ANEXO 3. MODELACIÓN EN VISUAL HYDRAULICS. PERFIL HIDRÁULICO

- Anexo 3.1. Perfil hidráulico alternativa 1 Cota de inicio 2542.38
- Anexo 3.2. Perfil hidráulico alternativa 2 Cota de inicio 2542.38
- Anexo 3.3. Perfil hidráulico alternativa 1 Cota de inicio 2540.23
- **Anexo 3.4.** Perfil hidráulico alternativa 2 Cota de inicio 2540.23

Anexo 3.1.Perfil hidráulico alternativa 1 Cota de inicio 2542.38

HP CANOAS Cota 2542 - 38 - 22 nov Q16 - V9.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
$13.6~\mathrm{cms}$	$9.18~\mathrm{cms}$		

Section Description

Water Surface Elevation

Starting water surface elevation	2543.03
Exit Pipe Pipe shape = Rectangular Height = 3000 mm Width = 4000 mm Length = 343 m Flow = 6.8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 12 m^2 Pipe hydraulic radius = 0.857 Age factor = 1 Solids factor = 1 Velocity = 0.57 m/s Units on-line = 2 Total flow, all units = 13.6 cms Friction loss = 0.02 m Fitting loss = 0.02 m Total loss = 0.05 m 0	2543.08
Chlorination Exit Tank Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 8 m Channel width/diameter = 154.5 m Flow = 13.6 cms Downstream channel invert = 2540.45 Channel slope = 0.0001 m/m Channel side slope = not applicable Area of flow = 406.28 m ² Flow profile = Mild Normal depth = 0.28 m Critical depth = 0.093 m Units on-line = 1	2543.08

Water Surface Elevation

Section Description

Total flow, all units = 13.6 cms Depth downstream = 2.63 m Bend loss = 0 mDepth upstream = 2.63 m Velocity = 0.03 m/s

Chlorination Tank Weir

2544.02

Weir invert (top of weir) = 2543.83Weir length = 23 m Weir height = 5.1 mWeir 'C' coefficient = 1.794Flow over weir = 3.4 cms Weir submergence = unsubmerged Units on -line = 4Total flow, all units = 13.6 cms Head over weir = 0.19 m

Chlorination Tank

Channel shape = RectangularManning's n' = 0.013Channel length = 356.5 m Channel width/diameter = 8 mFlow = 3.4 cmsDownstream channel invert = 2540Channel slope = 0.0001 m/mChannel side slope = not applicable Area of flow = 32.01 m^2 Flow profile = Mild Normal depth = 0.76 m Critical depth = 0.264 m Units on -line = 4Total flow, all units = 13.6 cms Depth downstream = 4.02 m Bend loss = 0 mDepth upstream = 3.98 m Velocity = 0.11 m/s

Chlorination Tank - Enter Gate

Opening type = rectangular gate Opening diameter/width = 8000 mmGate height = 4000 mmInvert = 2540Number of gates = 1Flow through gate(s) = 3.4 cms Total area of opening(s) = 32 m^2 Velocity through gate(s) = 0.11 m/sFlow behavior = orifice, downstream control Units on -line = 4

2544.02

Total flow, all units = 13.6 cmsGate loss = 0 m Downstream water level = 2544.02Upstream water level = 2544.02

Chlorination Enter Tank

2544.02

Channel shape = RectangularManning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 13.6 cmsDownstream channel invert = 2540Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 369.89 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.131 m Units on -line = 1Total flow, all units = 13.6 cms Depth downstream = 4.02 m Bend loss = 0 mDepth upstream = 4.02 mVelocity = 0.04 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 522 mFlow = 6.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 0.65 m/sUnits on -line = 2Total flow, all units = 13.6 cms Friction loss = 0.05 m Fitting loss = 0.03 m Total loss = 0.08 m0

Secondary Clarifier Exit Pipe

Pipe shape = Circular

Diameter = 1500 mmLength = 117 mFlow = 0.85 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.48 m/sUnits on -line = 16Total flow, all units = 13.6 cms Friction loss = 0.02 m Fitting loss = 0.02 mTotal loss = 0.04 m

2 Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2540 Number of openings = 1 Flow through opening(s) = 0.85 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 0.48 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 13.6 cms Orifice loss = 0.03 m Downstream water level = 2544.14 Upstream water level = 2544.17

Launder Channel 2 C

Launder invert = 2543Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.43 cmsCritical depth = 0.2 mUnits on-line = 32Total flow, all units = 13.6 cmsDownstream depth = 1.17 mUpstream depth = 0.82 m

Weir 2 Clarifier

Invert of V notch = 2545.05 Angle of V notch = 90 degrees 2544.17

2544.18

Number of notches = 911Total flow over weir = 0.68 cms Weir submergence = unsubmerged Units on-line = 20Total flow, all units = 13.6 cms Head over weir = 0.05 m

2 Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 48.8 mFlow = 1.42 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.81 m/sUnits on -line = 16Total flow, all units = 22.8 cms Friction loss = 0.02 m Fitting loss = 0.05 mTotal loss = 0.07 m

Gate Clarifier Distribution Box

Opening type = rectangular gate Opening diameter/width = 1500 mm Gate height = 4000 mm Invert = 2541 Number of gates = 1 Flow through gate(s) = 1.42 cms Total area of opening(s) = 6 m² Velocity through gate(s) = 0.24 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 22.8 cms Gate loss = 0.01 m Downstream water level = 2545.17 Upstream water level = 2545.18

Box 2 Weir

Weir invert (top of weir) = 2545.53Weir length = 3.05 m Weir height = 5.04 m Weir 'C' coefficient = 1.807Flow over weir = 1.42 cms 2545.17

2545.18

Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 22.8 cms Head over weir = 0.41 m

Enter Pipe BOX 2

2546

Pipe shape = Rectangular Height = 2500 mmWidth = 3000 mmLength = 120.4 mFlow = 5.7 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 7.5 m^2 Pipe hydraulic radius = 0.682Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on -line = 4Total flow, all units = 22.8 cms Friction loss = 0.02 m Fitting loss = 0.04 mTotal loss = 0.06 m0

