
Velocity $=0.01 \mathrm{~m} / \mathrm{s}$
Aeration Enter Gate
2547.86

Opening type = rectangular gate
Opening diameter $/$ width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2543$
Number of gates = 1
Flow through gate $(\mathrm{s})=0.95 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.08 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2547.86$
Upstream water level $=2547.86$
AB Distribution Pipe
Pipe shape = Circular
Diameter $=1200 \mathrm{~mm}$

Length $=77 \mathrm{~m}$
Flow $=0.95 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.131 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.3$
Age factor $=1$
Solids factor $=1$
Velocity $=0.84 \mathrm{~m} / \mathrm{s}$
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Friction loss $=0.05 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.1 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0
AB Distribution Box Gate
2547.96

Opening type = rectangular gate
Opening diameter/width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=0.95 \mathrm{cms}$
Total area of opening(s) $=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.15 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 24
Total flow, all units $=22.8 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2547.96$
Upstream water level $=2547.96$

AB Distribution Box Weir

2548.55

Weir invert (top of weir) $=2548.24$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.815$
Flow over weir $=0.95 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.31 \mathrm{~m}$

Aeration Enter Pipe

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=4.53 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor $=1$
Solids factor $=1$
Velocity $=0.52 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.03 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

General aeration box Weir Gate

2548.63

Opening type = rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2544
Number of gates $=1$
Flow through gate $(\mathrm{s})=4.53 \mathrm{cms}$
Total area of opening(s) $=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.45 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=3$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.03 \mathrm{~m}$
Downstream water level $=2548.6$
Upstream water level $=2548.63$
General Aeration Box Weir
2549.62

Weir invert (top of weir) $=2549.15$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.846$
Flow over weir $=4.53 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.47 \mathrm{~m}$
Clarifier Junction Exit Pipe
Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=652 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.56 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.07 \mathrm{~m}$
0

Clarifier Exit Pipe

2549.73

Pipe shape = Circular
Diameter $=1500 \mathrm{~mm}$
Length $=105.4 \mathrm{~m}$
Flow $=0.85 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.48 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$

Clarifier Orifice

2549.76

Opening type $=$ circular orifice
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2545$
Number of openings $=1$
Flow through opening $(\mathrm{s})=0.85 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening(s) $=0.48 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 16

Total flow, all units $=13.6 \mathrm{cms}$
Orifice loss $=0.03 \mathrm{~m}$
Downstream water level $=2549.73$
Upstream water level $=2549.76$
Clarifier Launder
Launder invert $=2549.5$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.43 \mathrm{cms}$
Critical depth $=0.2 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=13.6 \mathrm{cms}$
Downstream depth $=0.26 \mathrm{~m}$
Upstream depth $=0.2 \mathrm{~m}$

Weir Clarifier

2550.85

Invert of V notch $=2550.79$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=0.85 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$

Clarifier Enter Pipe

2550.87

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=0.85 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.48 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.02 \mathrm{~m}$

Distribution Box Gate

Opening type = rectangular gate

Opening diameter/width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate(s) $=0.85 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.19 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2550.87$
Upstream water level $=2550.87$

Box 1 Weir

2551.34

Weir invert (top of weir) $=2551.05$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=0.85 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 16
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.29 \mathrm{~m}$

Enter Pipe BOX 1

2551.37

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=110.9 \mathrm{~m}$
Flow $=3.4 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor $=1$
Velocity $=0.54 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$
0
General Box Gate
2551.37

Opening type $=$ rectangular gate

Opening diameter/width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate(s) $=3.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.19 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2551.37$
Upstream water level $=2551.37$

General box 1 Weir

2552.26

Weir invert (top of weir) $=2551.81$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.843$
Flow over weir $=3.4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.45 \mathrm{~m}$
R Mix to Clarifiers Pipe
2552.31

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=150.43 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

RM Exit Channel

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=201.94 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=6.31 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.31 \mathrm{~m}$
Velocity $=0.07 \mathrm{~m} / \mathrm{s}$

RM Exit Gate

2552.31

Opening type = circular gate
Opening diameter $/$ width $=4000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=4$
Flow through gate(s) $=3.4 \mathrm{cms}$
Total area of opening(s) $=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.07 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2552.31$
Upstream water level $=2552.31$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=3.4 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=58.51 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=4$

Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=7.31 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.31 \mathrm{~m}$
Velocity $=0.06 \mathrm{~m} / \mathrm{s}$

RM Enter Gate

2552.32

Opening type = circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=4$
Flow through gate(s) $=3.4 \mathrm{cms}$
Total area of opening(s) $=12.57 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.27 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2552.31$
Upstream water level $=2552.32$

RM Enter Channel

2552.33

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2546.5$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=186.41 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=5.82 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.83 \mathrm{~m}$
Velocity $=0.07 \mathrm{~m} / \mathrm{s}$

Grit Channel to RM Pipe

2552.36

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$

Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.56 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.03 \mathrm{~m}$
0

Junction Tank Grit Channel

2552.36

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width/diameter $=45.2 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Downstream channel invert $=2547$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=242.3 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.132 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=5.36 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.36 \mathrm{~m}$
Velocity $=0.03 \mathrm{~m} / \mathrm{s}$

Grit Weir

2553.27

Weir invert (top of weir) $=2553.12$
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.931$
Flow over weir $=1.36 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 10
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.15 \mathrm{~m}$

Grit Channel

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=40.5 \mathrm{~m}$
Channel width/diameter $=6 \mathrm{~m}$
Flow $=0.97 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=49.63 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.139 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=8.27 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=8.27 \mathrm{~m}$
Velocity $=0.02 \mathrm{~m} / \mathrm{s}$

Screening Exit Channel Gate

2553.29

Opening type = rectangular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=1.36 \mathrm{cms}$
Total area of opening(s) $=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.34 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 10
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2553.27$
Upstream water level $=2553.29$

Screen Channel 1-2

2553.29

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.13 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=14.61 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.284 \mathrm{~m}$
Units on-line $=12$

Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=6.09 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.09 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$

Fine Screen

2553.29

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=1.36 \mathrm{cms}$
Bar width $=5 \mathrm{~mm}$
Bar spacing $=10 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=6.35 \mathrm{~m}^{2}$
Downstream depth $=5.29 \mathrm{~m}$
Velocity in channel $=0.13 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.21 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=13.6 \mathrm{cms}$
Rack head loss $=0 \mathrm{~m}$
Screen Channel 2-3
2553.29

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.13 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=14.62 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.284 \mathrm{~m}$
Units on-line $=12$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=6.09 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.09 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$
Medium Screen
2553.3

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=1.36 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$

Bar spacing $=30 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=7.15 \mathrm{~m}^{2}$
Downstream depth $=5.29 \mathrm{~m}$
Velocity in channel $=0.13 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.19 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=13.6 \mathrm{cms}$
Rack head loss $=0 \mathrm{~m}$

Screen Channel 3-4

2553.3

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.13 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=13.19 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.284 \mathrm{~m}$
Units on-line $=12$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=5.5 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.5 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$
Screening Enter Channel Gate
2553.31

Opening type $=$ rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=1.36 \mathrm{cms}$
Total area of opening(s) $=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.34 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line = 10
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2553.3$
Upstream water level $=2553.31$

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=231.02 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.139 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=5.51 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.52 \mathrm{~m}$
Velocity $=0.03 \mathrm{~m} / \mathrm{s}$

Initial Pipe

2553.34

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=0.49 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.02 \mathrm{~m}$
0

Initial Gate

Opening type $=$ rectangular gate
Opening diameter $/$ width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates =1
Flow through gate $(\mathrm{s})=6.8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=20 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.34 \mathrm{~m} / \mathrm{s}$

Flow behavior = orifice, downstream control
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2553.34$
Upstream water level $=2553.36$

Inicial Junction Tank

2553.36

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=183.9 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.312 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=7.36 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.36 \mathrm{~m}$
Velocity $=0.07 \mathrm{~m} / \mathrm{s}$

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
16 cms	9.18 cms	---------	

Section Description

Starting water surface elevation

Exit Pipe
Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=343 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor $=1$
Solids factor $=1$
Velocity $=0.67 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.03 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.07 \mathrm{~m}$
0

Chlorination Exit Tank

2543.19

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=154.5 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2540.45$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=423.25 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.31 \mathrm{~m}$
Critical depth $=0.103 \mathrm{~m}$
Units on-line $=1$

Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=2.74 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.74 \mathrm{~m}$
Velocity $=0.04 \mathrm{~m} / \mathrm{s}$
Chlorination Tank Weir
2544.05

Weir invert (top of weir) $=2543.84$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.794$
Flow over weir $=4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.21 \mathrm{~m}$
Chlorination Tank
2544.05

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=4 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=32.26 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.84 \mathrm{~m}$
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=4.05 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.01 \mathrm{~m}$
Velocity $=0.12 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate
Opening type $=$ rectangular gate
Opening diameter $/$ width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate(s) $=4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.12 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control Units on-line $=4$

Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2544.05$
Upstream water level $=2544.05$
Chlorination Enter Tank
2544.05

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=372.88 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.146 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=4.05 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.05 \mathrm{~m}$
Velocity $=0.04 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=522 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.07 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.11 \mathrm{~m}$
0

Diameter $=1500 \mathrm{~mm}$
Length $=117 \mathrm{~m}$
Flow $=1 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$

2 Clarifier Orifice

2544.27

Opening type $=$ circular orifice
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2540$
Number of openings = 1
Flow through opening(s) $=1 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening(s) $=0.57 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 16
Total flow, all units $=16 \mathrm{cms}$
Orifice loss $=0.05 \mathrm{~m}$
Downstream water level $=2544.22$
Upstream water level $=2544.27$
Launder Channel 2 C
2544.59

Launder invert $=2544$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.5 \mathrm{cms}$
Critical depth $=0.22 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=16 \mathrm{cms}$
Downstream depth $=0.27 \mathrm{~m}$
Upstream depth $=0.22 \mathrm{~m}$

Weir 2 Clarifier

Invert of V notch $=2545.09$
Angle of V notch $=90$ degrees

Number of notches $=911$
Total flow over weir $=0.8 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 20
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.05 \mathrm{~m}$

2 Clarifier Enter Pipe
2545.23

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=1.57 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.89 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=25.2 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.08 \mathrm{~m}$
Gate Clarifier Distribution Box
2545.24

Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2541$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.57 \mathrm{cms}$
Total area of opening(s) $=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.26 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 16
Total flow, all units $=25.2 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2545.23$
Upstream water level $=2545.24$
Box 2 Weir
Weir invert (top of weir) $=2545.43$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient $=1.807$
Flow over weir $=1.57 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.43 \mathrm{~m}$
Enter Pipe BOX 2
2545.94

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=120.4 \mathrm{~m}$
Flow $=6.3 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor $=1$
Solids factor $=1$
Velocity $=0.84 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=25.2 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.08 \mathrm{~m}$
0

General Box 2 Gate

2545.94

Opening type $=$ rectangular gate
Opening diameter $/$ width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$
Flow through gate(s) $=4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.19 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2545.94$
Upstream water level $=2545.94$
General box 2 Weir
Weir invert (top of weir) $=2546.28$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=6.3 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.59 \mathrm{~m}$

Aeration Exit pipe

2547.08

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=971 \mathrm{~m}$
Flow $=20.59 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor $=1$
Solids factor $=1$
Velocity $=0.98 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=20.6 \mathrm{cms}$
Friction loss $=0.14 \mathrm{~m}$
Fitting loss $=0.07 \mathrm{~m}$
Total loss $=0.21 \mathrm{~m}$
0

Aeration Exit Channel
2547.08

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=4.2 \mathrm{cms}$
Downstream channel invert $=2542$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=19.08 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.54 \mathrm{~m}$
Critical depth $=0.483 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=25.2 \mathrm{cms}$
Depth downstream $=5.08 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.46 \mathrm{~m}$
Velocity $=0.21 \mathrm{~m} / \mathrm{s}$
AB Tank Weir
Weir invert $($ top of weir $)=2547.79$

Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir 'C' coefficient $=1.782$
Flow over weir $=1.05 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.07 \mathrm{~m}$
Aeration Basin
2547.86

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=1.05 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=97.45 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.098 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Depth downstream $=8.86 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=8.86 \mathrm{~m}$
Velocity $=0.01 \mathrm{~m} / \mathrm{s}$
Aeration Enter Gate
2547.86

Opening type = rectangular gate
Opening diameter $/$ width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2543$
Number of gates = 1
Flow through gate $(\mathrm{s})=1.05 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.09 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2547.86$
Upstream water level $=2547.86$
AB Distribution Pipe
Pipe shape = Circular
Diameter $=1200 \mathrm{~mm}$

Length $=77 \mathrm{~m}$
Flow $=1.05 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.131 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.3$
Age factor $=1$
Solids factor $=1$
Velocity $=0.93 \mathrm{~m} / \mathrm{s}$
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.07 \mathrm{~m}$
Total loss $=0.12 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0
AB Distribution Box Gate
2547.98

Opening type = rectangular gate
Opening diameter/width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2543$
Number of gates =1
Flow through gate $(\mathrm{s})=1.05 \mathrm{cms}$
Total area of opening(s) $=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.16 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 24
Total flow, all units $=25.2 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2547.98$
Upstream water level $=2547.98$

AB Distribution Box Weir

2548.57

Weir invert (top of weir) $=2548.24$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.815$
Flow over weir $=1.05 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.33 \mathrm{~m}$

Aeration Enter Pipe

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=5.33 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor $=1$
Solids factor $=1$
Velocity $=0.61 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.07 \mathrm{~m}$
0

General aeration box Weir Gate

2548.68

Opening type = rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2544
Number of gates $=1$
Flow through gate(s) $=5.33 \mathrm{cms}$
Total area of opening $(\mathrm{s})=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.53 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=3$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.04 \mathrm{~m}$
Downstream water level $=2548.64$
Upstream water level $=2548.68$
General Aeration Box Weir
2549.67

Weir invert (top of weir) $=2549.15$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.846$
Flow over weir $=5.33 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.52 \mathrm{~m}$
Clarifier Junction Exit Pipe
Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=652 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.1 \mathrm{~m}$
0

Clarifier Exit Pipe

2549.82

Pipe shape = Circular
Diameter $=1500 \mathrm{~mm}$
Length $=105.4 \mathrm{~m}$
Flow $=1 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
Clarifier Orifice
2549.87

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2545$
Number of openings $=1$
Flow through opening(s) $=1 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.57 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$

Total flow, all units $=16 \mathrm{cms}$
Orifice loss $=0.05 \mathrm{~m}$
Downstream water level $=2549.82$
Upstream water level $=2549.87$
Clarifier Launder
2550.05

Launder invert $=2549.5$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.5 \mathrm{cms}$
Critical depth $=0.22 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=16 \mathrm{cms}$
Downstream depth $=0.37 \mathrm{~m}$
Upstream depth $=0.22 \mathrm{~m}$

Weir Clarifier

2550.85

Invert of V notch $=2550.79$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=1 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 16
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$

Clarifier Enter Pipe

2550.88

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=1 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.03 \mathrm{~m}$

Distribution Box Gate

Opening type $=$ rectangular gate

Opening diameter/width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert = 2545
Number of gates $=1$
Flow through gate(s) $=1 \mathrm{cms}$
Total area of opening(s) $=4.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.22 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 16
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2550.88$
Upstream water level $=2550.89$
Box 1 Weir
2551.37

Weir invert (top of weir) $=2551.05$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=1 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.32 \mathrm{~m}$

Enter Pipe BOX 1

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=110.9 \mathrm{~m}$
Flow $=4 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor $=1$
Velocity $=0.64 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0
General Box Gate
Opening type $=$ rectangular gate

Opening diameter/width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate(s) $=4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.22 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2551.42$
Upstream water level $=2551.43$

General box 1 Weir

2552.31

Weir invert (top of weir) $=2551.81$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.843$
Flow over weir $=4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.5 \mathrm{~m}$
R Mix to Clarifiers Pipe
2552.38

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=150.43 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.06 \mathrm{~m}$
0

RM Exit Channel

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=204.17 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=6.38 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.38 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$

RM Exit Gate

2552.38

Opening type = circular gate
Opening diameter $/$ width $=4000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=4$
Flow through gate(s) $=4 \mathrm{cms}$
Total area of opening(s) $=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.08 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2552.38$
Upstream water level $=2552.38$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=4 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=59.07 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=4$

Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=7.38 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.38 \mathrm{~m}$
Velocity $=0.07 \mathrm{~m} / \mathrm{s}$

RM Enter Gate

2552.4

Opening type $=$ circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=4$
Flow through gate(s) $=4 \mathrm{cms}$
Total area of opening(s) $=12.57 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.32 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2552.38$
Upstream water level $=2552.4$
RM Enter Channel
2552.4

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2546.5$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=188.79 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=5.9 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.9 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$

Grit Channel to RM Pipe

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=8 \mathrm{cms}$

Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$
0

Junction Tank Grit Channel

2552.44

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width/diameter $=45.2 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2547$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=245.91 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.148 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=5.44 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.44 \mathrm{~m}$
Velocity $=0.03 \mathrm{~m} / \mathrm{s}$

Grit Weir

2553.29

Weir invert (top of weir) $=2553.12$
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir 'C' coefficient = 1.931
Flow over weir $=1.6 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 10
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.17 \mathrm{~m}$

Grit Channel

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=40.5 \mathrm{~m}$
Channel width/diameter $=6 \mathrm{~m}$
Flow $=1.14 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=49.73 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.155 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=8.29 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=8.29 \mathrm{~m}$
Velocity $=0.02 \mathrm{~m} / \mathrm{s}$

Screening Exit Channel Gate

2553.31

Opening type = rectangular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=1.6 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.4 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 10
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2553.29$
Upstream water level $=2553.31$

Screen Channel 1-2

2553.31

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.33 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=14.67 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.316 \mathrm{~m}$
Units on-line $=12$

Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=6.11 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.11 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$
Fine Screen
2553.32

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=1.6 \mathrm{cms}$
Bar width $=5 \mathrm{~mm}$
Bar spacing $=10 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=6.38 \mathrm{~m}^{2}$
Downstream depth $=5.31 \mathrm{~m}$
Velocity in channel $=0.15 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.25 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=16 \mathrm{cms}$
Rack head loss $=0 \mathrm{~m}$
Screen Channel 2-3
2553.32

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.33 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=14.68 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.316 \mathrm{~m}$
Units on-line $=12$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=6.12 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.12 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$
Medium Screen
2553.32

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=1.6 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$

Bar spacing $=30 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=7.18 \mathrm{~m}^{2}$
Downstream depth $=5.32 \mathrm{~m}$
Velocity in channel $=0.15 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.22 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=16 \mathrm{cms}$
Rack head loss $=0 \mathrm{~m}$

Screen Channel 3-4

2553.32

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.33 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=13.25 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.316 \mathrm{~m}$
Units on-line $=12$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=5.52 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.52 \mathrm{~m}$
Velocity $=0.1 \mathrm{~m} / \mathrm{s}$
Screening Enter Channel Gate
2553.34

Opening type = rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.6 \mathrm{cms}$
Total area of opening(s) $=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.4 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=10$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2553.32$
Upstream water level $=2553.34$

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=232.29 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.155 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=5.54 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.55 \mathrm{~m}$
Velocity $=0.03 \mathrm{~m} / \mathrm{s}$

Initial Pipe

2553.38

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.03 \mathrm{~m}$
0

Initial Gate

Opening type $=$ rectangular gate
Opening diameter $/$ width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates =1
Flow through gate(s) $=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=20 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.4 \mathrm{~m} / \mathrm{s}$

Flow behavior = orifice, downstream control
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2553.38$
Upstream water level $=2553.4$

Inicial Junction Tank

2553.4

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=185.04 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.347 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=7.4 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.4 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
21.4 cms	9.18 cms	--------	

Section Description

Starting water surface elevation

Exit Pipe
Water Surface Elevation
2543.29

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=343 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor $=1$
Solids factor $=1$
Velocity $=0.89 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.12 \mathrm{~m}$
0

Chlorination Exit Tank

2543.41

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=154.5 \mathrm{~m}$
Flow $=21.4 \mathrm{cms}$
Downstream channel invert $=2540.45$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=457.24 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.36 \mathrm{~m}$
Critical depth $=0.125 \mathrm{~m}$
Units on-line $=1$

Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=2.96 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.96 \mathrm{~m}$
Velocity $=0.05 \mathrm{~m} / \mathrm{s}$
Chlorination Tank Weir
2544.1

Weir invert (top of weir) $=2543.84$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir ' ${ }^{\prime}$ ' coefficient $=1.794$
Flow over weir $=5.35 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Head over weir $=0.26 \mathrm{~m}$

Chlorination Tank
2544.1

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=5.35 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=32.62 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=1.01 \mathrm{~m}$
Critical depth $=0.358 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=4.1 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.06 \mathrm{~m}$
Velocity $=0.16 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate
Opening type $=$ rectangular gate
Opening diameter/width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate(s) $=5.35 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.17 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control Units on-line $=4$

Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2544.1$
Upstream water level $=2544.1$
Chlorination Enter Tank
2544.1

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=21.4 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=377.23 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.177 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=4.1 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.1 \mathrm{~m}$
Velocity $=0.06 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
2544.3

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=522 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=1.02 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.12 \mathrm{~m}$
Fitting loss $=0.08 \mathrm{~m}$
Total loss $=0.2 \mathrm{~m}$
0

Diameter $=1500 \mathrm{~mm}$
Length $=117 \mathrm{~m}$
Flow $=1.34 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.09 \mathrm{~m}$

2 Clarifier Orifice

2544.47

Opening type $=$ circular orifice
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Opening height = not applicable
Invert $=2540$
Number of openings $=1$
Flow through opening $(\mathrm{s})=1.34 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening(s) $=0.76 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=21.4 \mathrm{cms}$
Orifice loss $=0.08 \mathrm{~m}$
Downstream water level $=2544.39$
Upstream water level $=2544.47$
Launder Channel 2 C
2544.64

Launder invert $=2544$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.67 \mathrm{cms}$
Critical depth $=0.27 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=21.4 \mathrm{cms}$
Downstream depth $=0.47 \mathrm{~m}$
Upstream depth $=0.27 \mathrm{~m}$

Weir 2 Clarifier

Invert of V notch $=2545.09$
Angle of V notch $=90$ degrees

Number of notches $=911$
Total flow over weir $=1.07 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=20$
Total flow, all units $=21.4 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$
2 Clarifier Enter Pipe
2545.27

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=1.91 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.08 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=30.6 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.09 \mathrm{~m}$
Total loss $=0.13 \mathrm{~m}$
Gate Clarifier Distribution Box
2545.28

Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2541
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.91 \mathrm{cms}$
Total area of opening(s) $=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.32 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line = 16
Total flow, all units $=30.6 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2545.27$
Upstream water level $=2545.28$
Box 2 Weir
Weir invert (top of weir) $=2545.43$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient $=1.807$
Flow over weir $=1.91 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=30.6 \mathrm{cms}$
Head over weir $=0.49 \mathrm{~m}$
Enter Pipe BOX 2
Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=120.4 \mathrm{~m}$
Flow $=7.64 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor = 1
Solids factor $=1$
Velocity $=1.02 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=30.6 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.08 \mathrm{~m}$
Total loss $=0.11 \mathrm{~m}$
0

General Box 2 Gate

2546.05

Opening type $=$ rectangular gate
Opening diameter $/$ width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$
Flow through gate $(\mathrm{s})=5.35 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.25 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2546.04$
Upstream water level $=2546.05$
General box 2 Weir
Weir invert (top of weir) $=2546.28$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=7.64 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=30.6 \mathrm{cms}$
Head over weir $=0.67 \mathrm{~m}$

Aeration Exit pipe

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=971 \mathrm{~m}$
Flow $=25.99 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor $=1$
Solids factor $=1$
Velocity $=1.24 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=26 \mathrm{cms}$
Friction loss $=0.22 \mathrm{~m}$
Fitting loss $=0.12 \mathrm{~m}$
Total loss $=0.34 \mathrm{~m}$
0
Aeration Exit Channel
2547.29

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=5.1 \mathrm{cms}$
Downstream channel invert $=2542$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=19.92 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.62 \mathrm{~m}$
Critical depth $=0.55 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=30.6 \mathrm{cms}$
Depth downstream $=5.29 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.67 \mathrm{~m}$
Velocity $=0.24 \mathrm{~m} / \mathrm{s}$
AB Tank Weir
Weir invert $($ top of weir $)=2547.79$

Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.782$
Flow over weir $=1.27 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=30.5 \mathrm{cms}$
Head over weir $=0.08 \mathrm{~m}$
Aeration Basin
2547.87

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=1.27 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=97.56 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.111 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=30.6 \mathrm{cms}$
Depth downstream $=8.87 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=8.87 \mathrm{~m}$
Velocity $=0.01 \mathrm{~m} / \mathrm{s}$
Aeration Enter Gate
2547.87

Opening type = rectangular gate
Opening diameter $/$ width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2543$
Number of gates = 1
Flow through gate $(\mathrm{s})=1.27 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.11 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=24$
Total flow, all units $=30.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2547.87$
Upstream water level $=2547.87$
AB Distribution Pipe
Pipe shape = Circular
Diameter $=1200 \mathrm{~mm}$

Length $=77 \mathrm{~m}$
Flow $=1.27 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.131 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.3$
Age factor $=1$
Solids factor $=1$
Velocity $=1.13 \mathrm{~m} / \mathrm{s}$
Units on-line $=24$
Total flow, all units $=30.6 \mathrm{cms}$
Friction loss $=0.08 \mathrm{~m}$
Fitting loss $=0.1 \mathrm{~m}$
Total loss $=0.18 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0
AB Distribution Box Gate
2548.06

Opening type = rectangular gate
Opening diameter/width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate(s) $=1.27 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.2 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
Total flow, all units $=30.6 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2548.05$
Upstream water level $=2548.06$

AB Distribution Box Weir

2548.61

Weir invert (top of weir) $=2548.24$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.815$
Flow over weir $=1.27 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=30.5 \mathrm{cms}$
Head over weir $=0.38 \mathrm{~m}$

Aeration Enter Pipe

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=7.13 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor $=1$
Solids factor $=1$
Velocity $=0.82 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.13 \mathrm{~m}$
0

General aeration box Weir Gate

2548.81

Opening type = rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2544
Number of gates $=1$
Flow through gate $(\mathrm{s})=7.13 \mathrm{cms}$
Total area of opening $(\mathrm{s})=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.71 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=3$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.07 \mathrm{~m}$
Downstream water level $=2548.74$
Upstream water level $=2548.81$

General Aeration Box Weir

2549.79

Weir invert (top of weir) $=2549.15$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.846$
Flow over weir $=7.13 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=21.4 \mathrm{cms}$
Head over weir $=0.64 \mathrm{~m}$
Clarifier Junction Exit Pipe
Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=652 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.87 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.1 \mathrm{~m}$
Fitting loss $=0.07 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0

Clarifier Exit Pipe

2550.05

Pipe shape = Circular
Diameter $=1500 \mathrm{~mm}$
Length $=105.4 \mathrm{~m}$
Flow $=1.34 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.09 \mathrm{~m}$

Clarifier Orifice

Opening type $=$ circular orifice
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2545$
Number of openings $=1$
Flow through opening $(\mathrm{s})=1.34 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.76 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 16

Total flow, all units $=21.4 \mathrm{cms}$
Orifice loss $=0.08 \mathrm{~m}$
Downstream water level $=2550.05$
Upstream water level $=2550.13$
Clarifier Launder
2550.19

Launder invert $=2549.5$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.67 \mathrm{cms}$
Critical depth $=0.27 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=21.4 \mathrm{cms}$
Downstream depth $=0.63 \mathrm{~m}$
Upstream depth $=0.36 \mathrm{~m}$
Weir Clarifier
2550.86

Invert of V notch $=2550.79$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=1.34 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=21.4 \mathrm{cms}$
Head over weir $=0.07 \mathrm{~m}$

Clarifier Enter Pipe

2550.92

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=1.34 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.06 \mathrm{~m}$

Distribution Box Gate

Opening type = rectangular gate

Opening diameter/width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate(s) $=1.34 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.3 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=16$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2550.92$
Upstream water level $=2550.93$
Box 1 Weir
2551.44

Weir invert (top of weir) $=2551.05$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=1.34 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 16
Total flow, all units $=21.4 \mathrm{cms}$
Head over weir $=0.39 \mathrm{~m}$

Enter Pipe BOX 1

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=110.9 \mathrm{~m}$
Flow $=5.35 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor $=1$
Velocity $=0.86 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.03 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.09 \mathrm{~m}$
0

General Box Gate
Opening type $=$ rectangular gate

Opening diameter/width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert = 2545
Number of gates $=1$
Flow through gate(s) $=5.35 \mathrm{cms}$
Total area of opening $(\mathrm{s})=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.3 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2551.53$
Upstream water level $=2551.54$

General box 1 Weir

2552.42

Weir invert (top of weir) $=2551.81$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.843$
Flow over weir $=5.35 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Head over weir $=0.61 \mathrm{~m}$
R Mix to Clarifiers Pipe
2552.53

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=150.43 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=1.02 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.08 \mathrm{~m}$
Total loss $=0.11 \mathrm{~m}$
0

RM Exit Channel

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=21.4 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=208.98 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.358 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=6.53 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.53 \mathrm{~m}$
Velocity $=0.1 \mathrm{~m} / \mathrm{s}$

RM Exit Gate

2552.53

Opening type = circular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=4$
Flow through gate(s) $=5.35 \mathrm{cms}$
Total area of opening $(\mathrm{s})=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.11 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2552.53$
Upstream water level $=2552.53$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=5.35 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=60.27 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.358 \mathrm{~m}$
Units on-line $=4$

Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=7.53 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.54 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$

RM Enter Gate

2552.56

Opening type $=$ circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=4$
Flow through gate(s) $=5.35 \mathrm{cms}$
Total area of opening(s) $=12.57 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.43 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.03 \mathrm{~m}$
Downstream water level $=2552.54$
Upstream water level $=2552.56$

RM Enter Channel

2552.56

Channel shape $=$ Rectangular
Manning's $\mathrm{n}^{\prime}=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=21.4 \mathrm{cms}$
Downstream channel invert $=2546.5$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=193.98 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.358 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=6.06 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.06 \mathrm{~m}$
Velocity $=0.11 \mathrm{~m} / \mathrm{s}$

Grit Channel to RM Pipe

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$

Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.87 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.07 \mathrm{~m}$
Total loss $=0.08 \mathrm{~m}$
0

Junction Tank Grit Channel

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width/diameter $=45.2 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$
Downstream channel invert $=2547$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=254.95 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.179 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=5.64 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.64 \mathrm{~m}$
Velocity $=0.04 \mathrm{~m} / \mathrm{s}$

Grit Weir

2553.32

Weir invert (top of weir) $=2553.12$
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.931$
Flow over weir $=2.14 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 10
Total flow, all units $=21.4 \mathrm{cms}$
Head over weir $=0.2 \mathrm{~m}$

Grit Channel

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=40.5 \mathrm{~m}$
Channel width/diameter $=6 \mathrm{~m}$
Flow $=1.53 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=49.95 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.188 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=8.32 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=8.33 \mathrm{~m}$
Velocity $=0.03 \mathrm{~m} / \mathrm{s}$

Screening Exit Channel Gate

2553.36

Opening type = rectangular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates = 1
Flow through gate(s) $=2.14 \mathrm{cms}$
Total area of opening(s) $=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.54 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 10
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.04 \mathrm{~m}$
Downstream water level $=2553.33$
Upstream water level $=2553.36$

Screen Channel 1-2

2553.37

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.78 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=14.79 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.384 \mathrm{~m}$
Units on-line $=12$

Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=6.16 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.17 \mathrm{~m}$
Velocity $=0.12 \mathrm{~m} / \mathrm{s}$

Fine Screen

2553.37

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=2.14 \mathrm{cms}$
Bar width $=5 \mathrm{~mm}$
Bar spacing $=10 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=6.44 \mathrm{~m}^{2}$
Downstream depth $=5.37 \mathrm{~m}$
Velocity in channel $=0.2 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.33 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=21.4 \mathrm{cms}$
Rack head loss $=0.01 \mathrm{~m}$
Screen Channel 2-3
2553.37

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.78 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=14.81 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.384 \mathrm{~m}$
Units on-line $=12$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=6.17 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.17 \mathrm{~m}$
Velocity $=0.12 \mathrm{~m} / \mathrm{s}$
Medium Screen
2553.38

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=2.14 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$

Bar spacing $=30 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=7.25 \mathrm{~m}^{2}$
Downstream depth $=5.37 \mathrm{~m}$
Velocity in channel $=0.2 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.3 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=21.4 \mathrm{cms}$
Rack head loss $=0 \mathrm{~m}$

Screen Channel 3-4

2553.38

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=1.78 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=13.38 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.384 \mathrm{~m}$
Units on-line $=12$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=5.58 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.58 \mathrm{~m}$
Velocity $=0.13 \mathrm{~m} / \mathrm{s}$
Screening Enter Channel Gate
2553.42

Opening type $=$ rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate $(\mathrm{s})=2.14 \mathrm{cms}$
Total area of opening(s) $=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.54 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line = 10
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.04 \mathrm{~m}$
Downstream water level $=2553.38$
Upstream water level $=2553.42$

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=235.34 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.188 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=5.62 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.62 \mathrm{~m}$
Velocity $=0.05 \mathrm{~m} / \mathrm{s}$

Initial Pipe

2553.47

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=10.7 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

Initial Gate

Opening type $=$ rectangular gate
Opening diameter $/$ width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=1$
Flow through gate $(\mathrm{s})=10.7 \mathrm{cms}$
Total area of opening(s) $=20 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.53 \mathrm{~m} / \mathrm{s}$

Flow behavior = orifice, downstream control
Units on-line $=2$
Total flow, all units $=21.4 \mathrm{cms}$
Gate loss $=0.04 \mathrm{~m}$
Downstream water level $=2553.47$
Upstream water level $=2553.51$
Inicial Junction Tank
2553.51

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=21.4 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=187.71 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.422 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.4 \mathrm{cms}$
Depth downstream $=7.51 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.51 \mathrm{~m}$
Velocity $=0.11 \mathrm{~m} / \mathrm{s}$

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
32 cms	9.18 cms	---------	

Section Description

Starting water surface elevation

Exit Pipe
Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=343 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor $=1$
Solids factor $=1$
Velocity $=1.33 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.13 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.26 \mathrm{~m}$
0

Chlorination Exit Tank

2543.82

Channel shape $=$ Rectangular
Manning's $\mathrm{n}^{\prime}=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=154.5 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2540.45$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=520.61 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.46 \mathrm{~m}$
Critical depth $=0.164 \mathrm{~m}$
Units on-line $=1$

Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=3.37 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=3.37 \mathrm{~m}$
Velocity $=0.06 \mathrm{~m} / \mathrm{s}$
Chlorination Tank Weir
2544.17

Weir invert (top of weir) $=2543.84$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.794$
Flow over weir $=8 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.33 \mathrm{~m}$
Chlorination Tank
2544.18

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=33.26 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=1.32 \mathrm{~m}$
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=4.17 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.14 \mathrm{~m}$
Velocity $=0.24 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate
Opening type $=$ rectangular gate
Opening diameter $/$ width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate(s) $=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.25 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control Units on-line $=4$

Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2544.18$
Upstream water level $=2544.19$
Chlorination Enter Tank
2544.19

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=385.18 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.231 \mathrm{~m}$
Units on-line = 1
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=4.19 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.19 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=522 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=1.52 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.27 \mathrm{~m}$
Fitting loss $=0.18 \mathrm{~m}$
Total loss $=0.45 \mathrm{~m}$
0

Diameter $=1500 \mathrm{~mm}$
Length $=117 \mathrm{~m}$
Flow $=2 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.13 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.09 \mathrm{~m}$
Fitting loss $=0.11 \mathrm{~m}$
Total loss $=0.2 \mathrm{~m}$

2 Clarifier Orifice

2545.02

Opening type $=$ circular orifice
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Opening height = not applicable
Invert $=2540$
Number of openings = 1
Flow through opening(s) $=2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening(s) $=1.13 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Orifice loss $=0.18 \mathrm{~m}$
Downstream water level $=2544.84$
Upstream water level $=2545.02$
Launder Channel 2 C
2545.07

Launder invert $=2544$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=1 \mathrm{cms}$
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=32 \mathrm{cms}$
Downstream depth $=1.02 \mathrm{~m}$
Upstream depth $=0.71 \mathrm{~m}$
Weir 2 Clarifier
Invert of V notch $=2545.09$
Angle of V notch $=90$ degrees

Number of notches $=911$
Total flow over weir $=1.6 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=20$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.07 \mathrm{~m}$
2 Clarifier Enter Pipe
2545.39

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=2.57 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.46 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=41.2 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.16 \mathrm{~m}$
Total loss $=0.23 \mathrm{~m}$
Gate Clarifier Distribution Box 2545.41
Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2541
Number of gates $=1$
Flow through gate $(\mathrm{s})=2.57 \mathrm{cms}$
Total area of opening(s) $=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.43 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 16
Total flow, all units $=41.2 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2545.39$
Upstream water level $=2545.41$
Box 2 Weir
Weir invert (top of weir) $=2545.43$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient $=1.807$
Flow over weir $=2.57 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=41.2 \mathrm{cms}$
Head over weir $=0.6 \mathrm{~m}$
Enter Pipe BOX 2
2546.24

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=120.4 \mathrm{~m}$
Flow $=10.3 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor = 1
Solids factor $=1$
Velocity $=1.37 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=41.2 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.21 \mathrm{~m}$
0

General Box 2 Gate

2546.26

Opening type = rectangular gate
Opening diameter $/$ width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$
Flow through gate(s) $=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.38 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2546.24$
Upstream water level $=2546.26$
General box 2 Weir
2547.1

Weir invert (top of weir) $=2546.28$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=10.3 \mathrm{cms}$

Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=41.2 \mathrm{cms}$
Head over weir $=0.82 \mathrm{~m}$

Aeration Exit pipe

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=971 \mathrm{~m}$
Flow $=36.59 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor $=1$
Solids factor $=1$
Velocity $=1.74 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=36.6 \mathrm{cms}$
Friction loss $=0.44 \mathrm{~m}$
Fitting loss $=0.23 \mathrm{~m}$
Total loss $=0.67 \mathrm{~m}$
0
Aeration Exit Channel
2547.77

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=6.87 \mathrm{cms}$
Downstream channel invert $=2542$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=21.84 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.75 \mathrm{~m}$
Critical depth $=0.67 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=41.2 \mathrm{cms}$
Depth downstream $=5.77 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.15 \mathrm{~m}$
Velocity $=0.3 \mathrm{~m} / \mathrm{s}$
AB Tank Weir
Weir invert $($ top of weir $)=2547.79$

Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir ' ${ }^{\prime}$ ' coefficient $=1.782$
Flow over weir $=1.71 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=41.1 \mathrm{cms}$
Head over weir $=0.1 \mathrm{~m}$
Aeration Basin
2547.89

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=1.71 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=97.75 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.136 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=41.1 \mathrm{cms}$
Depth downstream $=8.89 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=8.89 \mathrm{~m}$
Velocity $=0.02 \mathrm{~m} / \mathrm{s}$
Aeration Enter Gate
2547.89

Opening type = rectangular gate
Opening diameter/width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2543$
Number of gates = 1
Flow through gate $(\mathrm{s})=1.71 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.14 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=24$
Total flow, all units $=41.2 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2547.89$
Upstream water level $=2547.89$
AB Distribution Pipe
Pipe shape = Circular
Diameter $=1200 \mathrm{~mm}$

Length $=77 \mathrm{~m}$
Flow $=1.71 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.131 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.3$
Age factor $=1$
Solids factor $=1$
Velocity $=1.52 \mathrm{~m} / \mathrm{s}$
Units on-line $=24$
Total flow, all units $=41.1 \mathrm{cms}$
Friction loss $=0.15 \mathrm{~m}$
Fitting loss $=0.18 \mathrm{~m}$
Total loss $=0.32 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0

AB Distribution Box Gate

2548.22

Opening type = rectangular gate
Opening diameter/width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.71 \mathrm{cms}$
Total area of opening(s) $=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.26 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
Total flow, all units $=41.2 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2548.21$
Upstream water level $=2548.22$

AB Distribution Box Weir

2548.7

Weir invert (top of weir) $=2548.24$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.815$
Flow over weir $=1.71 \mathrm{cms}$
Weir submergence = unsubmerged
Units on-line $=24$
Total flow, all units $=41.1 \mathrm{cms}$
Head over weir $=0.46 \mathrm{~m}$

Aeration Enter Pipe

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=10.67 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor $=1$
Solids factor $=1$
Velocity $=1.22 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.14 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.28 \mathrm{~m}$
0

General aeration box Weir Gate

2549.13

Opening type = rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2544
Number of gates = 1
Flow through gate $(\mathrm{s})=10.67 \mathrm{cms}$
Total area of opening $(\mathrm{s})=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=1.07 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=3$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.15 \mathrm{~m}$
Downstream water level $=2548.98$
Upstream water level $=2549.13$

General Aeration Box Weir

2549.98

Weir invert (top of weir) $=2549.15$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.846$
Flow over weir $=10.67 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.83 \mathrm{~m}$
Clarifier Junction Exit Pipe
Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$

Width $=3500 \mathrm{~mm}$
Length $=652 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=1.31 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.22 \mathrm{~m}$
Fitting loss $=0.16 \mathrm{~m}$
Total loss $=0.38 \mathrm{~m}$
0