General Box 2 Gate

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 21 m^2 Velocity through gate(s) = 0.16 m/sFlow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 13.6 cmsGate loss = 0 mDownstream water level = 2546Upstream water level = 2546

General box 2 Weir

Weir invert (top of weir) = 2546.38 Weir length = 7.62 m Weir height = 4 m Weir 'C' coefficient = 1.828 Flow over weir = 5.7 cms 2546

Weir submergence = unsubmerged Units on-line = 4 Total flow, all units = 22.8 cms Head over weir = 0.55 m

Aeration Exit pipe

2547.1

Pipe shape = Rectangular Height = 3500 mmWidth = 6000 mmLength = 971 mFlow = 18.19 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 21 m^2 Pipe hydraulic radius = 1.105Age factor = 1Solids factor = 1Velocity = 0.87 m/sUnits on -line = 1Total flow, all units = 18.2 cms Friction loss = 0.11 m Fitting loss = 0.06 mTotal loss = 0.17 m0

Aeration Exit Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 309.5 m Channel width/diameter = 4 mFlow = 3.8 cmsDownstream channel invert = 2542Channel slope = 0.002 m/mChannel side slope = not applicableArea of flow = 19.16 m^2 Flow profile = Mild Normal depth = 0.51 mCritical depth = 0.452 m Units on -line = 6Total flow, all units = 22.8 cms Depth downstream = 5.1 mBend loss = 0 mDepth upstream = 4.48 mVelocity = 0.19 m/s

AB Tank Weir

Weir invert (top of weir) = 2547.9

Weir length = 32.6 mWeir height = 6.5 mWeir 'C' coefficient = 1.782Flow over weir = 0.95 cmsWeir submergence = unsubmerged Units on-line = 24Total flow, all units = 22.8 cmsHead over weir = 0.06 m

Aeration Basin

Channel shape = RectangularManning's 'n' = 0.013Channel length = 686 m Channel width/diameter = 11 mFlow = 0.95 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 98.61 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.091 m Units on -line = 24Total flow, all units = 22.8 cms Depth downstream = 8.96 m Bend loss = 0 mDepth upstream = 8.97 m Velocity = 0.01 m/s

Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mm Gate height = 4000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 0.95 cms Total area of opening(s) = 12 m^2 Velocity through gate(s) = 0.08 m/sFlow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 22.8 cms Gate loss = 0 m Downstream water level = 2547.97Upstream water level = 2547.97

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mm 2547.97

2547.97

Length = 77 mFlow = 0.95 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 0.84 m/sUnits on -line = 24Total flow, all units = 22.8 cms Friction loss = 0.05 m Fitting loss = 0.05 mTotal loss = 0.1 mTotal loss = 0.17 m 0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 0.95 cms Total area of opening(s) = 6.5 m² Velocity through gate(s) = 0.15 m/s Flow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 22.8 cms Gate loss = 0 m Downstream water level = 2548.07 Upstream water level = 2548.07

AB Distribution Box Weir

Weir invert (top of weir) = 2548.35Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815Flow over weir = 0.95 cms Weir submergence = unsubmerged Units on-line = 24Total flow, all units = 22.8 cms Head over weir = 0.31 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mm 2548.07

2548.66

Width = 3500 mmLength = 375 mFlow = 4.53 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 0.52 m/sUnits on -line = 3Total flow, all units = 13.6 cms Friction loss = 0.03 m Fitting loss = 0.02 mTotal loss = 0.05 m0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 4.53 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 0.45 m/s Flow behavior = orifice, downstream control Units on-line = 3 Total flow, all units = 13.6 cms Gate loss = 0.03 m Downstream water level = 2548.71 Upstream water level = 2548.74

General Aeration Box Weir

Weir invert (top of weir) = 2549.26Weir length = 7.62 m Weir height = 3 m Weir 'C' coefficient = 1.846Flow over weir = 4.53 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 13.6 cms Head over weir = 0.47 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mm 2548.74

Width = 3500 mmLength = 652 mFlow = 6.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.56 m/sUnits on -line = 2Total flow, all units = 13.6 cms Friction loss = 0.04 mFitting loss = 0.03 m Total loss = 0.07 m0

Clarifier Exit Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 105.4 m Flow = 0.85 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.48 m/sUnits on -line = 16Total flow, all units = 13.6 cms Friction loss = 0.02 m Fitting loss = 0.02 mTotal loss = 0.04 m

Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2545 Number of openings = 1 Flow through opening(s) = 0.85 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 0.48 m/s Flow behavior = orifice, downstream control Units on-line = 16

2549.84

Total flow, all units $= 13.6$ cms
Orifice $loss = 0.03 m$
Downstream water level $= 2549.84$
Upstream water level $= 2549.87$

Clarifier Launder

2549.87

Launder invert $= 2547$
Launder length $= 81.7 \text{ m}$
Launder width $= 1.5 \text{ m}$
Launder slope = 0.004 m/m
Flow through launder $= 0.43$ cms
Critical depth $= 0.2 \text{ m}$
Units on $-line = 32$
Total flow, all units $= 13.6$ cms
Downstream depth = 2.87 m
Upstream depth $= 2.55$ m

Weir Clarifier

Invert of V notch = 2550.87Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 0.85 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 13.6 cms Head over weir = 0.06 m

Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 45 mFlow = 0.85 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.48 m/sUnits on -line = 16Total flow, all units = 13.6 cms Friction loss = 0.01 mFitting loss = 0.02 mTotal loss = 0.02 m

Distribution Box Gate

Opening type = rectangular gate

2550.93

Opening diameter/width = 1500 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 0.85 cms Total area of opening(s) = 4.5 m² Velocity through gate(s) = 0.19 m/s Flow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 13.6 cms Gate loss = 0 m Downstream water level = 2550.95Upstream water level = 2550.95

Box 1 Weir

2551.42

Weir invert (top of weir) = 2551.13Weir length = 3.05 m Weir height = 3.5 m Weir 'C' coefficient = 1.813Flow over weir = 0.85 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 13.6 cms Head over weir = 0.29 m