Clarifier Exit Pipe

2550.56

Pipe shape = Circular
Diameter $=1500 \mathrm{~mm}$
Length $=105.4 \mathrm{~m}$
Flow $=2 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.13 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.08 \mathrm{~m}$
Fitting loss $=0.12 \mathrm{~m}$
Total loss $=0.2 \mathrm{~m}$

Clarifier Orifice

Opening type $=$ circular orifice
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2545$
Number of openings $=1$
Flow through opening(s) $=2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=1.13 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line = 16

Total flow, all units $=32 \mathrm{cms}$
Orifice loss $=0.18 \mathrm{~m}$
Downstream water level $=2550.56$
Upstream water level $=2550.74$
Clarifier Launder
2550.77

Launder invert $=2549.5$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=1 \mathrm{cms}$
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=32 \mathrm{cms}$
Downstream depth $=1.24 \mathrm{~m}$
Upstream depth $=0.95 \mathrm{~m}$

Weir Clarifier

2550.87

Invert of V notch $=2550.79$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.08 \mathrm{~m}$

Clarifier Enter Pipe

2551
Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=2 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.13 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.1 \mathrm{~m}$
Total loss $=0.13 \mathrm{~m}$
Distribution Box Gate
Opening type $=$ rectangular gate

Opening diameter/width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate(s) $=2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.44 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.03 \mathrm{~m}$
Downstream water level $=2551$
Upstream water level $=2551.03$

Box 1 Weir

2551.56

Weir invert (top of weir) $=2551.05$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 16
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.51 \mathrm{~m}$

Enter Pipe BOX 1

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=110.9 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor $=1$
Velocity $=1.28 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.2 \mathrm{~m}$
0
General Box Gate
Opening type $=$ rectangular gate

Opening diameter/width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate(s) $=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.44 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.03 \mathrm{~m}$
Downstream water level $=2551.76$
Upstream water level $=2551.79$

General box 1 Weir

2552.61

Weir invert (top of weir) $=2551.81$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.843$
Flow over weir $=8 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.8 \mathrm{~m}$
R Mix to Clarifiers Pipe
2552.86

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=150.43 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=1.52 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.08 \mathrm{~m}$
Fitting loss $=0.18 \mathrm{~m}$
Total loss $=0.26 \mathrm{~m}$
0

RM Exit Channel

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=219.54 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=6.86 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.86 \mathrm{~m}$
Velocity $=0.15 \mathrm{~m} / \mathrm{s}$

RM Exit Gate

2552.87

Opening type = circular gate
Opening diameter $/$ width $=4000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=4$
Flow through gate(s) $=8 \mathrm{cms}$
Total area of opening(s) $=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.16 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2552.86$
Upstream water level $=2552.87$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=62.93 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=4$

Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=7.87 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.87 \mathrm{~m}$
Velocity $=0.13 \mathrm{~m} / \mathrm{s}$

RM Enter Gate

Opening type $=$ circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=4$
Flow through gate(s) $=8 \mathrm{cms}$
Total area of opening(s) $=12.57 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.64 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.06 \mathrm{~m}$
Downstream water level $=2552.87$
Upstream water level $=2552.93$
RM Enter Channel
2552.93

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2546.5$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=205.62 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=6.43 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.43 \mathrm{~m}$
Velocity $=0.16 \mathrm{~m} / \mathrm{s}$

Grit Channel to RM Pipe

2553.1

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=16 \mathrm{cms}$

Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=1.31 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.16 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0

Junction Tank Grit Channel

2553.1

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width/diameter $=45.2 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2547$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=275.75 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.234 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=6.1 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.1 \mathrm{~m}$
Velocity $=0.06 \mathrm{~m} / \mathrm{s}$

Grit Weir

2553.39

Weir invert (top of weir) $=2553.12$
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir 'C' coefficient =1.931
Flow over weir $=3.2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line = 10
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.27 \mathrm{~m}$
Grit Channel
Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=40.5 \mathrm{~m}$
Channel width/diameter $=6 \mathrm{~m}$
Flow $=2.29 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=50.33 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.246 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=8.39 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=8.39 \mathrm{~m}$
Velocity $=0.05 \mathrm{~m} / \mathrm{s}$

Screening Exit Channel Gate

2553.47

Opening type = rectangular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=3.2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.8 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.08 \mathrm{~m}$
Downstream water level $=2553.39$
Upstream water level $=2553.47$

Screen Channel 1-2

2553.48

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=2.67 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=15.06 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.501 \mathrm{~m}$
Units on-line $=12$

Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=6.27 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.28 \mathrm{~m}$
Velocity $=0.18 \mathrm{~m} / \mathrm{s}$
Fine Screen
2553.49

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=3.2 \mathrm{cms}$
Bar width $=5 \mathrm{~mm}$
Bar spacing $=10 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=6.57 \mathrm{~m}^{2}$
Downstream depth $=5.48 \mathrm{~m}$
Velocity in channel $=0.29 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.49 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Rack head loss $=0.01 \mathrm{~m}$
Screen Channel 2-3
2553.49

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width/diameter $=2.4 \mathrm{~m}$
Flow $=2.67 \mathrm{cms}$
Downstream channel invert $=2547.2$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=15.09 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.501 \mathrm{~m}$
Units on-line $=12$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=6.29 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.29 \mathrm{~m}$
Velocity $=0.18 \mathrm{~m} / \mathrm{s}$
Medium Screen
2553.5

Rack invert $=2548$
Rack width $=1.8 \mathrm{~m}$
Channel width $=2 \mathrm{~m}$
Flow through rack $=3.2 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$

Bar spacing $=30 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=7.41 \mathrm{~m}^{2}$
Downstream depth $=5.49 \mathrm{~m}$
Velocity in channel $=0.29 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.43 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Rack head loss $=0.01 \mathrm{~m}$

Screen Channel 3-4

2553.5

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width $/$ diameter $=2.4 \mathrm{~m}$
Flow $=2.67 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=13.67 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.501 \mathrm{~m}$
Units on-line = 12
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=5.7 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.7 \mathrm{~m}$
Velocity $=0.2 \mathrm{~m} / \mathrm{s}$
Screening Enter Channel Gate
2553.58

Opening type = rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=3.2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.8 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.08 \mathrm{~m}$
Downstream water level $=2553.5$
Upstream water level $=2553.58$

Channel shape $=$ Rectangular

Manning's ' n ' $=0.013$
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=242.34 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.246 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=5.78 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.79 \mathrm{~m}$
Velocity $=0.07 \mathrm{~m} / \mathrm{s}$

Initial Pipe

2553.71

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=1.14 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.11 \mathrm{~m}$
Total loss $=0.12 \mathrm{~m}$
0

Initial Gate

Opening type $=$ rectangular gate
Opening diameter $/$ width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates =1
Flow through gate(s) $=16 \mathrm{cms}$
Total area of opening $(\mathrm{s})=20 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.8 \mathrm{~m} / \mathrm{s}$

Flow behavior = orifice, downstream control
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.08 \mathrm{~m}$
Downstream water level $=2553.71$
Upstream water level $=2553.79$

Inicial Junction Tank

2553.8

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=194.89 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.551 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=7.79 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=7.8 \mathrm{~m}$
Velocity $=0.16 \mathrm{~m} / \mathrm{s}$

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
13.6 cms	9.18 cms	-----	-----

Section Description

Water Surface Elevation
Starting water surface elevation
2540.88

Exit Pipe
2540.92

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=227.5 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor = 1
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$
0

Chlorination Exit Tank
2540.92

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=154.5 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2538.63$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=353.73 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.28 \mathrm{~m}$
Critical depth $=0.093 \mathrm{~m}$

Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=2.29 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.29 \mathrm{~m}$
Velocity $=0.04 \mathrm{~m} / \mathrm{s}$

Chlorination Tank Weir
 2541.84

Weir invert (top of weir) $=2541.65$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir 'C' coefficient $=1.794$
Flow over weir $=3.4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.19 \mathrm{~m}$
Chlorination Tank
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=3.4 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=14.58 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.76 \mathrm{~m}$
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=1.84 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.81 \mathrm{~m}$
Velocity $=0.23 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate 2541.84
Opening type $=$ rectangular gate
Opening diameter/width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate $(\mathrm{s})=3.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.11 \mathrm{~m} / \mathrm{s}$
2541.84

Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2541.84$
Upstream water level $=2541.84$

Chlorination Enter Tank

2541.85

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2539.02$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=259.9 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.131 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=2.82 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.83 \mathrm{~m}$
Velocity $=0.05 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
2541.97

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=1003 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor = 1
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.09 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.13 \mathrm{~m}$
0

Secondary Clarifier Exit Pipe
2542.01

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=118 \mathrm{~m}$
Flow $=0.85 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.48 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$

2 Clarifier Orifice
 2542.04

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert = 2540
Number of openings $=1$
Flow through opening(s) $=0.85 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.48 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Orifice loss $=0.03 \mathrm{~m}$
Downstream water level $=2542.01$
Upstream water level $=2542.04$
Launder Channel 2 C
2543.07

Launder invert $=2542.5$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.43 \mathrm{cms}$
Critical depth $=0.2 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=13.6 \mathrm{cms}$
Downstream depth $=0.2 \mathrm{~m}$
Upstream depth $=0.2 \mathrm{~m}$

Weir 2 Clarifier
Invert of V notch $=2543.3$
Angle of V notch $=90$ degrees
Number of notches $=911$
Total flow over weir $=0.85 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.05 \mathrm{~m}$
2 Clarifier Enter Pipe 2543.42
Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=1.42 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.81 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=22.8 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.07 \mathrm{~m}$

Gate Clarifier Distribution Box

2543.43

Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2541
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.42 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.24 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=22.8 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2543.42$
Upstream water level $=2543.43$

Weir invert (top of weir) $=2543.65$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient = 1.807
Flow over weir $=1.42 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.41 \mathrm{~m}$

Enter Pipe BOX 2

2544.15

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=285.5 \mathrm{~m}$
Flow $=5.7 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=22.8 \mathrm{cms}$
Friction loss $=0.05 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.09 \mathrm{~m}$
0

General Box 2 Gate

2544.15

Opening type $=$ rectangular gate
Opening diameter $/$ width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$
Flow through gate(s) $=3.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.16 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2544.15$
Upstream water level $=2544.15$

General box 2 Weir
2545.15

Weir invert (top of weir) $=2544.6$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=5.7 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.55 \mathrm{~m}$
Aeration Exit pipe
2545.25

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=336 \mathrm{~m}$
Flow $=18.19 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor $=1$
Solids factor $=1$
Velocity $=0.87 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=18.2 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.09 \mathrm{~m}$
0

Aeration Exit Channel

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=3.8 \mathrm{cms}$
Downstream channel invert $=2542.8$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=8.57 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.51 \mathrm{~m}$
Critical depth $=0.452 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=22.8 \mathrm{cms}$

Depth downstream $=2.45 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.83 \mathrm{~m}$
Velocity $=0.39 \mathrm{~m} / \mathrm{s}$

AB Tank Weir

2545.91

Weir invert (top of weir) $=2545.85$
Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir 'C' coefficient = 1.782
Flow over weir $=0.95 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$
Aeration Basin
2545.92

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=0.95 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=76.06 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.091 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Depth downstream $=6.91 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.92 \mathrm{~m}$
Velocity $=0.01 \mathrm{~m} / \mathrm{s}$

Aeration Enter Gate

2545.92

Opening type $=$ rectangular gate
Opening diameter/width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=0.95 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.08 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$

Total flow, all units $=22.8 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2545.92$
Upstream water level $=2545.92$

```
AB Distribution Pipe
2546.02
Pipe shape = Circular
Diameter = 1200 mm
Length = 77 m
Flow = 0.95 cms
Friction method = Manning's Equation
Friction factor =0.013
Total fitting K value = 1.5
Pipe area = 1.131 m
Pipe hydraulic radius }=0.
Age factor = 1
Solids factor = 1
Velocity = 0.84 m/s
Units on-line = 24
Total flow, all units =22.8 cms
Friction loss = 0.05 m
Fitting loss = 0.05 m
Total loss = 0.1 m
Total loss = 0.17 m
0
```


AB Distribution Box Gate

2546.02

Opening type $=$ rectangular gate
Opening diameter/width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=0.95 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.15 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2546.02$
Upstream water level $=2546.02$

```
AB Distribution Box Weir
2546.61
Weir invert (top of weir) \(=2546.3\)
Weir length \(=3.05 \mathrm{~m}\)
Weir height \(=3 \mathrm{~m}\)
Weir 'C' coefficient \(=1.815\)
```

Flow over weir $=0.95 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.31 \mathrm{~m}$

Aeration Enter Pipe

2546.66

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=4.53 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor $=1$
Solids factor $=1$
Velocity $=0.52 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.03 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$ 0

General aeration box Weir Gate

2546.69

Opening type $=$ rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2544$
Number of gates $=1$
Flow through gate $(\mathrm{s})=4.53 \mathrm{cms}$
Total area of opening $(\mathrm{s})=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.45 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=3$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.03 \mathrm{~m}$
Downstream water level $=2546.66$
Upstream water level $=2546.69$
General Aeration Box Weir
2547.68

Weir invert (top of weir) $=2547.21$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$

Weir 'C' coefficient $=1.846$
Flow over weir $=4.53 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.47 \mathrm{~m}$

Clarifier Junction Exit Pipe

2547.73

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=273 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.56 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

Clarifier Exit Pipe

2547.76

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=81.6 \mathrm{~m}$
Flow $=0.85 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.48 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.03 \mathrm{~m}$

Clarifier Orifice

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert = 2545
Number of openings $=1$
Flow through opening $(\mathrm{s})=0.85 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.48 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Orifice loss $=0.03 \mathrm{~m}$
Downstream water level $=2547.76$
Upstream water level $=2547.79$
Clarifier Launder
2548.73

Launder invert $=2548.2$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.43 \mathrm{cms}$
Critical depth $=0.2 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=13.6 \mathrm{cms}$
Downstream depth $=0.2 \mathrm{~m}$
Upstream depth $=0.2 \mathrm{~m}$
Weir Clarifier
2548.96

Invert of V notch $=2548.9$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=0.85 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$
Clarifier Enter Pipe
2548.98

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=0.85 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$

Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.48 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.02 \mathrm{~m}$

Distribution Box Gate

2548.98

Opening type $=$ rectangular gate
Opening diameter/width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate $(\mathrm{s})=0.85 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.19 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2548.98$
Upstream water level $=2548.98$

Box 1 Weir

2549.44

Weir invert (top of weir) $=2549.15$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=0.85 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.29 \mathrm{~m}$
Enter Pipe BOX 1
2549.49

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=262.7 \mathrm{~m}$
Flow $=3.4 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$

Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor $=1$
Velocity $=0.54 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

General Box Gate

2549.49

Opening type $=$ rectangular gate
Opening diameter/width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2544$
Number of gates $=1$
Flow through gate $(\mathrm{s})=3.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.19 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2549.49$
Upstream water level $=2549.49$

General box 1 Weir

2550.45

Weir invert (top of weir) $=2550$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.843$
Flow over weir $=3.4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.45 \mathrm{~m}$
R Mix to Clarifiers Pipe
2550.49

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=77.5 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$

Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$
0

RM Exit Channel

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2549$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=47.7 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=1.49 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.49 \mathrm{~m}$
Velocity $=0.29 \mathrm{~m} / \mathrm{s}$

RM Exit Gate

2550.49

Opening type = circular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=4$
Flow through gate $(\mathrm{s})=3.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.07 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2550.49$
Upstream water level $=2550.49$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=3.4 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=35.95 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=4.49 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.49 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$

RM Enter Gate

Opening type = circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=4$
Flow through gate $(\mathrm{s})=3.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12.57 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.27 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2550.49$
Upstream water level $=2550.5$

RM Enter Channel

2550.5

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2548$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=80.17 \mathrm{~m}^{2}$

Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=2.5 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.51 \mathrm{~m}$
Velocity $=0.17 \mathrm{~m} / \mathrm{s}$

Grit Channel to RM Pipe
 2550.54

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.56 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.03 \mathrm{~m}$
0
Junction Tank Grit Channel
2550.54

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width $/$ diameter $=45.2 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Downstream channel invert $=2548$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=114.83 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.132 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=2.54 \mathrm{~m}$

Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.54 \mathrm{~m}$
Velocity $=0.06 \mathrm{~m} / \mathrm{s}$

Grit Weir

Weir invert (top of weir) $=2551.28$
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir 'C' coefficient $=1.931$
Flow over weir $=1.36 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=10$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.15 \mathrm{~m}$

Grit Channel
 2551.43

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=55 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=0.97 \mathrm{cms}$
Downstream channel invert $=2546.55$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=19.53 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.182 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=4.88 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.88 \mathrm{~m}$
Velocity $=0.05 \mathrm{~m} / \mathrm{s}$
Screening Exit Channel Gate 2551.49
Opening type $=$ rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate $(\mathrm{s})=2.72 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.68 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=5$
Total flow, all units $=13.6 \mathrm{cms}$

Gate loss $=0.06 \mathrm{~m}$
Downstream water level $=2551.43$
Upstream water level $=2551.49$

Screen Channel 1-2

2551.5

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=2.72 \mathrm{cms}$
Downstream channel invert $=2549.24$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=5.64 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.495 \mathrm{~m}$
Units on-line $=5$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=2.25 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.26 \mathrm{~m}$
Velocity $=0.48 \mathrm{~m} / \mathrm{s}$

Fine Screen

2551.68

Rack invert $=2550.3$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=2.72 \mathrm{cms}$
Bar width $=6 \mathrm{~mm}$
Bar spacing $=6 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=1.49 \mathrm{~m}^{2}$
Downstream depth $=1.2 \mathrm{~m}$
Velocity in channel $=0.91 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=1.82 \mathrm{~m} / \mathrm{s}$
Units on-line $=5$
Total flow, all units $=13.6 \mathrm{cms}$
Rack head loss $=0.18 \mathrm{~m}$

Screen Channel 2-3

2551.68

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width $/$ diameter $=2.5 \mathrm{~m}$
Flow $=2.72 \mathrm{cms}$
Downstream channel invert $=2550$

Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=4.19 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.495 \mathrm{~m}$
Units on-line $=5$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=1.68 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.68 \mathrm{~m}$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Medium Screen
2551.71

Rack invert $=2550$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=2.72 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$
Bar spacing $=25 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=2.98 \mathrm{~m}^{2}$
Downstream depth $=1.68 \mathrm{~m}$
Velocity in channel $=0.65 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.91 \mathrm{~m} / \mathrm{s}$
Units on-line $=5$
Total flow, all units $=13.6 \mathrm{cms}$
Rack head loss $=0.03 \mathrm{~m}$
Screen Channel 3-4
2551.71

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=2.72 \mathrm{cms}$
Downstream channel invert $=2550$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=4.27 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.495 \mathrm{~m}$
Units on-line $=5$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=1.71 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.71 \mathrm{~m}$

Velocity $=0.64 \mathrm{~m} / \mathrm{s}$
Screening Enter Channel Gate
2551.77

Opening type $=$ rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=2.72 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.68 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=5$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.06 \mathrm{~m}$
Downstream water level $=2551.71$
Upstream water level $=2551.77$
Screening Distribution Channel
2551.77

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=166.48 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.139 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=3.97 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=3.97 \mathrm{~m}$
Velocity $=0.04 \mathrm{~m} / \mathrm{s}$
Initial Pipe
2551.8

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$

Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=0.49 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.02 \mathrm{~m}$
0

Initial Gate

2551.82

Opening type $=$ rectangular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=1$
Flow through gate $(\mathrm{s})=6.8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=20 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.34 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2551.8$
Upstream water level $=2551.82$

Inicial Junction Tank

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=145.4 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.312 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=5.82 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.82 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
16 cms	9.18 cms	--------	

Section Description

Water Surface Elevation
Starting water surface elevation 2540.97
Exit Pipe
2541.02

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=227.5 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor $=1$
Solids factor $=1$
Velocity $=0.67 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0
Chlorination Exit Tank
2541.02

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=154.5 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2538.63$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=369.2 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.31 \mathrm{~m}$
Critical depth $=0.103 \mathrm{~m}$

Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=2.39 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.39 \mathrm{~m}$
Velocity $=0.04 \mathrm{~m} / \mathrm{s}$

Chlorination Tank Weir

2541.86

Weir invert (top of weir) $=2541.65$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir 'C' coefficient $=1.794$
Flow over weir $=4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.21 \mathrm{~m}$
Chlorination Tank
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=4 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=14.75 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.84 \mathrm{~m}$
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=1.86 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.83 \mathrm{~m}$
Velocity $=0.27 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate
Opening type $=$ rectangular gate
Opening diameter/width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate $(\mathrm{s})=4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.12 \mathrm{~m} / \mathrm{s}$
2541.87
2541.87

Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2541.87$
Upstream water level $=2541.87$

Chlorination Enter Tank

2541.87

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2539.02$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=262.14 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.146 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=2.85 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.85 \mathrm{~m}$
Velocity $=0.06 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
2542.05

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=1003 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.13 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.18 \mathrm{~m}$
0

Secondary Clarifier Exit Pipe
2542.1

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=118 \mathrm{~m}$
Flow $=1 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
2 Clarifier Orifice
2542.15

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2540$
Number of openings $=1$
Flow through opening(s) $=1 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.57 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Orifice loss $=0.05 \mathrm{~m}$
Downstream water level $=2542.1$
Upstream water level $=2542.15$
Launder Channel 2 C
2543.09

Launder invert $=2542.5$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.5 \mathrm{cms}$
Critical depth $=0.22 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=16 \mathrm{cms}$
Downstream depth $=0.22 \mathrm{~m}$
Upstream depth $=0.22 \mathrm{~m}$

Weir 2 Clarifier
Invert of V notch $=2543.3$
Angle of V notch $=90$ degrees
Number of notches $=911$
Total flow over weir $=1 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$
2 Clarifier Enter Pipe 2543.44
Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=1.57 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.89 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=25.2 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.08 \mathrm{~m}$

Gate Clarifier Distribution Box

2543.45

Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2541
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.57 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.26 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=25.2 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2543.44$
Upstream water level $=2543.45$

Weir invert (top of weir) $=2543.65$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient = 1.807
Flow over weir $=1.57 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.43 \mathrm{~m}$

Enter Pipe BOX 2

2544.19

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=285.5 \mathrm{~m}$
Flow $=6.3 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor $=1$
Solids factor $=1$
Velocity $=0.84 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=25.2 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.11 \mathrm{~m}$
0

General Box 2 Gate

2544.19

Opening type $=$ rectangular gate
Opening diameter $/$ width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$
Flow through gate $(\mathrm{s})=4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.19 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2544.19$
Upstream water level $=2544.19$

General box 2 Weir
2545.19

Weir invert (top of weir) $=2544.6$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=6.3 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.59 \mathrm{~m}$
Aeration Exit pipe
2545.31

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=336 \mathrm{~m}$
Flow $=20.59 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor $=1$
Solids factor $=1$
Velocity $=0.98 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=20.6 \mathrm{cms}$
Friction loss $=0.05 \mathrm{~m}$
Fitting loss $=0.07 \mathrm{~m}$
Total loss $=0.12 \mathrm{~m}$
0

Aeration Exit Channel

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=4.2 \mathrm{cms}$
Downstream channel invert $=2542.8$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=8.81 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.54 \mathrm{~m}$
Critical depth $=0.483 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=25.2 \mathrm{cms}$

Depth downstream $=2.51 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.89 \mathrm{~m}$
Velocity $=0.42 \mathrm{~m} / \mathrm{s}$

AB Tank Weir
Weir invert (top of weir) $=2545.85$
Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir 'C' coefficient = 1.782
Flow over weir $=1.05 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.07 \mathrm{~m}$

Aeration Basin

2545.92
2545.92

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=1.05 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=76.11 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.098 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Depth downstream $=6.92 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.92 \mathrm{~m}$
Velocity $=0.01 \mathrm{~m} / \mathrm{s}$

Aeration Enter Gate

2545.92

Opening type $=$ rectangular gate
Opening diameter/width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.05 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.09 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$

Total flow, all units $=25.2 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2545.92$
Upstream water level $=2545.92$

```
AB Distribution Pipe
2546.04
Pipe shape = Circular
Diameter = 1200 mm
Length = 77 m
Flow = 1.05 cms
Friction method = Manning's Equation
Friction factor =0.013
Total fitting K value = 1.5
Pipe area = 1.131 m
Pipe hydraulic radius }=0.
Age factor = 1
Solids factor = 1
Velocity = 0.93 m/s
Units on-line = 24
Total flow, all units =25.2 cms
Friction loss = 0.06 m
Fitting loss = 0.07 m
Total loss = 0.12 m
Total loss = 0.17 m
0
```


AB Distribution Box Gate

2546.04

Opening type $=$ rectangular gate
Opening diameter/width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.05 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.16 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2546.04$
Upstream water level $=2546.04$

AB Distribution Box Weir

Weir invert (top of weir) $=2546.3$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.815$

Flow over weir $=1.05 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.33 \mathrm{~m}$

Aeration Enter Pipe

2546.7

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=5.33 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor $=1$
Solids factor $=1$
Velocity $=0.61 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.07 \mathrm{~m}$
0

General aeration box Weir Gate

2546.74

Opening type $=$ rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2544$
Number of gates $=1$
Flow through gate $(\mathrm{s})=5.33 \mathrm{cms}$
Total area of opening $(\mathrm{s})=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.53 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=3$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.04 \mathrm{~m}$
Downstream water level $=2546.7$
Upstream water level $=2546.74$
General Aeration Box Weir
2547.73

Weir invert (top of weir) $=2547.21$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$

Weir 'C' coefficient $=1.846$
Flow over weir $=5.33 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.52 \mathrm{~m}$

Clarifier Junction Exit Pipe

2547.8

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=273 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.06 \mathrm{~m}$
0
Clarifier Exit Pipe 2547.85
Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=81.6 \mathrm{~m}$
Flow $=1 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$

Clarifier Orifice

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2545$
Number of openings $=1$
Flow through opening $(\mathrm{s})=1 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.57 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Orifice loss $=0.05 \mathrm{~m}$
Downstream water level $=2547.85$
Upstream water level $=2547.9$
Clarifier Launder
2548.75

Launder invert $=2548.2$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.5 \mathrm{cms}$
Critical depth $=0.22 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=16 \mathrm{cms}$
Downstream depth $=0.22 \mathrm{~m}$
Upstream depth $=0.22 \mathrm{~m}$
Weir Clarifier
2548.96

Invert of V notch $=2548.9$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=1 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$
Clarifier Enter Pipe
2548.99

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=1 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$

Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.03 \mathrm{~m}$

Distribution Box Gate

2549
Opening type $=$ rectangular gate
Opening diameter/width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate(s) $=1 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.22 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2548.99$
Upstream water level $=2549$

Box 1 Weir

2549.47

Weir invert (top of weir) $=2549.15$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=1 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.32 \mathrm{~m}$
Enter Pipe BOX 1
Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=262.7 \mathrm{~m}$
Flow $=4 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$

Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor $=1$
Velocity $=0.64 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.03 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.07 \mathrm{~m}$
0

General Box Gate

2549.55

Opening type $=$ rectangular gate
Opening diameter/width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2544$
Number of gates $=1$
Flow through gate $(\mathrm{s})=4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.22 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2549.54$
Upstream water level $=2549.55$

General box 1 Weir

2550.5

Weir invert (top of weir) $=2550$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.843$
Flow over weir $=4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.5 \mathrm{~m}$
R Mix to Clarifiers Pipe
2550.56

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=77.5 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$

Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

RM Exit Channel

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2549$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=49.94 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=1.56 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.56 \mathrm{~m}$
Velocity $=0.32 \mathrm{~m} / \mathrm{s}$

RM Exit Gate

2550.56

Opening type = circular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=4$
Flow through gate $(\mathrm{s})=4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.08 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2550.56$
Upstream water level $=2550.56$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=4 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=36.51 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=4.56 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.56 \mathrm{~m}$
Velocity $=0.11 \mathrm{~m} / \mathrm{s}$

RM Enter Gate

2550.58

Opening type $=$ circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=4$
Flow through gate $(\mathrm{s})=4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12.57 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.32 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2550.56$
Upstream water level $=2550.58$

RM Enter Channel

2550.58

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2548$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=82.56 \mathrm{~m}^{2}$

Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=2.58 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.58 \mathrm{~m}$
Velocity $=0.19 \mathrm{~m} / \mathrm{s}$

Grit Channel to RM Pipe
 2550.62

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$
0
Junction Tank Grit Channel 2550.62
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width $/$ diameter $=45.2 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2548$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=118.45 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.148 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=2.62 \mathrm{~m}$

Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.62 \mathrm{~m}$
Velocity $=0.07 \mathrm{~m} / \mathrm{s}$

Grit Weir

Weir invert (top of weir) $=2551.28$
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir ' C ' coefficient $=1.931$
Flow over weir $=1.6 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=10$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.17 \mathrm{~m}$

Grit Channel
 2551.45

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=55 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=1.14 \mathrm{cms}$
Downstream channel invert $=2546.55$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=19.59 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.203 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=4.9 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.9 \mathrm{~m}$
Velocity $=0.06 \mathrm{~m} / \mathrm{s}$

Screening Exit Channel Gate

Opening type $=$ rectangular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate $(\mathrm{s})=2.67 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.67 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=6$
Total flow, all units $=16 \mathrm{cms}$

Gate loss $=0.06 \mathrm{~m}$
Downstream water level $=2551.45$
Upstream water level $=2551.51$

Screen Channel 1-2
2551.51

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=2.67 \mathrm{cms}$
Downstream channel invert $=2549.24$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=5.67 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.488 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=2.27 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.27 \mathrm{~m}$
Velocity $=0.47 \mathrm{~m} / \mathrm{s}$

Fine Screen

2551.68

Rack invert $=2550.3$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=2.67 \mathrm{cms}$
Bar width $=6 \mathrm{~mm}$
Bar spacing $=6 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=1.51 \mathrm{~m}^{2}$
Downstream depth $=1.21 \mathrm{~m}$
Velocity in channel $=0.88 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=1.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=6$
Total flow, all units $=16 \mathrm{cms}$
Rack head loss $=0.17 \mathrm{~m}$

Screen Channel 2-3

2551.68

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width $/$ diameter $=2.5 \mathrm{~m}$
Flow $=2.67 \mathrm{cms}$
Downstream channel invert $=2550$

Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=4.2 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.488 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=1.68 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.68 \mathrm{~m}$
Velocity $=0.63 \mathrm{~m} / \mathrm{s}$
Medium Screen
2551.71

Rack invert $=2550$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=2.67 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$
Bar spacing $=25 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=2.99 \mathrm{~m}^{2}$
Downstream depth $=1.68 \mathrm{~m}$
Velocity in channel $=0.63 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.89 \mathrm{~m} / \mathrm{s}$
Units on-line $=6$
Total flow, all units $=16 \mathrm{cms}$
Rack head loss $=0.03 \mathrm{~m}$
Screen Channel 3-4
2551.71

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=2.67 \mathrm{cms}$
Downstream channel invert $=2550$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=4.28 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.488 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=1.71 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.71 \mathrm{~m}$

Velocity $=0.62 \mathrm{~m} / \mathrm{s}$
Screening Enter Channel Gate
2551.77

Opening type $=$ rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate $(\mathrm{s})=2.67 \mathrm{cms}$
Total area of opening(s) $=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.67 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=6$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.06 \mathrm{~m}$
Downstream water level $=2551.71$
Upstream water level $=2551.77$
Screening Distribution Channel
2551.77

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=166.48 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.155 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=3.97 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=3.97 \mathrm{~m}$
Velocity $=0.05 \mathrm{~m} / \mathrm{s}$
Initial Pipe
2551.8

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$

Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.03 \mathrm{~m}$
0

Initial Gate

2551.82

Opening type $=$ rectangular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=1$
Flow through gate $(\mathrm{s})=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=20 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.4 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2551.8$
Upstream water level $=2551.82$

Inicial Junction Tank

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=145.54 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.347 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=5.82 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.82 \mathrm{~m}$
Velocity $=0.11 \mathrm{~m} / \mathrm{s}$

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
21.6 cms	9.18 cms	-----	-----

Section Description

Water Surface Elevation
Starting water surface elevation
Exit Pipe
2541.14
2541.24

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=227.5 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor $=1$
Solids factor $=1$
Velocity $=0.9 \mathrm{~m} / \mathrm{s}$
Units on-line = 2
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.1 \mathrm{~m}$
0
Chlorination Exit Tank
2541.24

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=154.5 \mathrm{~m}$
Flow $=21.6 \mathrm{cms}$
Downstream channel invert $=2538.63$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=403.18 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.37 \mathrm{~m}$
Critical depth $=0.126 \mathrm{~m}$

Units on-line $=1$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=2.61 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.61 \mathrm{~m}$
Velocity $=0.05 \mathrm{~m} / \mathrm{s}$

Chlorination Tank Weir

2541.91

Weir invert (top of weir) $=2541.65$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir 'C' coefficient $=1.794$
Flow over weir $=5.4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Head over weir $=0.26 \mathrm{~m}$
Chlorination Tank
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=5.4 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=15.14 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=1.02 \mathrm{~m}$
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=1.91 \mathrm{~m}$
Bend loss $=0.01 \mathrm{~m}$
Depth upstream $=1.88 \mathrm{~m}$
Velocity $=0.35 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate 2541.92
Opening type $=$ rectangular gate
Opening diameter/width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate $(\mathrm{s})=5.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.17 \mathrm{~m} / \mathrm{s}$
2541.92

Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2541.92$
Upstream water level $=2541.92$

Chlorination Enter Tank

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=21.6 \mathrm{cms}$
Downstream channel invert $=2539.02$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=267.06 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.178 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=2.9 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.9 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
2542.24

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=1003 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=1.03 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.24 \mathrm{~m}$
Fitting loss $=0.08 \mathrm{~m}$
Total loss $=0.32 \mathrm{~m}$
0

Secondary Clarifier Exit Pipe
2542.33

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=118 \mathrm{~m}$
Flow $=1.35 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.09 \mathrm{~m}$
2 Clarifier Orifice
2542.41

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert = 2540
Number of openings $=1$
Flow through opening(s) $=1.35 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.76 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Orifice loss $=0.08 \mathrm{~m}$
Downstream water level $=2542.33$
Upstream water level $=2542.41$
Launder Channel 2 C
2543.14

Launder invert $=2542.5$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.68 \mathrm{cms}$
Critical depth $=0.27 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=21.6 \mathrm{cms}$
Downstream depth $=0.27 \mathrm{~m}$
Upstream depth $=0.27 \mathrm{~m}$

Weir 2 Clarifier
Invert of V notch $=2543.3$
Angle of V notch $=90$ degrees
Number of notches $=911$
Total flow over weir $=1.35 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$
2 Clarifier Enter Pipe
2543.49

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=1.92 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.09 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=30.8 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.09 \mathrm{~m}$
Total loss $=0.13 \mathrm{~m}$

Gate Clarifier Distribution Box

2543.5

Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2541
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.92 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.32 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=30.8 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2543.49$
Upstream water level $=2543.5$

Weir invert (top of weir) $=2543.65$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient $=1.807$
Flow over weir $=1.92 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=30.8 \mathrm{cms}$
Head over weir $=0.5 \mathrm{~m}$

Enter Pipe BOX 2

2544.31

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=285.5 \mathrm{~m}$
Flow $=7.7 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor $=1$
Solids factor $=1$
Velocity $=1.03 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=30.8 \mathrm{cms}$
Friction loss $=0.08 \mathrm{~m}$
Fitting loss $=0.08 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0

General Box 2 Gate
 2544.32

Opening type $=$ rectangular gate
Opening diameter $/$ width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$
Flow through gate $(\mathrm{s})=5.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate(s) $=0.26 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2544.31$
Upstream water level $=2544.32$

General box 2 Weir
2545.27

Weir invert (top of weir) $=2544.6$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=7.7 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=30.8 \mathrm{cms}$
Head over weir $=0.67 \mathrm{~m}$
Aeration Exit pipe
2545.47

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=336 \mathrm{~m}$
Flow $=26.19 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor $=1$
Solids factor $=1$
Velocity $=1.25 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=26.2 \mathrm{cms}$
Friction loss $=0.08 \mathrm{~m}$
Fitting loss $=0.12 \mathrm{~m}$
Total loss $=0.2 \mathrm{~m}$
0
Aeration Exit Channel 2545.47
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=5.13 \mathrm{cms}$
Downstream channel invert $=2542.8$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=9.45 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.62 \mathrm{~m}$
Critical depth $=0.552 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=30.8 \mathrm{cms}$

Depth downstream $=2.67 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.05 \mathrm{~m}$
Velocity $=0.48 \mathrm{~m} / \mathrm{s}$

AB Tank Weir

2545.93

Weir invert (top of weir) $=2545.85$
Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir 'C' coefficient = 1.782
Flow over weir $=1.28 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=30.7 \mathrm{cms}$
Head over weir $=0.08 \mathrm{~m}$

Aeration Basin

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=1.28 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=76.22 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.112 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=30.8 \mathrm{cms}$
Depth downstream $=6.93 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.93 \mathrm{~m}$
Velocity $=0.02 \mathrm{~m} / \mathrm{s}$

Aeration Enter Gate

2545.93

Opening type $=$ rectangular gate
Opening diameter/width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.28 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.11 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$

Total flow, all units $=30.8 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2545.93$
Upstream water level $=2545.93$

```
AB Distribution Pipe
Pipe shape \(=\) Circular
Diameter \(=1200 \mathrm{~mm}\)
Length \(=77 \mathrm{~m}\)
Flow \(=1.28 \mathrm{cms}\)
Friction method \(=\) Manning's Equation
Friction factor \(=0.013\)
Total fitting K value \(=1.5\)
Pipe area \(=1.131 \mathrm{~m}^{2}\)
Pipe hydraulic radius \(=0.3\)
Age factor \(=1\)
Solids factor \(=1\)
Velocity \(=1.13 \mathrm{~m} / \mathrm{s}\)
Units on-line \(=24\)
Total flow, all units \(=30.7 \mathrm{cms}\)
Friction loss \(=0.08 \mathrm{~m}\)
Fitting loss \(=0.1 \mathrm{~m}\)
Total loss \(=0.18 \mathrm{~m}\)
Total loss \(=0.17 \mathrm{~m}\)
0
```


AB Distribution Box Gate

2546.12

Opening type $=$ rectangular gate
Opening diameter/width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.28 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.2 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
Total flow, all units $=30.8 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2546.11$
Upstream water level $=2546.12$

```
AB Distribution Box Weir
2546.68
Weir invert (top of weir) \(=2546.3\)
Weir length \(=3.05 \mathrm{~m}\)
Weir height \(=3 \mathrm{~m}\)
Weir 'C' coefficient \(=1.815\)
```

Flow over weir $=1.28 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=30.7 \mathrm{cms}$
Head over weir $=0.38 \mathrm{~m}$

Aeration Enter Pipe

2546.8

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=7.2 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor = 1
Solids factor $=1$
Velocity $=0.82 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.07 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.13 \mathrm{~m}$
0

General aeration box Weir Gate

2546.87

Opening type $=$ rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2544$
Number of gates $=1$
Flow through gate $(\mathrm{s})=7.2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.72 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=3$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0.07 \mathrm{~m}$
Downstream water level $=2546.8$
Upstream water level $=2546.87$
General Aeration Box Weir
2547.85

Weir invert (top of weir) $=2547.21$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$

Weir 'C' coefficient $=1.846$
Flow over weir $=7.2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=21.6 \mathrm{cms}$
Head over weir $=0.64 \mathrm{~m}$

Clarifier Junction Exit Pipe

2547.96

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=273 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.88 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.07 \mathrm{~m}$
Total loss $=0.11 \mathrm{~m}$
0

Clarifier Exit Pipe

2548.04

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=81.6 \mathrm{~m}$
Flow $=1.35 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.03 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.08 \mathrm{~m}$

Clarifier Orifice

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2545$
Number of openings $=1$
Flow through opening $(\mathrm{s})=1.35 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.76 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Orifice loss $=0.08 \mathrm{~m}$
Downstream water level $=2548.04$
Upstream water level = 2548.12
Clarifier Launder
Launder invert $=2548.2$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.68 \mathrm{cms}$
Critical depth $=0.27 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=21.6 \mathrm{cms}$
Downstream depth $=0.27 \mathrm{~m}$
Upstream depth $=0.27 \mathrm{~m}$
Weir Clarifier
2548.8

Invert of V notch $=2548.9$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=1.35 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Head over weir $=0.07 \mathrm{~m}$
Clarifier Enter Pipe
2549.03

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=1.35 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$

Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.06 \mathrm{~m}$

Distribution Box Gate
 2549.04

Opening type $=$ rectangular gate
Opening diameter/width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.35 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.3 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2549.03$
Upstream water level $=2549.04$

Box 1 Weir

2549.54

Weir invert (top of weir) $=2549.15$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=1.35 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Head over weir $=0.39 \mathrm{~m}$
Enter Pipe BOX 1
2549.67

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=262.7 \mathrm{~m}$
Flow $=5.4 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$

Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor $=1$
Velocity $=0.86 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.13 \mathrm{~m}$
0

General Box Gate

2549.68

Opening type $=$ rectangular gate
Opening diameter/width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2544$
Number of gates $=1$
Flow through gate $(\mathrm{s})=5.4 \mathrm{cms}$
Total area of opening $(\mathbf{s})=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.3 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2549.67$
Upstream water level $=2549.68$

General box 1 Weir

2550.61

Weir invert (top of weir) $=2550$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.843$
Flow over weir $=5.4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Head over weir $=0.61 \mathrm{~m}$
R Mix to Clarifiers Pipe
2550.71

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=77.5 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$

Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=1.03 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.08 \mathrm{~m}$
Total loss $=0.1 \mathrm{~m}$
0