Enter Pipe BOX 1

Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 110.9 mFlow = 3.4 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 6.25 m^2 Pipe hydraulic radius = 0.625Age factor = 1Solids factor = 1Velocity = 0.54 m/sUnits on -line = 4Total flow, all units = 13.6 cms Friction loss = 0.01 m Fitting loss = 0.03 mTotal loss = 0.04 m 0

General Box Gate

Opening type = rectangular gate

Opening diameter/width = 6000 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 18 m^2 Velocity through gate(s) = 0.19 m/sFlow behavior = orifice, downstream control Units on-line = 4Total flow, all units = 13.6 cmsGate loss = 0 mDownstream water level = 2551.45Upstream water level = 2551.45

General box 1 Weir

2552.34

Weir invert (top of weir) = 2551.89Weir length = 6.1 m Weir height = 3 m Weir 'C' coefficient = 1.843Flow over weir = 3.4 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 13.6 cms Head over weir = 0.45 m

R Mix to Clarifiers Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3000 mmLength = 150.43 m Flow = 6.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 0.65 m/sUnits on -line = 2Total flow, all units = 13.6 cms Friction loss = 0.01 m Fitting loss = 0.03 m Total loss = 0.05 m 0

RM Exit Channel

Channel shape = Rectangular

Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 13.6 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 204.49 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.264 m Units on -line = 1Total flow, all units = 13.6 cms Depth downstream = 6.39 m Bend loss = 0 mDepth upstream = 6.39 m Velocity = 0.07 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547 Number of gates = 4 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 50.27 m^2 Velocity through gate(s) = 0.07 m/sFlow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 13.6 cmsGate loss = 0 mDownstream water level = 2552.39Upstream water level = 2552.39

RM

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 9 m Channel width/diameter = 8 m Flow = 3.4 cms Downstream channel invert = 2545 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 59.14 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.264 m Units on-line = 4 2552.39

Total flow, all units = 13.6 cms Depth downstream = 7.39 m Bend loss = 0 m Depth upstream = 7.39 m Velocity = 0.06 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 4 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 12.57 m^2 Velocity through gate(s) = 0.27 m/sFlow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 13.6 cmsGate loss = 0.01 mDownstream water level = 2552.39Upstream water level = 2552.4

RM Enter Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 13.6 cmsDownstream channel invert = 2546.5Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 188.97 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.264 m Units on -line = 1Total flow, all units = 13.6 cms Depth downstream = 5.9 m Bend loss = 0 mDepth upstream = 5.91 m Velocity = 0.07 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 6.8 cms

2552.4

2552.41

Friction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.56 m/sUnits on-line = 2Total flow, all units = 13.6 cmsFriction loss = 0 mFitting loss = 0.03 mTotal loss = 0.03 m0

Junction Tank Grit Channel

2552.44

Channel shape = RectangularManning's 'n' = 0.013Channel length = 4 mChannel width/diameter = 45.2 mFlow = 6.8 cmsDownstream channel invert = 2547Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 245.91 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.132 m Units on -line = 2Total flow, all units = 13.6 cms Depth downstream = 5.44 m Bend loss = 0 mDepth upstream = 5.44 m Velocity = 0.03 m/s

Grit Weir

Weir invert (top of weir) = 2553.2Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 1.36 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 13.6 cmsHead over weir = 0.15 m

Grit Channel

Channel shape = Rectangular

2553.35

Manning's 'n' = 0.013Channel length = 40.5 mChannel width/diameter = 6 mFlow = 0.97 cmsDownstream channel invert = 2545Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 50.11 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.139 m Units on -line = 14Total flow, all units = 13.6 cms Depth downstream = 8.35 m Bend loss = 0 mDepth upstream = 8.35 m Velocity = 0.02 m/s

Screening Exit Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 1.36 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.34 m/s Flow behavior = orifice, downstream control Units on-line = 10 Total flow, all units = 13.6 cms Gate loss = 0.02 m Downstream water level = 2553.35 Upstream water level = 2553.37

Screen Channel 1 - 2

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 5 m Channel width/diameter = 2.4 m Flow = 1.13 cms Downstream channel invert = 2547.2 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 14.8 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.284 m Units on-line = 12 2553.37

Total flow, all units = 13.6 cms Depth downstream = 6.17 m Bend loss = 0 m Depth upstream = 6.17 m Velocity = 0.08 m/s

Fine Screen

Rack invert = 2548Rack width = 1.8 m Channel width = 2 m Flow through rack = 1.36 cms Bar width = 5 mm Bar spacing = 10 mm Percent blocked = 0%Net rack open area = 6.44 m² Downstream depth = 5.37 m Velocity in channel = 0.13 m/s Velocity through bars = 0.21 m/s Units on-line = 10Total flow, all units = 13.6 cms Rack head loss = 0 m

Screen Channel 2 -3

Channel shape = RectangularManning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.4 mFlow = 1.13 cmsDownstream channel invert = 2547.2Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 14.81 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.284 m Units on -line = 12Total flow, all units = 13.6 cms Depth downstream = 6.17 m Bend loss = 0 mDepth upstream = 6.17 m Velocity = 0.08 m/s

Medium Screen

Rack invert = 2548Rack width = 1.8 m Channel width = 2 m Flow through rack = 1.36 cms Bar width = 10 mm

2553.37

2553.37

Bar spacing = 30 mm Percent blocked = 0%Net rack open area = 7.26 m² Downstream depth = 5.37 m Velocity in channel = 0.13 m/s Velocity through bars = 0.19 m/s Units on-line = 10Total flow, all units = 13.6 cms Rack head loss = 0 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 mChannel width/diameter = 2.4 mFlow = 1.13 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 13.38 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.284 m Units on -line = 12Total flow, all units = 13.6 cms Depth downstream = 5.58 m Bend loss = 0 mDepth upstream = 5.58 m Velocity = 0.08 m/s

Screening Enter Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 1.36 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.34 m/s Flow behavior = orifice, downstream control Units on-line = 10 Total flow, all units = 13.6 cms Gate loss = 0.02 m Downstream water level = 2553.38 Upstream water level = 2553.39