RM Exit Channel

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=21.6 \mathrm{cms}$
Downstream channel invert $=2549$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=54.73 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=1.71 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.71 \mathrm{~m}$
Velocity $=0.39 \mathrm{~m} / \mathrm{s}$

RM Exit Gate

2550.71

Opening type = circular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=4$
Flow through gate $(\mathrm{s})=5.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.11 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2550.71$
Upstream water level $=2550.71$

RM

2550.72

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=5.4 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=37.71 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=4.71 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.72 \mathrm{~m}$
Velocity $=0.14 \mathrm{~m} / \mathrm{s}$

RM Enter Gate

2550.74

Opening type = circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=4$
Flow through gate $(\mathrm{s})=5.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12.57 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.43 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0.03 \mathrm{~m}$
Downstream water level $=2550.72$
Upstream water level $=2550.74$

RM Enter Channel

Channel shape $=$ Rectangular
Manning's 'n' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=21.6 \mathrm{cms}$
Downstream channel invert $=2548$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=87.75 \mathrm{~m}^{2}$

Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=2.74 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.74 \mathrm{~m}$
Velocity $=0.25 \mathrm{~m} / \mathrm{s}$

Grit Channel to RM Pipe
 2550.82

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor = 1
Solids factor $=1$
Velocity $=0.88 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.07 \mathrm{~m}$
Total loss $=0.08 \mathrm{~m}$
0
Junction Tank Grit Channel
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width $/$ diameter $=45.2 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$
Downstream channel invert $=2548$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=127.49 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.18 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=2.82 \mathrm{~m}$

Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.82 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$

Grit Weir

Weir invert (top of weir) $=2551.28$
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir ' C ' coefficient $=1.931$
Flow over weir $=2.16 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=10$
Total flow, all units $=21.6 \mathrm{cms}$
Head over weir $=0.21 \mathrm{~m}$
Grit Channel 2551.49
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=55 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=1.54 \mathrm{cms}$
Downstream channel invert $=2546.55$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=19.74 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.248 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=4.94 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.94 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$

Screening Exit Channel Gate

Opening type $=$ rectangular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate $(\mathrm{s})=2.16 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.54 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=10$
Total flow, all units $=21.6 \mathrm{cms}$

Gate loss $=0.04 \mathrm{~m}$
Downstream water level $=2551.49$
Upstream water level $=2551.53$
Screen Channel 1-2
2551.53

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=2.16 \mathrm{cms}$
Downstream channel invert $=2549.24$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=5.72 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.424 \mathrm{~m}$
Units on-line $=10$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=2.29 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.29 \mathrm{~m}$
Velocity $=0.38 \mathrm{~m} / \mathrm{s}$

Fine Screen

2551.64

Rack invert $=2550.3$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=2.16 \mathrm{cms}$
Bar width $=6 \mathrm{~mm}$
Bar spacing $=6 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=1.53 \mathrm{~m}^{2}$
Downstream depth $=1.23 \mathrm{~m}$
Velocity in channel $=0.7 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=1.41 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=21.6 \mathrm{cms}$
Rack head loss $=0.11 \mathrm{~m}$

Screen Channel 2-3

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width $/$ diameter $=2.5 \mathrm{~m}$
Flow $=2.16 \mathrm{cms}$
Downstream channel invert $=2550$

Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=4.09 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.424 \mathrm{~m}$
Units on-line $=10$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=1.64 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.64 \mathrm{~m}$
Velocity $=0.53 \mathrm{~m} / \mathrm{s}$
Medium Screen
2551.66

Rack invert $=2550$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=2.16 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$
Bar spacing $=25 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=2.91 \mathrm{~m}^{2}$
Downstream depth $=1.64 \mathrm{~m}$
Velocity in channel $=0.53 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.74 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=21.6 \mathrm{cms}$
Rack head loss $=0.02 \mathrm{~m}$
Screen Channel 3-4 2551.66
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=2.16 \mathrm{cms}$
Downstream channel invert $=2550$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=4.15 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.424 \mathrm{~m}$
Units on-line $=10$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=1.66 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.66 \mathrm{~m}$

Velocity $=0.52 \mathrm{~m} / \mathrm{s}$
Screening Enter Channel Gate
2551.7

Opening type $=$ rectangular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=2.16 \mathrm{cms}$
Total area of opening(s) $=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.54 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=10$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0.04 \mathrm{~m}$
Downstream water level $=2551.66$
Upstream water level $=2551.7$
Screening Distribution Channel
2551.7

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=163.4 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.19 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=3.9 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=3.9 \mathrm{~m}$
Velocity $=0.07 \mathrm{~m} / \mathrm{s}$
Initial Pipe
2551.76

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$

Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=0.77 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

Initial Gate

2551.8

Opening type $=$ rectangular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=1$
Flow through gate $(\mathrm{s})=10.8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=20 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.54 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0.04 \mathrm{~m}$
Downstream water level $=2551.76$
Upstream water level $=2551.8$

Inicial Junction Tank

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=21.6 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=144.98 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.424 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=5.8 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.8 \mathrm{~m}$
Velocity $=0.15 \mathrm{~m} / \mathrm{s}$

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
32 cms	9.18 cms	-----	-----

Section Description

Water Surface Elevation
Starting water surface elevation
Exit Pipe
2541.41

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=227.5 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor $=1$
Solids factor $=1$
Velocity $=1.33 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.08 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.22 \mathrm{~m}$
0
Chlorination Exit Tank
2541.63

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=154.5 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2538.63$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=463.42 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.46 \mathrm{~m}$
Critical depth $=0.164 \mathrm{~m}$

Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=3 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=3 \mathrm{~m}$
Velocity $=0.07 \mathrm{~m} / \mathrm{s}$

Chlorination Tank Weir
 2541.98

Weir invert (top of weir) $=2541.65$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir 'C' coefficient $=1.794$
Flow over weir $=8 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.33 \mathrm{~m}$
Chlorination Tank
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=15.77 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=1.32 \mathrm{~m}$
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=1.98 \mathrm{~m}$
Bend loss $=0.02 \mathrm{~m}$
Depth upstream $=1.97 \mathrm{~m}$
Velocity $=0.5 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate
Opening type $=$ rectangular gate
Opening diameter/width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate $(\mathrm{s})=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.25 \mathrm{~m} / \mathrm{s}$
2542.02
2542.01

Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2542.01$
Upstream water level $=2542.02$
Chlorination Enter Tank
2542.02

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2539.02$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=275.78 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.231 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=3 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=3 \mathrm{~m}$
Velocity $=0.12 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
2542.72

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=1003 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=1.52 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.52 \mathrm{~m}$
Fitting loss $=0.18 \mathrm{~m}$
Total loss $=0.7 \mathrm{~m}$
0

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=118 \mathrm{~m}$
Flow $=2 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.13 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.09 \mathrm{~m}$
Fitting loss $=0.11 \mathrm{~m}$
Total loss $=0.2 \mathrm{~m}$

2 Clarifier Orifice

2543.1

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2540$
Number of openings $=1$
Flow through opening(s) $=2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=1.13 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Orifice loss $=0.18 \mathrm{~m}$
Downstream water level $=2542.92$
Upstream water level $=2543.1$
Launder Channel 2 C
2543.24

Launder invert $=2542.5$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=1 \mathrm{cms}$
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=32 \mathrm{cms}$
Downstream depth $=0.6 \mathrm{~m}$
Upstream depth $=0.37 \mathrm{~m}$

Weir 2 Clarifier
Invert of V notch $=2543.3$
Angle of V notch $=90$ degrees
Number of notches $=911$
Total flow over weir $=2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.08 \mathrm{~m}$
2 Clarifier Enter Pipe
2543.6

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=2.57 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.46 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=41.2 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.16 \mathrm{~m}$
Total loss $=0.23 \mathrm{~m}$
Gate Clarifier Distribution Box
2543.62

Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2541
Number of gates $=1$
Flow through gate $(\mathrm{s})=2.57 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.43 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=41.2 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2543.6$
Upstream water level $=2543.62$

Weir invert (top of weir) $=2543.65$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient = 1.807
Flow over weir $=2.57 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=41.2 \mathrm{cms}$
Head over weir $=0.6 \mathrm{~m}$

Enter Pipe BOX 2

2544.55

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=285.5 \mathrm{~m}$
Flow $=10.3 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor $=1$
Solids factor $=1$
Velocity $=1.37 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=41.2 \mathrm{cms}$
Friction loss $=0.15 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.3 \mathrm{~m}$
0

General Box 2 Gate

2544.57

Opening type $=$ rectangular gate
Opening diameter $/$ width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$
Flow through gate $(\mathrm{s})=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.38 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2544.55$
Upstream water level $=2544.57$

General box 2 Weir
2545.42

Weir invert $($ top of weir $)=2544.6$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=10.3 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=41.2 \mathrm{cms}$
Head over weir $=0.82 \mathrm{~m}$
Aeration Exit pipe
2545.8

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=336 \mathrm{~m}$
Flow $=36.59 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor $=1$
Solids factor $=1$
Velocity $=1.74 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=36.6 \mathrm{cms}$
Friction loss $=0.15 \mathrm{~m}$
Fitting loss $=0.23 \mathrm{~m}$
Total loss $=0.38 \mathrm{~m}$
0

Aeration Exit Channel

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=6.86 \mathrm{cms}$
Downstream channel invert $=2542.8$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=10.78 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.75 \mathrm{~m}$
Critical depth $=0.67 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=41.2 \mathrm{cms}$

Depth downstream $=3 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.39 \mathrm{~m}$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$

AB Tank Weir

2545.95

Weir invert (top of weir) $=2545.85$
Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir 'C' coefficient = 1.782
Flow over weir $=1.71 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=41.1 \mathrm{cms}$
Head over weir $=0.1 \mathrm{~m}$
Aeration Basin
2545.95

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=1.71 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=76.41 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.136 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=41.1 \mathrm{cms}$
Depth downstream $=6.95 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.95 \mathrm{~m}$
Velocity $=0.02 \mathrm{~m} / \mathrm{s}$

Aeration Enter Gate

2545.95

Opening type $=$ rectangular gate
Opening diameter/width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.71 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.14 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$

Total flow, all units $=41.2 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2545.95$
Upstream water level $=2545.95$

```
AB Distribution Pipe2546.27
Pipe shape \(=\) Circular
Diameter \(=1200 \mathrm{~mm}\)
Length \(=77 \mathrm{~m}\)
Flow \(=1.71 \mathrm{cms}\)
Friction method \(=\) Manning's Equation
Friction factor \(=0.013\)
Total fitting K value \(=1.5\)
Pipe area \(=1.131 \mathrm{~m}^{2}\)
Pipe hydraulic radius \(=0.3\)
Age factor \(=1\)
Solids factor \(=1\)
Velocity \(=1.52 \mathrm{~m} / \mathrm{s}\)
Units on-line \(=24\)
Total flow, all units \(=41.1 \mathrm{cms}\)
Friction loss \(=0.15 \mathrm{~m}\)
Fitting loss \(=0.18 \mathrm{~m}\)
Total loss \(=0.32 \mathrm{~m}\)
Total loss \(=0.17 \mathrm{~m}\)
0
```


AB Distribution Box Gate

2546.28

Opening type $=$ rectangular gate
Opening diameter/width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.71 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.26 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
Total flow, all units $=41.2 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2546.27$
Upstream water level $=2546.28$

AB Distribution Box Weir

2546.76

Weir invert (top of weir) $=2546.3$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.815$

Flow over weir $=1.71 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=41.1 \mathrm{cms}$
Head over weir $=0.46 \mathrm{~m}$

Aeration Enter Pipe
 2547.04

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=10.67 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor $=1$
Solids factor $=1$
Velocity $=1.22 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.14 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.28 \mathrm{~m}$
0

General aeration box Weir Gate

2547.19

Opening type $=$ rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2544$
Number of gates $=1$
Flow through gate $(\mathrm{s})=10.67 \mathrm{cms}$
Total area of opening $(\mathrm{s})=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=1.07 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=3$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.15 \mathrm{~m}$
Downstream water level $=2547.04$
Upstream water level $=2547.19$
General Aeration Box Weir
2548.04

Weir invert (top of weir) $=2547.21$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$

Weir 'C' coefficient $=1.846$
Flow over weir $=10.67 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.83 \mathrm{~m}$

Clarifier Junction Exit Pipe

2548.29

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=273 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=1.31 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.09 \mathrm{~m}$
Fitting loss $=0.16 \mathrm{~m}$
Total loss $=0.25 \mathrm{~m}$
0

Clarifier Exit Pipe

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=81.6 \mathrm{~m}$
Flow $=2 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.13 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.07 \mathrm{~m}$
Fitting loss $=0.12 \mathrm{~m}$
Total loss $=0.18 \mathrm{~m}$

Clarifier Orifice

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2545$
Number of openings $=1$
Flow through opening(s) $=2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=1.13 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Orifice loss $=0.18 \mathrm{~m}$
Downstream water level $=2548.47$
Upstream water level $=2548.65$
Clarifier Launder
Launder invert $=2548.2$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=1 \mathrm{cms}$
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=32 \mathrm{cms}$
Downstream depth $=0.45 \mathrm{~m}$
Upstream depth $=0.36 \mathrm{~m}$
Weir Clarifier
2548.88

Invert of V notch $=2548.9$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.08 \mathrm{~m}$
Clarifier Enter Pipe
2549.11

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=2 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$

Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.13 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.1 \mathrm{~m}$
Total loss $=0.13 \mathrm{~m}$

Distribution Box Gate

2549.14

Opening type $=$ rectangular gate
Opening diameter/width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate(s) $=2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.44 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.03 \mathrm{~m}$
Downstream water level $=2549.11$
Upstream water level = 2549.14
Box 1 Weir
2549.66

Weir invert (top of weir) $=2549.15$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.51 \mathrm{~m}$
Enter Pipe BOX 1
2549.94

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=262.7 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$

Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor $=1$
Velocity $=1.28 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.14 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.28 \mathrm{~m}$
0

General Box Gate

2549.97

Opening type $=$ rectangular gate
Opening diameter/width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2544$
Number of gates $=1$
Flow through gate $(\mathrm{s})=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.44 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.03 \mathrm{~m}$
Downstream water level $=2549.94$
Upstream water level $=2549.97$

General box 1 Weir

2550.8

Weir invert (top of weir) $=2550$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.843$
Flow over weir $=8 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.8 \mathrm{~m}$
R Mix to Clarifiers Pipe 2551.02

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=77.5 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$

Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=1.52 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.18 \mathrm{~m}$
Total loss $=0.22 \mathrm{~m}$
0

RM Exit Channel

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2549$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=64.66 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=2.02 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.02 \mathrm{~m}$
Velocity $=0.5 \mathrm{~m} / \mathrm{s}$

RM Exit Gate

Opening type = circular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2547
Number of gates $=4$
Flow through gate $(\mathrm{s})=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.16 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2551.02$
Upstream water level $=2551.03$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=40.21 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=5.03 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.03 \mathrm{~m}$
Velocity $=0.2 \mathrm{~m} / \mathrm{s}$
RM Enter Gate
2551.08

Opening type $=$ circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=4$
Flow through gate $(\mathrm{s})=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12.57 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.64 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.06 \mathrm{~m}$
Downstream water level $=2551.03$
Upstream water level $=2551.08$

RM Enter Channel

2551.09

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2548$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=98.73 \mathrm{~m}^{2}$

Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=3.08 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=3.09 \mathrm{~m}$
Velocity $=0.32 \mathrm{~m} / \mathrm{s}$

Grit Channel to RM Pipe

2551.26

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=1.31 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.16 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0
Junction Tank Grit Channel
2551.26

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width $/$ diameter $=45.2 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2548$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=147.38 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.234 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=3.26 \mathrm{~m}$

Bend loss $=0 \mathrm{~m}$
Depth upstream $=3.26 \mathrm{~m}$
Velocity $=0.11 \mathrm{~m} / \mathrm{s}$

Grit Weir

Weir invert (top of weir) $=2551.28$
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir 'C' coefficient $=1.931$
Flow over weir $=3.2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.27 \mathrm{~m}$

Grit Channel
 2551.55

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=55 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=2.29 \mathrm{cms}$
Downstream channel invert $=2546.55$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=19.99 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.322 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=5 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5 \mathrm{~m}$
Velocity $=0.11 \mathrm{~m} / \mathrm{s}$
Screening Exit Channel Gate 2551.63
Opening type $=$ rectangular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate $(\mathrm{s})=3.2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.8 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$

Gate loss $=0.08 \mathrm{~m}$
Downstream water level $=2551.55$
Upstream water level $=2551.63$

Screen Channel 1-2
2551.64

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=3.2 \mathrm{cms}$
Downstream channel invert $=2549.24$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=5.99 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.551 \mathrm{~m}$
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=2.39 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.4 \mathrm{~m}$
Velocity $=0.53 \mathrm{~m} / \mathrm{s}$

Fine Screen

2551.84

Rack invert $=2550.3$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=3.2 \mathrm{cms}$
Bar width $=6 \mathrm{~mm}$
Bar spacing $=6 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=1.67 \mathrm{~m}^{2}$
Downstream depth $=1.34 \mathrm{~m}$
Velocity in channel $=0.96 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=1.92 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Rack head loss $=0.2 \mathrm{~m}$
Screen Channel 2-3
2551.84

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width $/$ diameter $=2.5 \mathrm{~m}$
Flow $=3.2 \mathrm{cms}$
Downstream channel invert $=2550$

Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=4.59 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.551 \mathrm{~m}$
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=1.84 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.84 \mathrm{~m}$
Velocity $=0.7 \mathrm{~m} / \mathrm{s}$

Medium Screen

2551.87

Rack invert $=2550$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=3.2 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$
Bar spacing $=25 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=3.26 \mathrm{~m}^{2}$
Downstream depth $=1.84 \mathrm{~m}$
Velocity in channel $=0.7 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.98 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Rack head loss $=0.03 \mathrm{~m}$
Screen Channel 3-4
2551.88

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=3.2 \mathrm{cms}$
Downstream channel invert $=2550$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=4.69 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.551 \mathrm{~m}$
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=1.87 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.88 \mathrm{~m}$

Velocity $=0.68 \mathrm{~m} / \mathrm{s}$
Screening Enter Channel Gate
2551.96

Opening type $=$ rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate $(\mathrm{s})=3.2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.8 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.08 \mathrm{~m}$
Downstream water level $=2551.88$
Upstream water level $=2551.96$
Screening Distribution Channel
2551.96

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=174.36 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.246 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=4.16 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.16 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$
Initial Pipe
2552.08

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$

Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=1.14 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.11 \mathrm{~m}$
Total loss $=0.12 \mathrm{~m}$
0

Initial Gate

2552.17

Opening type $=$ rectangular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=1$
Flow through gate $(\mathrm{s})=16 \mathrm{cms}$
Total area of opening $(\mathrm{s})=20 \mathrm{~m}^{2}$
Velocity through gate(s) $=0.8 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.08 \mathrm{~m}$
Downstream water level $=2552.08$
Upstream water level $=2552.17$

Inicial Junction Tank

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=154.14 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.551 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=6.17 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.17 \mathrm{~m}$
Velocity $=0.21 \mathrm{~m} / \mathrm{s}$

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
13.6 cms	9.18 cms	-----	-----

Section Description

Water Surface Elevation
Starting water surface elevation
Exit Pipe
2540.88

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=343 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

Chlorination Exit Tank
2540.93

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=154.5 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2538.67$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=349.09 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.28 \mathrm{~m}$
Critical depth $=0.093 \mathrm{~m}$

Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=2.26 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.26 \mathrm{~m}$
Velocity $=0.04 \mathrm{~m} / \mathrm{s}$

Chlorination Tank Weir

2541.87

Weir invert (top of weir) $=2541.68$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir 'C' coefficient $=1.794$
Flow over weir $=3.4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.19 \mathrm{~m}$
Chlorination Tank
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=3.4 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=22.81 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.76 \mathrm{~m}$
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=2.87 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.83 \mathrm{~m}$
Velocity $=0.15 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate
Opening type $=$ rectangular gate
Opening diameter/width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate $(\mathrm{s})=3.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.11 \mathrm{~m} / \mathrm{s}$
2541.87
2541.87

Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2541.87$
Upstream water level $=2541.87$

Chlorination Enter Tank

2541.87

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=264.14 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.131 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=2.87 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.87 \mathrm{~m}$
Velocity $=0.05 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
2541.95

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=522 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.05 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.08 \mathrm{~m}$
0

Secondary Clarifier Exit Pipe
2541.99

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=117 \mathrm{~m}$
Flow $=0.85 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.48 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$

2 Clarifier Orifice
 2542.02

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert = 2540
Number of openings $=1$
Flow through opening(s) $=0.85 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.48 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Orifice loss $=0.03 \mathrm{~m}$
Downstream water level $=2541.99$
Upstream water level $=2542.02$
Launder Channel 2 C
2542.57

Launder invert $=2542$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.43 \mathrm{cms}$
Critical depth $=0.2 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=13.6 \mathrm{cms}$
Downstream depth $=0.2 \mathrm{~m}$
Upstream depth $=0.2 \mathrm{~m}$

Weir 2 Clarifier
2543
Invert of V notch $=2542.95$
Angle of V notch $=90$ degrees
Number of notches $=911$
Total flow over weir $=0.85 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.05 \mathrm{~m}$
2 Clarifier Enter Pipe 2543.07
Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=1.42 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.81 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=22.8 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.07 \mathrm{~m}$
Gate Clarifier Distribution Box
2543.08

Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2541
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.42 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.24 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=22.8 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2543.07$
Upstream water level $=2543.08$

Weir invert (top of weir) $=2543.28$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient = 1.807
Flow over weir $=1.42 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.41 \mathrm{~m}$

Enter Pipe BOX 2

2543.75

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=120.4 \mathrm{~m}$
Flow $=5.7 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=22.8 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.06 \mathrm{~m}$
0

General Box 2 Gate
 2543.75

Opening type $=$ rectangular gate
Opening diameter $/$ width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$
Flow through gate(s) $=3.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.16 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2543.75$
Upstream water level $=2543.75$

General box 2 Weir
Weir invert (top of weir) $=2544.13$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=5.7 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.55 \mathrm{~m}$
Aeration Exit pipe 2544.85
Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=971 \mathrm{~m}$
Flow $=18.19 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor $=1$
Solids factor $=1$
Velocity $=0.87 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=18.2 \mathrm{cms}$
Friction loss $=0.11 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0

Aeration Exit Channel 2544.85
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=3.8 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=18.16 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.51 \mathrm{~m}$
Critical depth $=0.452 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=22.8 \mathrm{cms}$

Depth downstream $=4.85 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.23 \mathrm{~m}$
Velocity $=0.2 \mathrm{~m} / \mathrm{s}$

AB Tank Weir

2545.7

Weir invert (top of weir) $=2545.64$
Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir 'C' coefficient $=1.782$
Flow over weir $=0.95 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$

Aeration Basin

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=0.95 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=73.75 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.091 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Depth downstream $=6.7 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.71 \mathrm{~m}$
Velocity $=0.01 \mathrm{~m} / \mathrm{s}$

Aeration Enter Gate

2545.71

Opening type $=$ rectangular gate
Opening diameter/width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=0.95 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.08 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$

Total flow, all units $=22.8 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2545.71$
Upstream water level $=2545.71$

```
AB Distribution Pipe
                                    2545.81
Pipe shape = Circular
Diameter = 1200 mm
Length = 77 m
Flow = 0.95 cms
Friction method = Manning's Equation
Friction factor = 0.013
Total fitting K value = 1.5
Pipe area = 1.131 m
Pipe hydraulic radius }=0.
Age factor = 1
Solids factor = 1
Velocity = 0.84 m/s
Units on-line = 24
Total flow, all units =22.8 cms
Friction loss = 0.05 m
Fitting loss = 0.05 m
Total loss=0.1 m
Total loss = 0.17 m
0
```


AB Distribution Box Gate
 2545.81

Opening type $=$ rectangular gate
Opening diameter/width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=0.95 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.15 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2545.81$
Upstream water level $=2545.81$

AB Distribution Box Weir

2546.4

Weir invert (top of weir) $=2546.09$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.815$

Flow over weir $=0.95 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=22.8 \mathrm{cms}$
Head over weir $=0.31 \mathrm{~m}$

Aeration Enter Pipe

2546.45

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=4.53 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor = 1
Solids factor $=1$
Velocity $=0.52 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.03 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$ 0

General aeration box Weir Gate

2546.48

Opening type $=$ rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate $(\mathrm{s})=4.53 \mathrm{cms}$
Total area of opening $(\mathrm{s})=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.45 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=3$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.03 \mathrm{~m}$
Downstream water level $=2546.45$
Upstream water level $=2546.48$
General Aeration Box Weir
2547.47

Weir invert (top of weir) $=2547$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$

Weir 'C' coefficient $=1.846$
Flow over weir $=4.53 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.47 \mathrm{~m}$

Clarifier Junction Exit Pipe

2547.54

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=652 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.56 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.07 \mathrm{~m}$
0

Clarifier Exit Pipe

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=105.4 \mathrm{~m}$
Flow $=0.85 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.48 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$

Clarifier Orifice

2547.61

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2546$
Number of openings $=1$
Flow through opening $(\mathrm{s})=0.85 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.48 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Orifice loss $=0.03 \mathrm{~m}$
Downstream water level $=2547.58$
Upstream water level $=2547.61$
Clarifier Launder
Launder invert $=2548$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.43 \mathrm{cms}$
Critical depth $=0.2 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=13.6 \mathrm{cms}$
Downstream depth $=0.2 \mathrm{~m}$
Upstream depth $=0.2 \mathrm{~m}$
Weir Clarifier
2548.81

Invert of V notch $=2548.75$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=0.85 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$
Clarifier Enter Pipe
2548.83

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=0.85 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$

Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.48 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.02 \mathrm{~m}$

Distribution Box Gate

2548.83

Opening type $=$ rectangular gate
Opening diameter/width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate $(\mathrm{s})=0.85 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.19 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2548.83$
Upstream water level $=2548.83$

Box 1 Weir

2549.29

Weir invert (top of weir) $=2549$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=0.85 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.29 \mathrm{~m}$

Enter Pipe BOX 1

2549.32

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=110.9 \mathrm{~m}$
Flow $=3.4 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$

Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor $=1$
Velocity $=0.54 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$
0

General Box Gate

2549.32

Opening type $=$ rectangular gate
Opening diameter/width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2544$
Number of gates $=1$
Flow through gate $(\mathrm{s})=3.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.19 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2549.32$
Upstream water level $=2549.32$

General box 1 Weir

2550.21

Weir invert (top of weir) $=2549.76$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir ' C^{\prime} coefficient $=1.843$
Flow over weir $=3.4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.45 \mathrm{~m}$
R Mix to Clarifiers Pipe
2550.26

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=150.43 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$

Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

RM Exit Channel

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2549$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=40.34 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=1.26 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.26 \mathrm{~m}$
Velocity $=0.34 \mathrm{~m} / \mathrm{s}$

RM Exit Gate

2550.26

Opening type = circular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=4$
Flow through gate(s) $=3.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.07 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2550.26$
Upstream water level $=2550.26$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=3.4 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=42.11 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=5.26 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.26 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$

RM Enter Gate

2550.57

Opening type = circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2550$
Number of gates $=4$
Flow through gate $(\mathrm{s})=3.4 \mathrm{cms}$
Total area of opening(s) $=2.98 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=1.14 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ weir control
Units on-line $=4$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.57 \mathrm{~m}$
Downstream water level $=2550.26$
Upstream water level $=2550.57$

RM Enter Channel

2550.58

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2548$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=82.4 \mathrm{~m}^{2}$

Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.264 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=2.57 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.58 \mathrm{~m}$
Velocity $=0.17 \mathrm{~m} / \mathrm{s}$

Grit Channel to RM Pipe
 2550.61

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.56 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.03 \mathrm{~m}$
0
Junction Tank Grit Channel 2550.61
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width $/$ diameter $=45.2 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Downstream channel invert $=2549$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=72.8 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.132 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=1.61 \mathrm{~m}$

Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.61 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$

Grit Weir

Weir invert (top of weir) $=2551.11$
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir 'C' coefficient $=1.931$
Flow over weir $=1.36 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=10$
Total flow, all units $=13.6 \mathrm{cms}$
Head over weir $=0.15 \mathrm{~m}$

Grit Channel
 2551.26

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=40.5 \mathrm{~m}$
Channel width/diameter $=6 \mathrm{~m}$
Flow $=0.97 \mathrm{cms}$
Downstream channel invert $=2548.59$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=16.03 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.139 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=2.67 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.67 \mathrm{~m}$
Velocity $=0.06 \mathrm{~m} / \mathrm{s}$
Screening Exit Channel Gate 2551.32
Opening type $=$ rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=1$
Flow through gate $(\mathrm{s})=2.72 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.68 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=5$
Total flow, all units $=13.6 \mathrm{cms}$

Gate loss $=0.06 \mathrm{~m}$
Downstream water level $=2551.26$
Upstream water level $=2551.32$

Screen Channel 1-2
2551.33

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=2.72 \mathrm{cms}$
Downstream channel invert $=2549.28$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=5.11 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.495 \mathrm{~m}$
Units on-line $=5$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=2.04 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.05 \mathrm{~m}$
Velocity $=0.53 \mathrm{~m} / \mathrm{s}$

Fine Screen

2551.57

Rack invert $=2550.3$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=2.72 \mathrm{cms}$
Bar width $=6 \mathrm{~mm}$
Bar spacing $=6 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=1.28 \mathrm{~m}^{2}$
Downstream depth $=1.03 \mathrm{~m}$
Velocity in channel $=1.06 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=2.12 \mathrm{~m} / \mathrm{s}$
Units on-line $=5$
Total flow, all units $=13.6 \mathrm{cms}$
Rack head loss $=0.25 \mathrm{~m}$

Screen Channel 2-3

2551.59

Channel shape $=$ Rectangular
Manning's 'n' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width $/$ diameter $=2.5 \mathrm{~m}$
Flow $=2.72 \mathrm{cms}$
Downstream channel invert $=2550.9$

Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=1.7 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.495 \mathrm{~m}$
Units on-line $=5$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=0.67 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=0.69 \mathrm{~m}$
Velocity $=1.62 \mathrm{~m} / \mathrm{s}$
Medium Screen
2551.62

Rack invert $=2550$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=2.72 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$
Bar spacing $=25 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=2.82 \mathrm{~m}^{2}$
Downstream depth $=1.59 \mathrm{~m}$
Velocity in channel $=0.69 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.97 \mathrm{~m} / \mathrm{s}$
Units on-line $=5$
Total flow, all units $=13.6 \mathrm{cms}$
Rack head loss $=0.03 \mathrm{~m}$
Screen Channel 3-4 2551.63
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=2.72 \mathrm{cms}$
Downstream channel invert $=2550.9$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=1.81 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.495 \mathrm{~m}$
Units on-line $=5$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=0.72 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=0.73 \mathrm{~m}$

Velocity $=1.51 \mathrm{~m} / \mathrm{s}$
Screening Enter Channel Gate
2551.69

Opening type $=$ rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=2.72 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.68 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=5$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.06 \mathrm{~m}$
Downstream water level $=2551.63$
Upstream water level $=2551.69$
Screening Distribution Channel
2551.7

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=163.16 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.139 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=3.89 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=3.9 \mathrm{~m}$
Velocity $=0.04 \mathrm{~m} / \mathrm{s}$
Initial Pipe
2551.72

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=6.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$

Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=0.49 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.02 \mathrm{~m}$
0

Initial Gate

Opening type $=$ rectangular gate
Opening diameter $/$ width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=1$
Flow through gate $(\mathrm{s})=6.8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=20 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.34 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=2$
Total flow, all units $=13.6 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2551.72$
Upstream water level $=2551.74$

Inicial Junction Tank

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=13.6 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=143.4 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.312 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=13.6 \mathrm{cms}$
Depth downstream $=5.74 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.74 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
16 cms	9.18 cms	-----	-----

Section Description

Water Surface Elevation
Starting water surface elevation 2540.97
Exit Pipe
2541.04

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=343 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor $=1$
Solids factor $=1$
Velocity $=0.67 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.03 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.07 \mathrm{~m}$
0
Chlorination Exit Tank
2541.04

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=154.5 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2538.67$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=366.11 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.31 \mathrm{~m}$
Critical depth $=0.103 \mathrm{~m}$

Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=2.37 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.37 \mathrm{~m}$
Velocity $=0.04 \mathrm{~m} / \mathrm{s}$

Chlorination Tank Weir

2541.89

Weir invert (top of weir) $=2541.68$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir 'C' coefficient $=1.794$
Flow over weir $=4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.21 \mathrm{~m}$
Chlorination Tank
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=4 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=22.99 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.84 \mathrm{~m}$
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=2.89 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.86 \mathrm{~m}$
Velocity $=0.17 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate
Opening type $=$ rectangular gate
Opening diameter/width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate $(\mathrm{s})=4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.12 \mathrm{~m} / \mathrm{s}$
2541.89
2541.89

Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2541.89$
Upstream water level $=2541.89$

Chlorination Enter Tank

2541.9

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=266.32 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.146 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=2.89 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.9 \mathrm{~m}$
Velocity $=0.06 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=522 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor = 1
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.07 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.11 \mathrm{~m}$
0

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=117 \mathrm{~m}$
Flow $=1 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$

2 Clarifier Orifice

2542.11

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert = 2540
Number of openings $=1$
Flow through opening(s) $=1 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.57 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Orifice loss $=0.05 \mathrm{~m}$
Downstream water level $=2542.06$
Upstream water level $=2542.11$
Launder Channel 2 C
2542.59

Launder invert $=2542$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.5 \mathrm{cms}$
Critical depth $=0.22 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=16 \mathrm{cms}$
Downstream depth $=0.22 \mathrm{~m}$
Upstream depth $=0.22 \mathrm{~m}$

Weir 2 Clarifier
Invert of V notch $=2542.95$
Angle of V notch $=90$ degrees
Number of notches $=911$
Total flow over weir $=1 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$
2 Clarifier Enter Pipe 2543.09
Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=1.57 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.89 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=25.2 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.08 \mathrm{~m}$

Gate Clarifier Distribution Box

2543.1

Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2541
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.57 \mathrm{cms}$
Total area of opening(s) $=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.26 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=25.2 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2543.09$
Upstream water level $=2543.1$

Weir invert (top of weir) $=2543.28$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient = 1.807
Flow over weir $=1.57 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.43 \mathrm{~m}$

Enter Pipe BOX 2

2543.79

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=120.4 \mathrm{~m}$
Flow $=6.3 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor $=1$
Solids factor $=1$
Velocity $=0.84 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=25.2 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.08 \mathrm{~m}$
0

General Box 2 Gate

2543.79

Opening type $=$ rectangular gate
Opening diameter $/$ width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$
Flow through gate $(\mathrm{s})=4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.19 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2543.79$
Upstream water level $=2543.79$

General box 2 Weir
Weir invert (top of weir) $=2544.13$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=6.3 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.59 \mathrm{~m}$
Aeration Exit pipe
2544.93

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=971 \mathrm{~m}$
Flow $=20.59 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor $=1$
Solids factor $=1$
Velocity $=0.98 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=20.6 \mathrm{cms}$
Friction loss $=0.14 \mathrm{~m}$
Fitting loss $=0.07 \mathrm{~m}$
Total loss $=0.21 \mathrm{~m}$
0
Aeration Exit Channel 2544.93
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=4.2 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=18.48 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.54 \mathrm{~m}$
Critical depth $=0.483 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=25.2 \mathrm{cms}$

Depth downstream $=4.93 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.31 \mathrm{~m}$
Velocity $=0.21 \mathrm{~m} / \mathrm{s}$

AB Tank Weir
2545.71

Weir invert (top of weir) $=2545.64$
Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir 'C' coefficient = 1.782
Flow over weir $=1.05 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.07 \mathrm{~m}$

Aeration Basin

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=1.05 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=73.8 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.098 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Depth downstream $=6.71 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.71 \mathrm{~m}$
Velocity $=0.01 \mathrm{~m} / \mathrm{s}$

Aeration Enter Gate

Opening type $=$ rectangular gate
Opening diameter/width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.05 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.09 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
2545.71
2545.71

Total flow, all units $=25.2 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2545.71$
Upstream water level $=2545.71$

```
AB Distribution Pipe
                                    2545.83
Pipe shape = Circular
Diameter = 1200 mm
Length = 77 m
Flow = 1.05 cms
Friction method = Manning's Equation
Friction factor = 0.013
Total fitting K value = 1.5
Pipe area = 1.131 m
Pipe hydraulic radius }=0.
Age factor = 1
Solids factor = 1
Velocity = 0.93 m/s
Units on-line = 24
Total flow, all units =25.2 cms
Friction loss = 0.06 m
Fitting loss = 0.07 m
Total loss = 0.12 m
Total loss = 0.17 m
0
```

AB Distribution Box Gate
2545.83

Opening type $=$ rectangular gate
Opening diameter/width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.05 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.16 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2545.83$
Upstream water level $=2545.83$

```
AB Distribution Box Weir
2546.42
Weir invert (top of weir) \(=2546.09\)
Weir length \(=3.05 \mathrm{~m}\)
Weir height \(=3 \mathrm{~m}\)
Weir 'C' coefficient \(=1.815\)
```

Flow over weir $=1.05 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=25.2 \mathrm{cms}$
Head over weir $=0.33 \mathrm{~m}$

Aeration Enter Pipe

2546.49

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=5.33 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor = 1
Solids factor $=1$
Velocity $=0.61 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.07 \mathrm{~m}$
0

General aeration box Weir Gate

2546.53

Opening type $=$ rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate $(\mathrm{s})=5.33 \mathrm{cms}$
Total area of opening $(\mathrm{s})=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.53 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=3$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.04 \mathrm{~m}$
Downstream water level $=2546.49$
Upstream water level $=2546.53$
General Aeration Box Weir
2547.52

Weir invert (top of weir) $=2547$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$

Weir 'C' coefficient $=1.846$
Flow over weir $=5.33 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.52 \mathrm{~m}$

Clarifier Junction Exit Pipe

2547.62

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=652 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.1 \mathrm{~m}$
0

Clarifier Exit Pipe

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=105.4 \mathrm{~m}$
Flow $=1 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$

Clarifier Orifice

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2546$
Number of openings $=1$
Flow through opening(s) $=1 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.57 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Orifice loss $=0.05 \mathrm{~m}$
Downstream water level $=2547.67$
Upstream water level $=2547.72$
Clarifier Launder
Launder invert $=2548$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.5 \mathrm{cms}$
Critical depth $=0.22 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=16 \mathrm{cms}$
Downstream depth $=0.22 \mathrm{~m}$
Upstream depth $=0.22 \mathrm{~m}$
Weir Clarifier
2548.55
nvert of V notch $=2548.75$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=1 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$
Clarifier Enter Pipe
2548.84

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=1 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$

Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.02 \mathrm{~m}$
Total loss $=0.03 \mathrm{~m}$

Distribution Box Gate

2548.85

Opening type $=$ rectangular gate
Opening diameter/width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate(s) $=1 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.22 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2548.84$
Upstream water level $=2548.85$

Box 1 Weir

2549.32

Weir invert (top of weir) $=2549$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=1 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.32 \mathrm{~m}$
Enter Pipe BOX 1
2549.37

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=110.9 \mathrm{~m}$
Flow $=4 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$

Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor $=1$
Velocity $=0.64 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

General Box Gate

2549.38

Opening type $=$ rectangular gate
Opening diameter/width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2544$
Number of gates $=1$
Flow through gate $(\mathrm{s})=4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.22 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2549.37$
Upstream water level $=2549.38$

General box 1 Weir

2550.26

Weir invert (top of weir) $=2549.76$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.843$
Flow over weir $=4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.5 \mathrm{~m}$
R Mix to Clarifiers Pipe
2550.33

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=150.43 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$

Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.06 \mathrm{~m}$
0

RM Exit Channel

2550.33

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2549$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=42.58 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=1.33 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.33 \mathrm{~m}$
Velocity $=0.38 \mathrm{~m} / \mathrm{s}$

RM Exit Gate

2550.33

Opening type = circular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=4$
Flow through gate(s) $=4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.08 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2550.33$
Upstream water level $=2550.33$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=4 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=42.67 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=5.33 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.34 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$

RM Enter Gate

2550.63

Opening type = circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2550$
Number of gates $=4$
Flow through gate $(\mathrm{s})=4 \mathrm{cms}$
Total area of opening(s) $=3.38 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=1.18 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ weir control
Units on-line $=4$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.63 \mathrm{~m}$
Downstream water level $=2550.33$
Upstream water level $=2550.63$

RM Enter Channel

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2548$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=84.1 \mathrm{~m}^{2}$

Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.295 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=2.63 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.63 \mathrm{~m}$
Velocity $=0.19 \mathrm{~m} / \mathrm{s}$

Grit Channel to RM Pipe
 2550.67

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.65 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.04 \mathrm{~m}$
0
Junction Tank Grit Channel 2550.67
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width $/$ diameter $=45.2 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2549$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=75.5 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.148 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=1.67 \mathrm{~m}$

Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.67 \mathrm{~m}$
Velocity $=0.11 \mathrm{~m} / \mathrm{s}$