Screening Distribution Channel

Channel shape = Rectangular

2553.38

2553.39

Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 mFlow = 6.8 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 234.37 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.139 m Units on -line = 2Total flow, all units = 13.6 cms Depth downstream = 5.59 m Bend loss = 0 mDepth upstream = 5.6 m Velocity = 0.03 m/s

Initial Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 4000 mmLength = 28 mFlow = 6.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1Solids factor = 1Velocity = 0.49 m/sUnits on -line = 2Total flow, all units = 13.6 cms Friction loss = 0 mFitting loss = 0.02 mTotal loss = 0.02 m0

Initial Gate

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 6.8 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.34 m/s 2553.42

Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 13.6 cms Gate loss = 0.02 m Downstream water level = 2553.42Upstream water level = 2553.44

Inicial Junction Tank

2553.44

Channel shape = RectangularManning's 'n' = 0.013Channel length = 13 mChannel width/diameter = 25 mFlow = 13.6 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 185.9 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.312 m Units on -line = 1Total flow, all units = 13.6 cms Depth downstream = 7.44 m Bend loss = 0 mDepth upstream = 7.44 m Velocity = 0.07 m/s

HP CANOAS Cota 2542 - 38 - 22 nov Q21 - V9.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
$16 \mathrm{cms}$	$9.18~\mathrm{cms}$		

Section Description

Water Surface Elevation

Starting water surface elevation	2543.12
Exit Pipe Pipe shape = Rectangular Height = 3000 mm Width = 4000 mm Length = 343 m Flow = 8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 12 m^2 Pipe hydraulic radius = 0.857 Age factor = 1 Solids factor = 1 Velocity = 0.67 m/s Units on-line = 2 Total flow, all units = 16 cms Friction loss = 0.03 m Fitting loss = 0.03 m Total loss = 0.07 m 0	2543.19
Chlorination Exit Tank Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 8 m Channel width/diameter = 154.5 m Flow = 16 cms Downstream channel invert = 2540.45 Channel slope = 0.0001 m/m Channel side slope = not applicable Area of flow = 423.25 m ² Flow profile = Mild Normal depth = 0.31 m Critical depth = 0.103 m Units on-line = 1	2543.19

Chlorination Tank Weir Weir invert (top of weir) = 2543.83 Weir length = 23 m Weir height = 5.1 m Weir 'C' coefficient = 1.794 Flow over weir = 4 cms
Chlorination Tank Weir Weir invert (top of weir) = 2543.83 Weir length = 23 m Weir height = 5.1 m Weir 'C' coefficient = 1.794 Flow over weir = 4 cms
Weir invert (top of weir) = 2543.83 Weir length = 23 m Weir height = 5.1 m Weir 'C' coefficient = 1.794 Flow over weir = 4 cms
Weir length = 23 m Weir height = 5.1 m Weir 'C' coefficient = 1.794 Flow over weir = 4 cms
Weir height = 5.1 m Weir 'C' coefficient = 1.794 Flow over weir = 4 cms
Weir 'C' coefficient $= 1.794$ Flow over weir $= 4$ cms
Flow over weir $= 4 \text{ cms}$
Weir submergence $=$ unsubmerged
Units on-line = 4
Total flow, all units = 16 cms
Head over weir = 0.21 m
Chlorination Tank
Channel shape = Rectangular
Manning's $n' = 0.013$
Channel length $= 356.5$ m
Channel width/diameter $= 8 \text{ m}$
Flow = 4 cms
Downstream channel invert $= 2540$
Channel slope = 0.0001 m/m
Channel side $slope = not applicable$
Area of flow = 32.18 m^2
Flow profile $=$ Mild
Normal depth $= 0.84$ m
Critical depth $= 0.295$ m
Units on-line = 4
Total flow, all units $= 16$ cms
Depth downstream = 4.04 m
Bend loss = 0 m
Depth upstream = 4 m
Velocity = 0.12 m/s
Chlorination Tank - Enter Gate
Opening type = rectangular gate

Opening type = rectangular gate Opening diameter/width = 8000 mmGate height = 4000 mmInvert = 2540Number of gates = 1 Flow through gate(s) = 4 cmsTotal area of opening(s) = 32 m^2 Velocity through gate(s) = 0.12 m/sFlow behavior = orifice, downstream control Units on-line = 4

2544.04

2544.04

Chlorination Enter Tank

2544.04

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 16 cmsDownstream channel invert = 2540Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 371.95 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.146 m Units on -line = 1Total flow, all units = 16 cms Depth downstream = 4.04 m Bend loss = 0 mDepth upstream = 4.04 m Velocity = 0.04 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 522 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on -line = 2Total flow, all units = 16 cmsFriction loss = 0.07 m Fitting loss = 0.04 m Total loss = 0.11 m 0

Secondary Clarifier Exit Pipe

 $Pipe \ shape = Circular$

Diameter = 1500 mmLength = 117 mFlow = 1 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on -line = 16Total flow, all units = 16 cms Friction loss = 0.02 m Fitting loss = 0.03 m Total loss = 0.05 m

2 Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2540 Number of openings = 1 Flow through opening(s) = 1 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 0.57 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 16 cms Orifice loss = 0.05 m Downstream water level = 2544.21 Upstream water level = 2544.26

Launder Channel 2 C

Launder invert = 2543Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.5 cmsCritical depth = 0.22 mUnits on-line = 32Total flow, all units = 16 cmsDownstream depth = 1.26 mUpstream depth = 0.9 m

Weir 2 Clarifier

Invert of V notch = 2545.05 Angle of V notch = 90 degrees 2544.26

Number of notches = 911Total flow over weir = 0.8 cms Weir submergence = unsubmerged Units on-line = 20Total flow, all units = 16 cms Head over weir = 0.05 m

2 Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 48.8 mFlow = 1.57 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.89 m/sUnits on -line = 16Total flow, all units = 25.2 cms Friction loss = 0.02 m Fitting loss = 0.06 mTotal loss = 0.08 m

Gate Clarifier Distribution Box

Opening type = rectangular gate Opening diameter/width = 1500 mm Gate height = 4000 mm Invert = 2541 Number of gates = 1 Flow through gate(s) = 1.57 cms Total area of opening(s) = 6 m² Velocity through gate(s) = 0.26 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 25.2 cms Gate loss = 0.01 m Downstream water level = 2545.19 Upstream water level = 2545.2