Grit Weir

Weir invert (top of weir) = 2551.11
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir ' C ' coefficient $=1.931$
Flow over weir $=1.6 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=10$
Total flow, all units $=16 \mathrm{cms}$
Head over weir $=0.17 \mathrm{~m}$
Grit Channel 2551.28
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=40.5 \mathrm{~m}$
Channel width/diameter $=6 \mathrm{~m}$
Flow $=1.14 \mathrm{cms}$
Downstream channel invert $=2548.59$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=16.13 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.155 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=2.69 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.69 \mathrm{~m}$
Velocity $=0.07 \mathrm{~m} / \mathrm{s}$
Screening Exit Channel Gate 2551.34
Opening type $=$ rectangular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=1$
Flow through gate $(\mathrm{s})=2.67 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.67 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=6$
Total flow, all units $=16 \mathrm{cms}$

Gate loss $=0.06 \mathrm{~m}$
Downstream water level $=2551.28$
Upstream water level $=2551.34$

Screen Channel 1-2
2551.34

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=2.67 \mathrm{cms}$
Downstream channel invert $=2549.28$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=5.15 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.488 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=2.06 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.06 \mathrm{~m}$
Velocity $=0.52 \mathrm{~m} / \mathrm{s}$

Fine Screen

2551.57

Rack invert $=2550.3$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=2.67 \mathrm{cms}$
Bar width $=6 \mathrm{~mm}$
Bar spacing $=6 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=1.3 \mathrm{~m}^{2}$
Downstream depth $=1.04 \mathrm{~m}$
Velocity in channel $=1.02 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=2.05 \mathrm{~m} / \mathrm{s}$
Units on-line $=6$
Total flow, all units $=16 \mathrm{cms}$
Rack head loss $=0.23 \mathrm{~m}$
Screen Channel 2-3
2551.59

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width $/$ diameter $=2.5 \mathrm{~m}$
Flow $=2.67 \mathrm{cms}$
Downstream channel invert $=2550.9$

Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=1.69 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.488 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=0.67 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=0.69 \mathrm{~m}$
Velocity $=1.59 \mathrm{~m} / \mathrm{s}$
Medium Screen
2551.62

Rack invert $=2550$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=2.67 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$
Bar spacing $=25 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=2.81 \mathrm{~m}^{2}$
Downstream depth $=1.59 \mathrm{~m}$
Velocity in channel $=0.67 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=0.95 \mathrm{~m} / \mathrm{s}$
Units on-line $=6$
Total flow, all units $=16 \mathrm{cms}$
Rack head loss $=0.03 \mathrm{~m}$
Screen Channel 3-4 2551.63
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=2.67 \mathrm{cms}$
Downstream channel invert $=2550.9$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=1.81 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.488 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=0.72 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=0.73 \mathrm{~m}$

Velocity $=1.49 \mathrm{~m} / \mathrm{s}$
Screening Enter Channel Gate
2551.69

Opening type $=$ rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate $(\mathrm{s})=2.67 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.67 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=6$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.06 \mathrm{~m}$
Downstream water level $=2551.63$
Upstream water level $=2551.69$
Screening Distribution Channel
2551.69

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=162.95 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.155 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=3.89 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=3.89 \mathrm{~m}$
Velocity $=0.05 \mathrm{~m} / \mathrm{s}$
Initial Pipe
2551.72

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$

Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=0.57 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.03 \mathrm{~m}$
Total loss $=0.03 \mathrm{~m}$
0

Initial Gate

Opening type $=$ rectangular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=1$
Flow through gate $(\mathrm{s})=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=20 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.4 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=2$
Total flow, all units $=16 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2551.72$
Upstream water level $=2551.74$

Inicial Junction Tank

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=143.54 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.347 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=16 \mathrm{cms}$
Depth downstream $=5.74 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.74 \mathrm{~m}$
Velocity $=0.11 \mathrm{~m} / \mathrm{s}$

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
21.6 cms	9.18 cms	-----	-----

Section Description
Water Surface Elevation
Secondary Clarifier Exit Pipe
2542.24

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=117 \mathrm{~m}$
Flow $=1.35 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.09 \mathrm{~m}$

2 Clarifier Orifice

2542.32

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2540$
Number of openings $=1$
Flow through opening $(\mathrm{s})=1.35 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.76 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Orifice loss $=0.08 \mathrm{~m}$
Downstream water level $=2542.24$
Upstream water level $=2542.32$

Launder invert $=2542$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.68 \mathrm{cms}$
Critical depth $=0.27 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=21.6 \mathrm{cms}$
Downstream depth $=0.32 \mathrm{~m}$
Upstream depth $=0.27 \mathrm{~m}$
Weir 2 Clarifier
2543.01

Invert of V notch $=2542.95$
Angle of V notch $=90$ degrees
Number of notches $=911$
Total flow over weir $=1.35 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Head over weir $=0.06 \mathrm{~m}$

2 Clarifier Enter Pipe

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=1.92 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.09 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=30.8 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.09 \mathrm{~m}$
Total loss $=0.13 \mathrm{~m}$

Gate Clarifier Distribution Box

Opening type $=$ rectangular gate
Opening diameter/width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2541$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.92 \mathrm{cms}$

Total area of opening $(\mathrm{s})=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.32 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=30.8 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2543.14$
Upstream water level $=2543.15$

Box 2 Weir

Weir invert (top of weir) $=2543.28$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient = 1.807
Flow over weir $=1.92 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=30.8 \mathrm{cms}$
Head over weir $=0.5 \mathrm{~m}$
Enter Pipe BOX 2
2543.89

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=120.4 \mathrm{~m}$
Flow $=7.7 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor $=1$
Solids factor $=1$
Velocity $=1.03 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=30.8 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.08 \mathrm{~m}$
Total loss $=0.12 \mathrm{~m}$
0

General Box 2 Gate

Opening type $=$ rectangular gate
Opening diameter/width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$

Flow through gate(s) $=5.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.26 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2543.89$
Upstream water level $=2543.9$
General box 2 Weir
2544.8

Weir invert (top of weir) $=2544.13$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=7.7 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=30.8 \mathrm{cms}$
Head over weir $=0.67 \mathrm{~m}$

Aeration Exit pipe

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=971 \mathrm{~m}$
Flow $=26.19 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor = 1
Solids factor $=1$
Velocity $=1.25 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=26.2 \mathrm{cms}$
Friction loss $=0.22 \mathrm{~m}$
Fitting loss $=0.12 \mathrm{~m}$
Total loss $=0.34 \mathrm{~m}$
0

Aeration Exit Channel

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$

Flow $=5.13 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=19.36 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.62 \mathrm{~m}$
Critical depth $=0.552 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=30.8 \mathrm{cms}$
Depth downstream $=5.15 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.53 \mathrm{~m}$
Velocity $=0.25 \mathrm{~m} / \mathrm{s}$
AB Tank Weir2545.72
Weir invert (top of weir) $=2545.64$
Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir 'C' coefficient $=1.782$
Flow over weir $=1.28 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=30.7 \mathrm{cms}$
Head over weir $=0.08 \mathrm{~m}$
Aeration Basin 2545.72
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=1.28 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=73.91 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.112 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=30.8 \mathrm{cms}$
Depth downstream $=6.72 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.72 \mathrm{~m}$
Velocity $=0.02 \mathrm{~m} / \mathrm{s}$

Opening type $=$ rectangular gate
Opening diameter $/$ width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2543
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.28 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.11 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
Total flow, all units $=30.8 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2545.72$
Upstream water level $=2545.72$

AB Distribution Pipe

2545.9

Pipe shape $=$ Circular
Diameter $=1200 \mathrm{~mm}$
Length $=77 \mathrm{~m}$
Flow $=1.28 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.131 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.3$
Age factor = 1
Solids factor $=1$
Velocity $=1.13 \mathrm{~m} / \mathrm{s}$
Units on-line $=24$
Total flow, all units $=30.8 \mathrm{cms}$
Friction loss $=0.08 \mathrm{~m}$
Fitting loss $=0.1 \mathrm{~m}$
Total loss $=0.18 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0

AB Distribution Box Gate

Opening type $=$ rectangular gate
Opening diameter/width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert = 2543
Number of gates = 1
Flow through gate $(\mathrm{s})=1.28 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.2 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control Units on-line $=24$

Total flow, all units $=30.8 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2545.9$
Upstream water level $=2545.91$

AB Distribution Box Weir

2546.47

Weir invert (top of weir) $=2546.09$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.815$
Flow over weir $=1.28 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=30.7 \mathrm{cms}$
Head over weir $=0.38 \mathrm{~m}$
Aeration Enter Pipe
2546.59

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=7.2 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor $=1$
Solids factor $=1$
Velocity $=0.82 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.07 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.13 \mathrm{~m}$
0

General aeration box Weir Gate
2546.66

Opening type $=$ rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate $(\mathrm{s})=7.2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.72 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control

Units on-line $=3$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0.07 \mathrm{~m}$
Downstream water level $=2546.59$
Upstream water level $=2546.66$

General Aeration Box Weir
 2547.64

Weir invert (top of weir) $=2547$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.846$
Flow over weir $=7.2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=21.6 \mathrm{cms}$
Head over weir $=0.64 \mathrm{~m}$
Clarifier Junction Exit Pipe
2547.81

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=652 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.88 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.1 \mathrm{~m}$
Fitting loss $=0.07 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0
Clarifier Exit Pipe
2547.9

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=105.4 \mathrm{~m}$
Flow $=1.35 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$

Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.09 \mathrm{~m}$

Clarifier Orifice

2547.98

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2546$
Number of openings $=1$
Flow through opening $(\mathrm{s})=1.35 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=0.76 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Orifice loss $=0.08 \mathrm{~m}$
Downstream water level $=2547.9$
Upstream water level $=2547.98$
Clarifier Launder
2548.6

Launder invert $=2548$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=0.68 \mathrm{cms}$
Critical depth $=0.27 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=21.6 \mathrm{cms}$
Downstream depth $=0.27 \mathrm{~m}$
Upstream depth $=0.27 \mathrm{~m}$
Weir Clarifier
2548.82

Invert of V notch $=2548.75$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=1.35 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Head over weir $=0.07 \mathrm{~m}$

Clarifier Enter Pipe
 2548.88

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=1.35 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=0.76 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.04 \mathrm{~m}$
Total loss $=0.06 \mathrm{~m}$

Distribution Box Gate

2548.89

Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.35 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4.5 \mathrm{~m}^{2}$
Velocity through gate(s) $=0.3 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2548.88$
Upstream water level $=2548.89$
Box 1 Weir
2549.39

Weir invert (top of weir) $=2549$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=1.35 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=21.6 \mathrm{cms}$
Head over weir $=0.39 \mathrm{~m}$

Enter Pipe BOX 1

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=110.9 \mathrm{~m}$
Flow $=5.4 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.625$
Age factor = 1
Solids factor $=1$
Velocity $=0.86 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.03 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.09 \mathrm{~m}$
0

General Box Gate

2549.49

Opening type $=$ rectangular gate
Opening diameter $/$ width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2544$
Number of gates $=1$
Flow through gate $(\mathrm{s})=5.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.3 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2549.48$
Upstream water level = 2549.49
General box 1 Weir
2550.37

Weir invert (top of weir) $=2549.76$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.843$
Flow over weir $=5.4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Head over weir $=0.61 \mathrm{~m}$R Mix to Clarifiers Pipe2550.49Pipe shape $=$ RectangularHeight $=3500 \mathrm{~mm}$Width $=3000 \mathrm{~mm}$Length $=150.43 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$
Friction method = Manning's EquationFriction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$Age factor $=1$Solids factor $=1$Velocity $=1.03 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.08 \mathrm{~m}$
Total loss $=0.12 \mathrm{~m}$
0
RM Exit Channel2550.49Channel shape $=$ RectangularManning's ' n ' $=0.013$Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=21.6 \mathrm{cms}$
Downstream channel invert $=2549$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=47.7 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=1.49 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.49 \mathrm{~m}$
Velocity $=0.45 \mathrm{~m} / \mathrm{s}$
RM Exit Gate2550.49Opening type = circular gateOpening diameter/width $=4000 \mathrm{~mm}$Gate height $=4000 \mathrm{~mm}$
Invert $=2547$

Number of gates $=4$
Flow through gate $(\mathrm{s})=5.4 \mathrm{cms}$
Total area of opening(s) $=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.11 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2550.49$
Upstream water level $=2550.49$
2550.5

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=5.4 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=43.95 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=5.49 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.5 \mathrm{~m}$
Velocity $=0.12 \mathrm{~m} / \mathrm{s}$
RM Enter Gate
2550.74

Opening type $=$ circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2550$
Number of gates $=4$
Flow through gate $(\mathrm{s})=5.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4.22 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=1.28 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ weir control
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0.74 \mathrm{~m}$
Downstream water level $=2550.5$
Upstream water level $=2550.74$
RM Enter Channel2550.74
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=21.6 \mathrm{cms}$
Downstream channel invert $=2548$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=87.68 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=2.74 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.74 \mathrm{~m}$
Velocity $=0.25 \mathrm{~m} / \mathrm{s}$
Grit Channel to RM Pipe
2550.82
Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=0.88 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.07 \mathrm{~m}$
Total loss $=0.08 \mathrm{~m}$
0
Junction Tank Grit Channel
2550.82
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width/diameter $=45.2 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$

Downstream channel invert $=2549$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=82.29 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.18 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=1.82 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.82 \mathrm{~m}$
Velocity $=0.13 \mathrm{~m} / \mathrm{s}$

Grit Weir

2551.32

Weir invert (top of weir) $=2551.11$
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir 'C' coefficient $=1.931$
Flow over weir $=2.16 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=10$
Total flow, all units $=21.6 \mathrm{cms}$
Head over weir $=0.21 \mathrm{~m}$
Grit Channel
2551.32

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=40.5 \mathrm{~m}$
Channel width/diameter $=6 \mathrm{~m}$
Flow $=1.54 \mathrm{cms}$
Downstream channel invert $=2548.59$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=16.36 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.189 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=2.73 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.73 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$
Screening Exit Channel Gate 2551.4

Opening type $=$ rectangular gate

Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=1$
Flow through gate $(\mathrm{s})=3.09 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.77 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=7$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0.08 \mathrm{~m}$
Downstream water level $=2551.32$
Upstream water level $=2551.4$
Screen Channel 1-2
2551.4

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=3.09 \mathrm{cms}$
Downstream channel invert $=2549.28$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=5.29 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.538 \mathrm{~m}$
Units on-line $=7$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=2.12 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.12 \mathrm{~m}$
Velocity $=0.58 \mathrm{~m} / \mathrm{s}$
Fine Screen
2551.68

Rack invert $=2550.3$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=3.09 \mathrm{cms}$
Bar width $=6 \mathrm{~mm}$
Bar spacing $=6 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=1.37 \mathrm{~m}^{2}$
Downstream depth $=1.1 \mathrm{~m}$
Velocity in channel $=1.12 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=2.25 \mathrm{~m} / \mathrm{s}$
Units on-line $=7$

Total flow, all units $=21.6 \mathrm{cms}$
Rack head loss $=0.28 \mathrm{~m}$
Screen Channel 2-3
2551.69

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=3.09 \mathrm{cms}$
Downstream channel invert $=2550.9$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=1.95 \mathrm{~m}^{2}$
Flow profile = Horizontal
Normal depth $=$ Infinite
Critical depth $=0.538 \mathrm{~m}$
Units on-line $=7$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=0.78 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=0.79 \mathrm{~m}$
Velocity $=1.59 \mathrm{~m} / \mathrm{s}$
Medium Screen 2551.73
Rack invert $=2550$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=3.09 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$
Bar spacing $=25 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=2.99 \mathrm{~m}^{2}$
Downstream depth $=1.69 \mathrm{~m}$
Velocity in channel $=0.73 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=1.03 \mathrm{~m} / \mathrm{s}$
Units on-line $=7$
Total flow, all units $=21.6 \mathrm{cms}$
Rack head loss $=0.04 \mathrm{~m}$
Screen Channel 3-4
2551.74

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=3.09 \mathrm{cms}$
Downstream channel invert $=2550.9$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$

Channel side slope $=$ not applicable
Area of flow $=2.08 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.538 \mathrm{~m}$
Units on-line $=7$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=0.83 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=0.84 \mathrm{~m}$
Velocity $=1.49 \mathrm{~m} / \mathrm{s}$
Screening Enter Channel Gate
2551.82

Opening type $=$ rectangular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate $(\mathrm{s})=3.09 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.77 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=7$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0.08 \mathrm{~m}$
Downstream water level $=2551.74$
Upstream water level $=2551.82$

Screening Distribution Channel 2551.82

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=168.27 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.19 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=4.02 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.02 \mathrm{~m}$
Velocity $=0.06 \mathrm{~m} / \mathrm{s}$
Initial Pipe 2551.87

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=0.77 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0 \mathrm{~m}$
Fitting loss $=0.05 \mathrm{~m}$
Total loss $=0.05 \mathrm{~m}$
0

Initial Gate

2551.91

Opening type $=$ rectangular gate
Opening diameter $/$ width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=1$
Flow through gate(s) $=10.8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=20 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.54 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0.04 \mathrm{~m}$
Downstream water level $=2551.87$
Upstream water level $=2551.91$
Inicial Junction Tank
2551.91

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=21.6 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable

Area of flow $=147.73 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.424 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=5.91 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.91 \mathrm{~m}$
Velocity $=0.15 \mathrm{~m} / \mathrm{s}$
Starting water surface elevation 2541.14
Exit Pipe
2541.26

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=343 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor $=1$
Solids factor $=1$
Velocity $=0.9 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.06 \mathrm{~m}$
Total loss $=0.12 \mathrm{~m}$
0

Chlorination Exit Tank 2541.26
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width $/$ diameter $=154.5 \mathrm{~m}$
Flow $=21.6 \mathrm{cms}$
Downstream channel invert $=2538.67$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=400.09 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.37 \mathrm{~m}$
Critical depth $=0.126 \mathrm{~m}$

Units on-line $=1$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=2.59 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.59 \mathrm{~m}$
Velocity $=0.05 \mathrm{~m} / \mathrm{s}$

Chlorination Tank Weir

2541.94

Weir invert (top of weir) $=2541.68$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir 'C' coefficient $=1.794$
Flow over weir $=5.4 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Head over weir $=0.26 \mathrm{~m}$
Chlorination Tank
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=5.4 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=23.36 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=1.02 \mathrm{~m}$
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=2.94 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.9 \mathrm{~m}$
Velocity $=0.23 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate 2541.94
Opening type $=$ rectangular gate
Opening diameter/width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate $(\mathrm{s})=5.4 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.17 \mathrm{~m} / \mathrm{s}$
2541.94

Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=21.6 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2541.94$
Upstream water level $=2541.94$

Chlorination Enter Tank

2541.95

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=21.6 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=270.9 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.178 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=21.6 \mathrm{cms}$
Depth downstream $=2.94 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.95 \mathrm{~m}$
Velocity $=0.08 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
2542.15

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=522 \mathrm{~m}$
Flow $=10.8 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=1.03 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=21.6 \mathrm{cms}$
Friction loss $=0.12 \mathrm{~m}$
Fitting loss $=0.08 \mathrm{~m}$
Total loss $=0.2 \mathrm{~m}$
0

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
32 cms	9.18 cms	-----	----

Section Description

Water Surface Elevation
Starting water surface elevation
Exit Pipe
2541.41
2541.67

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=343 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=12 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.857$
Age factor $=1$
Solids factor $=1$
Velocity $=1.33 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.13 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.26 \mathrm{~m}$
0
Chlorination Exit Tank
2541.67

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=154.5 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2538.67$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=463.42 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.46 \mathrm{~m}$
Critical depth $=0.164 \mathrm{~m}$

Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=3 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=3 \mathrm{~m}$
Velocity $=0.07 \mathrm{~m} / \mathrm{s}$

Chlorination Tank Weir

2542.01

Weir invert (top of weir) $=2541.68$
Weir length $=23 \mathrm{~m}$
Weir height $=5.1 \mathrm{~m}$
Weir 'C' coefficient $=1.794$
Flow over weir $=8 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.33 \mathrm{~m}$
Chlorination Tank
2542.02

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=356.5 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0.0001 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=23.99 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=1.32 \mathrm{~m}$
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=3.01 \mathrm{~m}$
Bend loss $=0.01 \mathrm{~m}$
Depth upstream $=2.99 \mathrm{~m}$
Velocity $=0.33 \mathrm{~m} / \mathrm{s}$
Chlorination Tank - Enter Gate
2542.03

Opening type $=$ rectangular gate
Opening diameter/width $=8000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2540$
Number of gates $=1$
Flow through gate $(\mathrm{s})=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=32 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.25 \mathrm{~m} / \mathrm{s}$

Flow behavior = orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2542.02$
Upstream water level $=2542.03$
Chlorination Enter Tank
2542.03

Channel shape $=$ Rectangular
Manning's 'n' = 0.013
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=92 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=278.92 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.231 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=3.03 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=3.03 \mathrm{~m}$
Velocity $=0.11 \mathrm{~m} / \mathrm{s}$
Secondary Clarifier - Chlorination Pipe
2542.48

Pipe shape $=$ Rectangular
Height $=3000 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=522 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=1.52 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.27 \mathrm{~m}$
Fitting loss $=0.18 \mathrm{~m}$
Total loss $=0.45 \mathrm{~m}$
0