Box 2 Weir

Weir invert (top of weir) = 2545.53Weir length = 3.05 m Weir height = 5.04 m Weir 'C' coefficient = 1.807Flow over weir = 1.57 cms 2545.19

2545.2

Weir submergence = unsubmerged Units on-line = 16 Total flow, all units = 25.2 cms Head over weir = 0.43 m

Enter Pipe BOX 2

2546.04

Pipe shape = Rectangular Height = 2500 mmWidth = 3000 mmLength = 120.4 mFlow = 6.3 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 7.5 m^2 Pipe hydraulic radius = 0.682Age factor = 1Solids factor = 1Velocity = 0.84 m/sUnits on -line = 4Total flow, all units = 25.2 cms Friction loss = 0.02 m Fitting loss = 0.05 mTotal loss = 0.08 m0

General Box 2 Gate

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 Flow through gate(s) = 4 cms Total area of opening(s) = 21 m² Velocity through gate(s) = 0.19 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0 m Downstream water level = 2546.04 Upstream water level = 2546.04

General box 2 Weir

Weir invert (top of weir) = 2546.38Weir length = 7.62 m Weir height = 4 m Weir 'C' coefficient = 1.828Flow over weir = 6.3 cms 2546.04

Weir submergence = unsubmerged Units on-line = 4 Total flow, all units = 25.2 cms Head over weir = 0.59 m

Aeration Exit pipe

2547.18

Pipe shape = Rectangular Height = 3500 mmWidth = 6000 mmLength = 971 mFlow = 20.59 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 21 m^2 Pipe hydraulic radius = 1.105Age factor = 1Solids factor = 1Velocity = 0.98 m/sUnits on -line = 1Total flow, all units = 20.6 cms Friction loss = 0.14 m Fitting loss = 0.07 mTotal loss = 0.21 m0

Aeration Exit Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 309.5 m Channel width/diameter = 4 mFlow = 4.2 cmsDownstream channel invert = 2542Channel slope = 0.002 m/mChannel side slope = not applicableArea of flow = 19.48 m^2 Flow profile = Mild Normal depth = 0.54 mCritical depth = 0.483 m Units on -line = 6Total flow, all units = 25.2 cms Depth downstream = 5.18 m Bend loss = 0 mDepth upstream = 4.56 m Velocity = 0.2 m/s

AB Tank Weir

Weir invert (top of weir) = 2547.9

Weir length = 32.6 mWeir height = 6.5 mWeir 'C' coefficient = 1.782Flow over weir = 1.05 cmsWeir submergence = unsubmerged Units on-line = 24Total flow, all units = 25.2 cmsHead over weir = 0.07 m

Aeration Basin

Channel shape = RectangularManning's 'n' = 0.013Channel length = 686 m Channel width/diameter = 11 mFlow = 1.05 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 98.66 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.098 m Units on -line = 24Total flow, all units = 25.2 cms Depth downstream = 8.97 m Bend loss = 0 mDepth upstream = 8.97 m Velocity = 0.01 m/s

Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mm Gate height = 4000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.05 cms Total area of opening(s) = 12 m² Velocity through gate(s) = 0.09 m/s Flow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 25.2 cms Gate loss = 0 m Downstream water level = 2547.97 Upstream water level = 2547.97

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mm 2547.97

Length = 77 mFlow = 1.05 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 0.93 m/sUnits on -line = 24Total flow, all units = 25.2 cms Friction loss = 0.06 m Fitting loss = 0.07 mTotal loss = 0.12 m Total loss = 0.17 m 0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.05 cms Total area of opening(s) = 6.5 m^2 Velocity through gate(s) = 0.16 m/sFlow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 25.2 cms Gate loss = 0 m Downstream water level = 2548.09 Upstream water level = 2548.09

AB Distribution Box Weir

Weir invert (top of weir) = 2548.35Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815Flow over weir = 1.05 cms Weir submergence = unsubmerged Units on-line = 24Total flow, all units = 25.2 cms Head over weir = 0.33 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mm 2548.09

2548.68

Width = 3500 mmLength = 375 mFlow = 5.33 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 0.61 m/sUnits on -line = 3Total flow, all units = 16 cms Friction loss = 0.04 mFitting loss = 0.03 mTotal loss = 0.07 m0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 5.33 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 0.53 m/s Flow behavior = orifice, downstream control Units on-line = 3 Total flow, all units = 16 cms Gate loss = 0.04 m Downstream water level = 2548.75 Upstream water level = 2548.79

General Aeration Box Weir

Weir invert (top of weir) = 2549.26Weir length = 7.62 m Weir height = 3 m Weir 'C' coefficient = 1.846Flow over weir = 5.33 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 16 cms Head over weir = 0.52 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mm 2548.79

2549.78

Width = 3500 mmLength = 652 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.65 m/sUnits on -line = 2Total flow, all units = 16 cms Friction loss = 0.06 m Fitting loss = 0.04 mTotal loss = 0.1 m0

Clarifier Exit Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 105.4 m Flow = 1 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on -line = 16Total flow, all units = 16 cms Friction loss = 0.02 m Fitting loss = 0.03 m Total loss = 0.05 m

Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2545 Number of openings = 1 Flow through opening(s) = 1 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 0.57 m/s Flow behavior = orifice, downstream control Units on-line = 16 2549.93

Total flow, all units $= 16 \mathrm{cms}$
Orifice $loss = 0.05 m$
Downstream water level $= 2549.93$
Upstream water level $= 2549.98$

Clarifier Launder

2549.98

Launder invert $= 2547$
Launder length $= 81.7$ m
Launder width $= 1.5 \text{ m}$
Launder slope = 0.004 m/m
Flow through launder $= 0.5$ cms
Critical depth $= 0.22$ m
Units on - line = 32
Total flow, all units $= 16$ cms
Downstream depth = 2.98 m
Upstream depth $= 2.65$ m

Weir Clarifier

Invert of V notch = 2550.87Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 1 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 16 cms Head over weir = 0.06 m

Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 45 mFlow = 1 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on -line = 16Total flow, all units = 16 cms Friction loss = 0.01 mFitting loss = 0.02 mTotal loss = 0.03 m

Distribution Box Gate

Opening type = rectangular gate

2550.93
Opening diameter/width = 1500 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 1 cms Total area of opening(s) = 4.5 m^2 Velocity through gate(s) = 0.22 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 16 cmsGate loss = 0.01 mDownstream water level = 2550.96Upstream water level = 2550.97

Box 1 Weir

2551.45

Weir invert (top of weir) = 2551.13Weir length = 3.05 m Weir height = 3.5 m Weir 'C' coefficient = 1.813Flow over weir = 1 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 16 cms Head over weir = 0.32 m

Enter Pipe BOX 1

Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 110.9 mFlow = 4 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 6.25 m^2 Pipe hydraulic radius = 0.625Age factor = 1Solids factor = 1Velocity = 0.64 m/sUnits on -line = 4Total flow, all units = 16 cmsFriction loss = 0.01 m Fitting loss = 0.04 mTotal loss = 0.05 m 0

General Box Gate

Opening type = rectangular gate

Opening diameter/width = 6000 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 4 cms Total area of opening(s) = 18 m² Velocity through gate(s) = 0.22 m/sFlow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0.01 mDownstream water level = 2551.5Upstream water level = 2551.51

General box 1 Weir

2552.39

Weir invert (top of weir) = 2551.89Weir length = 6.1 m Weir height = 3 m Weir 'C' coefficient = 1.843Flow over weir = 4 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 16 cms Head over weir = 0.5 m

R Mix to Clarifiers Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3000 mmLength = 150.43 m Flow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on -line = 2Total flow, all units = 16 cmsFriction loss = 0.02 m Fitting loss = 0.04 mTotal loss = 0.06 m 0

RM Exit Channel

Channel shape = Rectangular

Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 16 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 206.73 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.295 m Units on -line = 1Total flow, all units = 16 cms Depth downstream = 6.46 m Bend loss = 0 mDepth upstream = 6.46 m Velocity = 0.08 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547 Number of gates = 4 Flow through gate(s) = 4 cms Total area of opening(s) = 50.27 m² Velocity through gate(s) = 0.08 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0 m Downstream water level = 2552.46 Upstream water level = 2552.46

RM

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 9 m Channel width/diameter = 8 m Flow = 4 cms Downstream channel invert = 2545 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 59.71 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.295 m Units on-line = 4 2552.46

Total flow, all units = 16 cms Depth downstream = 7.46 m Bend loss = 0 m Depth upstream = 7.46 m Velocity = 0.07 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 4 Flow through gate(s) = 4 cms Total area of opening(s) = 12.57 m² Velocity through gate(s) = 0.32 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0.01 m Downstream water level = 2552.46 Upstream water level = 2552.48

RM Enter Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 16 cmsDownstream channel invert = 2546.5Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 191.35 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.295 m Units on -line = 1Total flow, all units = 16 cms Depth downstream = 5.98 m Bend loss = 0 mDepth upstream = 5.98 m Velocity = 0.08 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 8 cms 2552.48

2552.48

Friction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.65 m/sUnits on-line = 2Total flow, all units = 16 cmsFriction loss = 0 mFitting loss = 0.04 mTotal loss = 0.04 m0

Junction Tank Grit Channel

2552.52

Channel shape = RectangularManning's 'n' = 0.013Channel length = 4 mChannel width/diameter = 45.2 mFlow = 8 cmsDownstream channel invert = 2547Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 249.53 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.148 m Units on -line = 2Total flow, all units = 16 cms Depth downstream = 5.52 m Bend loss = 0 mDepth upstream = 5.52 m Velocity = 0.03 m/s

Grit Weir

Weir invert (top of weir) = 2553.2Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 1.6 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 16 cmsHead over weir = 0.17 m

Grit Channel

 $Channel\ shape = Rectangular$

2553.37

Manning's 'n' = 0.013Channel length = 40.5 mChannel width/diameter = 6 mFlow = 1.14 cmsDownstream channel invert = 2545Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 50.21 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.155 m Units on -line = 14Total flow, all units = 16 cms Depth downstream = 8.37 m Bend loss = 0 mDepth upstream = 8.37 m Velocity = 0.02 m/s

Screening Exit Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 1.6 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.4 m/s Flow behavior = orifice, downstream control Units on-line = 10 Total flow, all units = 16 cms Gate loss = 0.02 m Downstream water level = 2553.37 Upstream water level = 2553.39

Screen Channel 1 - 2

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 5 m Channel width/diameter = 2.4 m Flow = 1.33 cms Downstream channel invert = 2547.2 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 14.86 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.316 m Units on-line = 12 2553.39

Total flow, all units = 16 cms Depth downstream = 6.19 m Bend loss = 0 m Depth upstream = 6.19 m Velocity = 0.09 m/s

Fine Screen

Rack invert = 2548 Rack width = 1.8 m Channel width = 2 m Flow through rack = 1.6 cms Bar width = 5 mm Bar spacing = 10 mm Percent blocked = 0%Net rack open area = 6.47 m² Downstream depth = 5.39 m Velocity in channel = 0.15 m/s Velocity through bars = 0.25 m/s Units on-line = 10 Total flow, all units = 16 cms Rack head loss = 0 m

Screen Channel 2 -3

Channel shape = RectangularManning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.4 mFlow = 1.33 cmsDownstream channel invert = 2547.2Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 14.87 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.316 m Units on -line = 12Total flow, all units = 16 cms Depth downstream = 6.2 m Bend loss = 0 mDepth upstream = 6.2 mVelocity = 0.09 m/s

Medium Screen

Rack invert = 2548Rack width = 1.8 m Channel width = 2 m Flow through rack = 1.6 cms Bar width = 10 mm

2553.4

2553.4

Bar spacing = 30 mm Percent blocked = 0%Net rack open area = 7.29 m² Downstream depth = 5.4 m Velocity in channel = 0.15 m/s Velocity through bars = 0.22 m/s Units on-line = 10Total flow, all units = 16 cms Rack head loss = 0 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 mChannel width/diameter = 2.4 mFlow = 1.33 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 13.44 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.316 m Units on -line = 12Total flow, all units = 16 cms Depth downstream = 5.6 m Bend loss = 0 mDepth upstream = 5.6 m Velocity = 0.1 m/s