Secondary Clarifier Exit Pipe
2542.68

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=117 \mathrm{~m}$
Flow $=2 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.63$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.13 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.09 \mathrm{~m}$
Fitting loss $=0.11 \mathrm{~m}$
Total loss $=0.2 \mathrm{~m}$

2 Clarifier Orifice
 2542.86

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2540$
Number of openings $=1$
Flow through opening(s) $=2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=1.13 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Orifice loss $=0.18 \mathrm{~m}$
Downstream water level $=2542.68$
Upstream water level $=2542.86$
Launder Channel 2 C
2542.93

Launder invert $=2542$
Launder length $=91 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=1 \mathrm{cms}$
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=32 \mathrm{cms}$
Downstream depth $=0.86 \mathrm{~m}$
Upstream depth $=0.57 \mathrm{~m}$

Weir 2 Clarifier
Invert of V notch $=2542.95$
Angle of V notch $=90$ degrees
Number of notches $=911$
Total flow over weir $=2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.08 \mathrm{~m}$
2 Clarifier Enter Pipe
2543.25

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=48.8 \mathrm{~m}$
Flow $=2.57 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.46 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=41.2 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.16 \mathrm{~m}$
Total loss $=0.23 \mathrm{~m}$
Gate Clarifier Distribution Box
2543.27

Opening type $=$ rectangular gate
Opening diameter $/$ width $=1500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2541
Number of gates $=1$
Flow through gate $(\mathrm{s})=2.57 \mathrm{cms}$
Total area of opening $(\mathrm{s})=6 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.43 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=41.2 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2543.25$
Upstream water level $=2543.27$

Weir invert (top of weir) $=2543.28$
Weir length $=3.05 \mathrm{~m}$
Weir height $=5.04 \mathrm{~m}$
Weir 'C' coefficient = 1.807
Flow over weir $=2.57 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=41.2 \mathrm{cms}$
Head over weir $=0.6 \mathrm{~m}$

Enter Pipe BOX 2
 2544.09

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=120.4 \mathrm{~m}$
Flow $=10.3 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=7.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.682$
Age factor $=1$
Solids factor $=1$
Velocity $=1.37 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=41.2 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.21 \mathrm{~m}$
0

General Box 2 Gate

2544.11

Opening type $=$ rectangular gate
Opening diameter $/$ width $=7000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2542$
Number of gates $=1$
Flow through gate $(\mathrm{s})=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=21 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.38 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.02 \mathrm{~m}$
Downstream water level $=2544.09$
Upstream water level $=2544.11$

General box 2 Weir
Weir invert (top of weir) $=2544.13$
Weir length $=7.62 \mathrm{~m}$
Weir height $=4 \mathrm{~m}$
Weir 'C' coefficient $=1.828$
Flow over weir $=10.3 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=41.2 \mathrm{cms}$
Head over weir $=0.82 \mathrm{~m}$
Aeration Exit pipe 2545.62
Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=6000 \mathrm{~mm}$
Length $=971 \mathrm{~m}$
Flow $=36.59 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=21 \mathrm{~m}^{2}$
Pipe hydraulic radius $=1.105$
Age factor $=1$
Solids factor $=1$
Velocity $=1.74 \mathrm{~m} / \mathrm{s}$
Units on-line $=1$
Total flow, all units $=36.6 \mathrm{cms}$
Friction loss $=0.44 \mathrm{~m}$
Fitting loss $=0.23 \mathrm{~m}$
Total loss $=0.67 \mathrm{~m}$
0
Aeration Exit Channel 2545.62
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=309.5 \mathrm{~m}$
Channel width/diameter $=4 \mathrm{~m}$
Flow $=6.86 \mathrm{cms}$
Downstream channel invert $=2540$
Channel slope $=0.002 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=21.25 \mathrm{~m}^{2}$
Flow profile $=$ Mild
Normal depth $=0.75 \mathrm{~m}$
Critical depth $=0.67 \mathrm{~m}$
Units on-line $=6$
Total flow, all units $=41.2 \mathrm{cms}$

Depth downstream $=5.62 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5 \mathrm{~m}$
Velocity $=0.31 \mathrm{~m} / \mathrm{s}$
AB Tank Weir
2545.74

Weir invert (top of weir) $=2545.64$
Weir length $=32.6 \mathrm{~m}$
Weir height $=6.5 \mathrm{~m}$
Weir 'C' coefficient = 1.782
Flow over weir $=1.71 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=41.1 \mathrm{cms}$
Head over weir $=0.1 \mathrm{~m}$
Aeration Basin
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=686 \mathrm{~m}$
Channel width/diameter $=11 \mathrm{~m}$
Flow $=1.71 \mathrm{cms}$
Downstream channel invert $=2539$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=74.09 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.136 \mathrm{~m}$
Units on-line $=24$
Total flow, all units $=41.1 \mathrm{cms}$
Depth downstream $=6.74 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.74 \mathrm{~m}$
Velocity $=0.02 \mathrm{~m} / \mathrm{s}$

Aeration Enter Gate

2545.74

Opening type $=$ rectangular gate
Opening diameter/width $=3000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.71 \mathrm{cms}$
Total area of opening $(\mathrm{s})=12 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.14 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$

Total flow, all units $=41.2 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2545.74$
Upstream water level $=2545.74$

```
AB Distribution Pipe
                                    2546.06
    Pipe shape = Circular
    Diameter = 1200 mm
    Length = 77 m
    Flow = 1.71 cms
    Friction method = Manning's Equation
    Friction factor = 0.013
    Total fitting K value = 1.5
    Pipe area = 1.131 m
    Pipe hydraulic radius }=0.
    Age factor = 1
    Solids factor = 1
    Velocity = 1.52 m/s
    Units on-line = 24
    Total flow, all units = 41.1 cms
    Friction loss = 0.15 m
    Fitting loss = 0.18 m
    Total loss = 0.32 m
    Total loss = 0.17 m
    0
```

AB Distribution Box Gate 2546.07
Opening type $=$ rectangular gate
Opening diameter $/$ width $=1300 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2543$
Number of gates $=1$
Flow through gate $(\mathrm{s})=1.71 \mathrm{cms}$
Total area of opening(s) $=6.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.26 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=24$
Total flow, all units $=41.2 \mathrm{cms}$
Gate loss $=0.01 \mathrm{~m}$
Downstream water level $=2546.06$
Upstream water level $=2546.07$

```
AB Distribution Box Weir
2546.55
Weir invert (top of weir) \(=2546.09\)
Weir length \(=3.05 \mathrm{~m}\)
Weir height \(=3 \mathrm{~m}\)
Weir 'C' coefficient \(=1.815\)
```

Flow over weir $=1.71 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=24$
Total flow, all units $=41.1 \mathrm{cms}$
Head over weir $=0.46 \mathrm{~m}$

Aeration Enter Pipe

2546.83

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=375 \mathrm{~m}$
Flow $=10.67 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=8.75 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.729$
Age factor $=1$
Solids factor $=1$
Velocity $=1.22 \mathrm{~m} / \mathrm{s}$
Units on-line $=3$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.14 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.28 \mathrm{~m}$
0

General aeration box Weir Gate

2546.98

Opening type $=$ rectangular gate
Opening diameter/width $=2500 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate $(\mathrm{s})=10.67 \mathrm{cms}$
Total area of opening $(\mathrm{s})=10 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=1.07 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=3$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.15 \mathrm{~m}$
Downstream water level $=2546.83$
Upstream water level $=2546.98$
General Aeration Box Weir
2547.83

Weir invert (top of weir) $=2547$
Weir length $=7.62 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$

Weir 'C' coefficient $=1.846$
Flow over weir $=10.67 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=3$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.83 \mathrm{~m}$

Clarifier Junction Exit Pipe

2548.21

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=652 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=1.31 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.22 \mathrm{~m}$
Fitting loss $=0.16 \mathrm{~m}$
Total loss $=0.38 \mathrm{~m}$
0

Clarifier Exit Pipe

2548.41

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=105.4 \mathrm{~m}$
Flow $=2 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=1.767 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.13 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.08 \mathrm{~m}$
Fitting loss $=0.12 \mathrm{~m}$
Total loss $=0.2 \mathrm{~m}$

Clarifier Orifice

Opening type $=$ circular orifice
Opening diameter/width $=1500 \mathrm{~mm}$
Opening height $=$ not applicable
Invert $=2546$
Number of openings $=1$
Flow through opening $(\mathrm{s})=2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=1.77 \mathrm{~m}^{2}$
Velocity through opening $(\mathrm{s})=1.13 \mathrm{~m} / \mathrm{s}$
Flow behavior = orifice, downstream control
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Orifice loss $=0.18 \mathrm{~m}$
Downstream water level $=2548.41$
Upstream water level $=2548.59$
Clarifier Launder
Launder invert $=2548$
Launder length $=81.7 \mathrm{~m}$
Launder width $=1.5 \mathrm{~m}$
Launder slope $=0.004 \mathrm{~m} / \mathrm{m}$
Flow through launder $=1 \mathrm{cms}$
Critical depth $=0.36 \mathrm{~m}$
Units on-line $=32$
Total flow, all units $=32 \mathrm{cms}$
Downstream depth $=0.59 \mathrm{~m}$
Upstream depth $=0.4 \mathrm{~m}$
Weir Clarifier
2548.73

Invert of V notch $=2548.75$
Angle of V notch $=90$ degrees
Number of notches $=864$
Total flow over weir $=2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.08 \mathrm{~m}$
Clarifier Enter Pipe
2548.96

Pipe shape $=$ Circular
Diameter $=1500 \mathrm{~mm}$
Length $=45 \mathrm{~m}$
Flow $=2 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$
Pipe area $=1.767 \mathrm{~m}^{2}$

Pipe hydraulic radius $=0.375$
Age factor $=1$
Solids factor $=1$
Velocity $=1.13 \mathrm{~m} / \mathrm{s}$
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.04 \mathrm{~m}$
Fitting loss $=0.1 \mathrm{~m}$
Total loss $=0.13 \mathrm{~m}$

Distribution Box Gate

2548.99

Opening type $=$ rectangular gate
Opening diameter/width $=1500 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2545$
Number of gates $=1$
Flow through gate $(\mathrm{s})=2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4.5 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.44 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.03 \mathrm{~m}$
Downstream water level $=2548.96$
Upstream water level = 2548.99

Box 1 Weir

2549.51

Weir invert (top of weir) $=2549$
Weir length $=3.05 \mathrm{~m}$
Weir height $=3.5 \mathrm{~m}$
Weir 'C' coefficient $=1.813$
Flow over weir $=2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=16$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.51 \mathrm{~m}$
Enter Pipe BOX 1
2549.71

Pipe shape $=$ Rectangular
Height $=2500 \mathrm{~mm}$
Width $=2500 \mathrm{~mm}$
Length $=110.9 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$
Pipe area $=6.25 \mathrm{~m}^{2}$

Pipe hydraulic radius $=0.625$
Age factor $=1$
Solids factor $=1$
Velocity $=1.28 \mathrm{~m} / \mathrm{s}$
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.06 \mathrm{~m}$
Fitting loss $=0.14 \mathrm{~m}$
Total loss $=0.2 \mathrm{~m}$
0

General Box Gate

2549.74

Opening type $=$ rectangular gate
Opening diameter/width $=6000 \mathrm{~mm}$
Gate height $=3000 \mathrm{~mm}$
Invert $=2544$
Number of gates $=1$
Flow through gate $(\mathrm{s})=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=18 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.44 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.03 \mathrm{~m}$
Downstream water level $=2549.71$
Upstream water level $=2549.74$

General box 1 Weir

2550.56

Weir invert (top of weir) $=2549.76$
Weir length $=6.1 \mathrm{~m}$
Weir height $=3 \mathrm{~m}$
Weir 'C' coefficient $=1.843$
Flow over weir $=8 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.8 \mathrm{~m}$
R Mix to Clarifiers Pipe
2550.81

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3000 \mathrm{~mm}$
Length $=150.43 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.5$

Pipe area $=10.5 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.808$
Age factor $=1$
Solids factor $=1$
Velocity $=1.52 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.08 \mathrm{~m}$
Fitting loss $=0.18 \mathrm{~m}$
Total loss $=0.26 \mathrm{~m}$
0

RM Exit Channel

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2549$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=57.94 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=1.81 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=1.81 \mathrm{~m}$
Velocity $=0.55 \mathrm{~m} / \mathrm{s}$

RM Exit Gate

2550.82

Opening type = circular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=4000 \mathrm{~mm}$
Invert = 2547
Number of gates $=4$
Flow through gate $(\mathrm{s})=8 \mathrm{cms}$
Total area of opening $(\mathrm{s})=50.27 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.16 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0 \mathrm{~m}$
Downstream water level $=2550.81$
Upstream water level $=2550.82$

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=9 \mathrm{~m}$
Channel width/diameter $=8 \mathrm{~m}$
Flow $=8 \mathrm{cms}$
Downstream channel invert $=2545$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=46.53 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=5.82 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=5.82 \mathrm{~m}$
Velocity $=0.17 \mathrm{~m} / \mathrm{s}$

RM Enter Gate

2550.92

Opening type $=$ circular gate
Opening diameter/width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2550$
Number of gates $=4$
Flow through gate $(\mathrm{s})=8 \mathrm{cms}$
Total area of opening(s) $=5.62 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=1.42 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ weir control
Units on-line $=4$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.92 \mathrm{~m}$
Downstream water level $=2550.82$
Upstream water level $=2550.92$

RM Enter Channel

2550.92

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=8 \mathrm{~m}$
Channel width/diameter $=32 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2548$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=93.34 \mathrm{~m}^{2}$

Flow profile $=$ Horizontal
Normal depth $=$ Infinite
Critical depth $=0.467 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=2.92 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.92 \mathrm{~m}$
Velocity $=0.34 \mathrm{~m} / \mathrm{s}$

Grit Channel to RM Pipe
 2551.09

Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=3500 \mathrm{~mm}$
Length $=43.77 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method = Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.8$
Pipe area $=12.25 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.875$
Age factor $=1$
Solids factor $=1$
Velocity $=1.31 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.02 \mathrm{~m}$
Fitting loss $=0.16 \mathrm{~m}$
Total loss $=0.17 \mathrm{~m}$
0
Junction Tank Grit Channel 2551.09
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=4 \mathrm{~m}$
Channel width $/$ diameter $=45.2 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2549$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=94.49 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.234 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=2.09 \mathrm{~m}$

Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.09 \mathrm{~m}$
Velocity $=0.17 \mathrm{~m} / \mathrm{s}$

Grit Weir

Weir invert (top of weir) $=2551.11$
Weir length $=12 \mathrm{~m}$
Weir height $=0.43 \mathrm{~m}$
Weir ' C ' coefficient $=1.931$
Flow over weir $=3.2 \mathrm{cms}$
Weir submergence $=$ unsubmerged
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Head over weir $=0.27 \mathrm{~m}$

Grit Channel
 2551.38

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=40.5 \mathrm{~m}$
Channel width/diameter $=6 \mathrm{~m}$
Flow $=2.29 \mathrm{cms}$
Downstream channel invert $=2548.59$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=16.73 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.246 \mathrm{~m}$
Units on-line $=14$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=2.79 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.79 \mathrm{~m}$
Velocity $=0.14 \mathrm{~m} / \mathrm{s}$

Screening Exit Channel Gate

Opening type $=$ rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=1$
Flow through gate $(\mathrm{s})=3.2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.8 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$

Gate loss $=0.08 \mathrm{~m}$
Downstream water level $=2551.38$
Upstream water level $=2551.46$
Screen Channel 1-2
Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=5 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=3.2 \mathrm{cms}$
Downstream channel invert $=2549.28$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=5.46 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.551 \mathrm{~m}$
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=2.18 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=2.19 \mathrm{~m}$
Velocity $=0.59 \mathrm{~m} / \mathrm{s}$

Fine Screen

Rack invert $=2550.3$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=3.2 \mathrm{cms}$
Bar width $=6 \mathrm{~mm}$
Bar spacing $=6 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=1.46 \mathrm{~m}^{2}$
Downstream depth $=1.17 \mathrm{~m}$
Velocity in channel $=1.1 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=2.2 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Rack head loss $=0.26 \mathrm{~m}$
Screen Channel 2-3
2551.74

Channel shape $=$ Rectangular
Manning's 'n' $=0.013$
Channel length $=6 \mathrm{~m}$
Channel width $/$ diameter $=2.5 \mathrm{~m}$
Flow $=3.2 \mathrm{cms}$
Downstream channel invert $=2550.9$

Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=2.09 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.551 \mathrm{~m}$
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=0.83 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=0.84 \mathrm{~m}$
Velocity $=1.54 \mathrm{~m} / \mathrm{s}$
Medium Screen
2551.78

Rack invert $=2550$
Rack width $=2.5 \mathrm{~m}$
Channel width $=2.5 \mathrm{~m}$
Flow through rack $=3.2 \mathrm{cms}$
Bar width $=10 \mathrm{~mm}$
Bar spacing $=25 \mathrm{~mm}$
Percent blocked $=0 \%$
Net rack open area $=3.09 \mathrm{~m}^{2}$
Downstream depth $=1.74 \mathrm{~m}$
Velocity in channel $=0.74 \mathrm{~m} / \mathrm{s}$
Velocity through bars $=1.04 \mathrm{~m} / \mathrm{s}$
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Rack head loss $=0.04 \mathrm{~m}$
Screen Channel 3-4
2551.79

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=7 \mathrm{~m}$
Channel width/diameter $=2.5 \mathrm{~m}$
Flow $=3.2 \mathrm{cms}$
Downstream channel invert $=2550.9$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=2.21 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.551 \mathrm{~m}$
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=0.88 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=0.89 \mathrm{~m}$

Velocity $=1.46 \mathrm{~m} / \mathrm{s}$
Screening Enter Channel Gate
2551.87

Opening type $=$ rectangular gate
Opening diameter $/$ width $=2000 \mathrm{~mm}$
Gate height $=2000 \mathrm{~mm}$
Invert $=2548$
Number of gates $=1$
Flow through gate(s) $=3.2 \mathrm{cms}$
Total area of opening $(\mathrm{s})=4 \mathrm{~m}^{2}$
Velocity through gate $(\mathrm{s})=0.8 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=10$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.08 \mathrm{~m}$
Downstream water level $=2551.79$
Upstream water level $=2551.87$
Screening Distribution Channel
2551.88

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=14.55 \mathrm{~m}$
Channel width/diameter $=41.9 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Downstream channel invert $=2547.8$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=170.69 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.246 \mathrm{~m}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=4.07 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=4.08 \mathrm{~m}$
Velocity $=0.09 \mathrm{~m} / \mathrm{s}$
Initial Pipe
2552
Pipe shape $=$ Rectangular
Height $=3500 \mathrm{~mm}$
Width $=4000 \mathrm{~mm}$
Length $=28 \mathrm{~m}$
Flow $=16 \mathrm{cms}$
Friction method $=$ Manning's Equation
Friction factor $=0.013$
Total fitting K value $=1.7$

Pipe area $=14 \mathrm{~m}^{2}$
Pipe hydraulic radius $=0.933$
Age factor $=1$
Solids factor $=1$
Velocity $=1.14 \mathrm{~m} / \mathrm{s}$
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Friction loss $=0.01 \mathrm{~m}$
Fitting loss $=0.11 \mathrm{~m}$
Total loss $=0.12 \mathrm{~m}$
0

Initial Gate

2552.08

Opening type $=$ rectangular gate
Opening diameter/width $=4000 \mathrm{~mm}$
Gate height $=5000 \mathrm{~mm}$
Invert $=2547$
Number of gates $=1$
Flow through gate $(\mathrm{s})=16 \mathrm{cms}$
Total area of opening $(\mathrm{s})=20 \mathrm{~m}^{2}$
Velocity through gate(s) $=0.8 \mathrm{~m} / \mathrm{s}$
Flow behavior $=$ orifice, downstream control
Units on-line $=2$
Total flow, all units $=32 \mathrm{cms}$
Gate loss $=0.08 \mathrm{~m}$
Downstream water level $=2552$
Upstream water level $=2552.08$

Inicial Junction Tank

Channel shape $=$ Rectangular
Manning's ' n ' $=0.013$
Channel length $=13 \mathrm{~m}$
Channel width/diameter $=25 \mathrm{~m}$
Flow $=32 \mathrm{cms}$
Downstream channel invert $=2546$
Channel slope $=0 \mathrm{~m} / \mathrm{m}$
Channel side slope $=$ not applicable
Area of flow $=152.14 \mathrm{~m}^{2}$
Flow profile $=$ Horizontal
Normal depth = Infinite
Critical depth $=0.551 \mathrm{~m}$
Units on-line $=1$
Total flow, all units $=32 \mathrm{cms}$
Depth downstream $=6.08 \mathrm{~m}$
Bend loss $=0 \mathrm{~m}$
Depth upstream $=6.09 \mathrm{~m}$
Velocity $=0.21 \mathrm{~m} / \mathrm{s}$