Screening Enter Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 1.6 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.4 m/s Flow behavior = orifice, downstream control Units on-line = 10 Total flow, all units = 16 cms Gate loss = 0.02 m Downstream water level = 2553.4 Upstream water level = 2553.42

Screening Distribution Channel

Channel shape = Rectangular

2553.4

2553.42

Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 m Flow = 8 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 235.64 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.155 m Units on -line = 2Total flow, all units = 16 cms Depth downstream = 5.62 mBend loss = 0 mDepth upstream = 5.63 m Velocity = 0.03 m/s

Initial Pipe

Pipe shape = RectangularHeight = 3500 mmWidth = 4000 mmLength = 28 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on -line = 2Total flow, all units = 16 cmsFriction loss = 0 mFitting loss = 0.03 m Total loss = 0.03 m0

Initial Gate

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 8 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.4 m/s 2553.46

Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 16 cms Gate loss = 0.02 m Downstream water level = 2553.46Upstream water level = 2553.48

Inicial Junction Tank

2553.48

Channel shape = RectangularManning's 'n' = 0.013Channel length = 13 mChannel width/diameter = 25 mFlow = 16 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 187.04 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.347 m Units on -line = 1Total flow, all units = 16 cms Depth downstream = 7.48 mBend loss = 0 mDepth upstream = 7.48 m Velocity = 0.09 m/s

HP CANOAS Cota 2542 - 38 - 22 nov Q32 - V9.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
$21.4~\mathrm{cms}$	$9.18~\mathrm{cms}$		

Section Description

Water Surface Elevation

Starting water surface elevation	2543.29
Exit Pipe	2543.41
Pipe shape = Rectangular	
Height = 3000 mm	
Width = 4000 mm	
Length = 343 m	
Flow = 10.7 cms	
Friction method = Manning's Equation	
Friction factor $= 0.013$	
Total fitting K value $= 1.5$	
$Pipe area = 12 m^2$	
Pipe hydraulic radius $= 0.857$	
Age factor $= 1$	
Solids factor $= 1$	
Velocity = 0.89 m/s	
Units on-line = 2	
Total flow, all units $= 21.4$ cms	
Friction loss $= 0.06$ m	
Fitting $loss = 0.06 \text{ m}$	
Total loss $= 0.12$ m	
0	
Chlorination Exit Tank	2543.41
Channel shape = Rectangular	
Manning's $n' = 0.013$	
Channel length $= 8 \text{ m}$	
Channel width/diameter = 154.5 m	
Flow = 21.4 cms	
Downstream channel invert $= 2540.45$	
Channel slope = 0.0001 m/m	
Channel side slope $=$ not applicable	
Area of flow = 457.24 m^2	
Flow profile $=$ Mild	
Normal depth $= 0.36$ m	
Critical depth = 0.125 m	

Water Surface Elevation

Section Description

Total flow, all units = 21.4 cms Depth downstream = 2.96 m Bend loss = 0 mDepth upstream = 2.96 m Velocity = 0.05 m/s

Chlorination Tank Weir

2544.09

Weir invert (top of weir) = 2543.83Weir length = 23 m Weir height = 5.1 mWeir 'C' coefficient = 1.794Flow over weir = 5.35 cms Weir submergence = unsubmerged Units on -line = 4Total flow, all units = 21.4 cms Head over weir = 0.26 m

Chlorination Tank

Channel shape = RectangularManning's n' = 0.013Channel length = 356.5 m Channel width/diameter = 8 mFlow = 5.35 cmsDownstream channel invert = 2540Channel slope = 0.0001 m/mChannel side slope = not applicableArea of flow = 32.54 m^2 Flow profile = Mild Normal depth = 1.01 mCritical depth = 0.358 m Units on -line = 4Total flow, all units = 21.4 cms Depth downstream = 4.09 mBend loss = 0 mDepth upstream = 4.05 m Velocity = 0.16 m/s

Chlorination Tank - Enter Gate

Opening type = rectangular gate Opening diameter/width = 8000 mmGate height = 4000 mmInvert = 2540Number of gates = 1Flow through gate(s) = 5.35 cms Total area of opening(s) = 32 m^2 Velocity through gate(s) = 0.17 m/sFlow behavior = orifice, downstream control Units on -line = 4

2544.09

Total flow, all units $= 21.4$ cms
Gate $loss = 0 m$
Downstream water level $= 2544.09$
Upstream water level $= 2544.09$

Chlorination Enter Tank

2544.09

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 21.4 cmsDownstream channel invert = 2540Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 376.31 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.177 m Units on -line = 1Total flow, all units = 21.4 cms Depth downstream = 4.09 mBend loss = 0 mDepth upstream = 4.09 mVelocity = 0.06 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 522 mFlow = 10.7 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 1.02 m/sUnits on -line = 2Total flow, all units = 21.4 cms Friction loss = 0.12 m Fitting loss = 0.08 mTotal loss = 0.2 m0

Secondary Clarifier Exit Pipe

Pipe shape = Circular

Diameter = 1500 mmLength = 117 mFlow = 1.34 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on -line = 16Total flow, all units = 21.4 cms Friction loss = 0.04 mFitting loss = 0.05 mTotal loss = 0.09 m

2 Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2540 Number of openings = 1 Flow through opening(s) = 1.34 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 0.76 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 21.4 cms Orifice loss = 0.08 m Downstream water level = 2544.38 Upstream water level = 2544.46

Launder Channel 2 C

Launder invert = 2543Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.67 cmsCritical depth = 0.27 mUnits on-line = 32Total flow, all units = 21.4 cmsDownstream depth = 1.46 mUpstream depth = 1.11 m

Weir 2 Clarifier

Invert of V notch = 2545.05 Angle of V notch = 90 degrees 2544.46

Number of notches = 911Total flow over weir = 1.07 cms Weir submergence = unsubmerged Units on-line = 20Total flow, all units = 21.4 cms Head over weir = 0.06 m

2 Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 48.8 mFlow = 1.91 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.08 m/sUnits on -line = 16Total flow, all units = 30.6 cms Friction loss = 0.04 m Fitting loss = 0.09 mTotal loss = 0.13 m

Gate Clarifier Distribution Box

Opening type = rectangular gate Opening diameter/width = 1500 mm Gate height = 4000 mm Invert = 2541 Number of gates = 1 Flow through gate(s) = 1.91 cms Total area of opening(s) = 6 m² Velocity through gate(s) = 0.32 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 30.6 cms Gate loss = 0.01 m Downstream water level = 2545.23 Upstream water level = 2545.24

Box 2 Weir

Weir invert (top of weir) = 2545.53Weir length = 3.05 m Weir height = 5.04 m Weir 'C' coefficient = 1.807Flow over weir = 1.91 cms 2545.23

2545.24

Weir submergence = unsubmerged Units on-line = 16 Total flow, all units = 30.6 cms Head over weir = 0.49 m

Enter Pipe BOX 2

2546.14

Pipe shape = Rectangular Height = 2500 mmWidth = 3000 mmLength = 120.4 mFlow = 7.64 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 7.5 m^2 Pipe hydraulic radius = 0.682Age factor = 1Solids factor = 1Velocity = 1.02 m/sUnits on -line = 4Total flow, all units = 30.6 cms Friction loss = 0.04 mFitting loss = 0.08 mTotal loss = 0.11 m0

General Box 2 Gate

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 Flow through gate(s) = 5.35 cms Total area of opening(s) = 21 m² Velocity through gate(s) = 0.25 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 21.4 cms Gate loss = 0.01 m Downstream water level = 2546.14 Upstream water level = 2546.15

General box 2 Weir

Weir invert (top of weir) = 2546.38Weir length = 7.62 m Weir height = 4 m Weir 'C' coefficient = 1.828Flow over weir = 7.64 cms 2546.15

Weir submergence = unsubmerged Units on-line = 4 Total flow, all units = 30.6 cms Head over weir = 0.67 m

Aeration Exit pipe

2547.39

Pipe shape = Rectangular Height = 3500 mmWidth = 6000 mmLength = 971 mFlow = 25.99 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 21 m^2 Pipe hydraulic radius = 1.105Age factor = 1Solids factor = 1Velocity = 1.24 m/sUnits on -line = 1Total flow, all units = 26 cmsFriction loss = 0.22 m Fitting loss = 0.12 mTotal loss = 0.34 m0

Aeration Exit Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 309.5 m Channel width/diameter = 4 mFlow = 5.1 cmsDownstream channel invert = 2542Channel slope = 0.002 m/mChannel side slope = not applicableArea of flow = 20.32 m^2 Flow profile = Mild Normal depth = 0.62 mCritical depth = 0.55 m Units on -line = 6Total flow, all units = 30.6 cms Depth downstream = 5.39 m Bend loss = 0 mDepth upstream = 4.77 m Velocity = 0.24 m/s

AB Tank Weir

Weir invert (top of weir) = 2547.9

Weir length = 32.6 mWeir height = 6.5 mWeir 'C' coefficient = 1.782Flow over weir = 1.27 cmsWeir submergence = unsubmerged Units on-line = 24Total flow, all units = 30.5 cmsHead over weir = 0.08 m

Aeration Basin

Channel shape = RectangularManning's 'n' = 0.013Channel length = 686 m Channel width/diameter = 11 mFlow = 1.27 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 98.76 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.111 mUnits on -line = 24Total flow, all units = 30.6 cms Depth downstream = 8.98 m Bend loss = 0 mDepth upstream = 8.98 m Velocity = 0.01 m/s

Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mm Gate height = 4000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.27 cms Total area of opening(s) = 12 m² Velocity through gate(s) = 0.11 m/s Flow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 30.6 cms Gate loss = 0 m Downstream water level = 2547.98 Upstream water level = 2547.98

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mm 2547.98

2547.98

Length = 77 mFlow = 1.27 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on -line = 24Total flow, all units = 30.6 cms Friction loss = 0.08 m Fitting loss = 0.1 mTotal loss = 0.18 m Total loss = 0.17 m 0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.27 cms Total area of opening(s) = 6.5 m^2 Velocity through gate(s) = 0.2 m/sFlow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 30.6 cms Gate loss = 0.01 mDownstream water level = 2548.16 Upstream water level = 2548.17

AB Distribution Box Weir

Weir invert (top of weir) = 2548.35Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815Flow over weir = 1.27 cms Weir submergence = unsubmerged Units on-line = 24Total flow, all units = 30.5 cms Head over weir = 0.38 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mm 2548.17

Width = 3500 mmLength = 375 mFlow = 7.13 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 0.82 m/sUnits on -line = 3Total flow, all units = 21.4 cms Friction loss = 0.06 m Fitting loss = 0.06 mTotal loss = 0.13 m0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 7.13 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 0.71 m/s Flow behavior = orifice, downstream control Units on-line = 3 Total flow, all units = 21.4 cms Gate loss = 0.07 m Downstream water level = 2548.85 Upstream water level = 2548.92

General Aeration Box Weir

Weir invert (top of weir) = 2549.26Weir length = 7.62 m Weir height = 3 m Weir 'C' coefficient = 1.846Flow over weir = 7.13 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 21.4 cms Head over weir = 0.64 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mm 2548.92

Width = 3500 mmLength = 652 mFlow = 10.7 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.87 m/sUnits on -line = 2Total flow, all units = 21.4 cms Friction loss = 0.1 mFitting loss = 0.07 mTotal loss = 0.17 m0

Clarifier Exit Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 105.4 m Flow = 1.34 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on -line = 16Total flow, all units = 21.4 cms Friction loss = 0.04 m Fitting loss = 0.05 mTotal loss = 0.09 m

Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2545 Number of openings = 1 Flow through opening(s) = 1.34 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 0.76 m/s Flow behavior = orifice, downstream control Units on-line = 16

2550.16

Clarifier Launder

2550.24

Launder invert $= 2547$
Launder length $= 81.7 \text{ m}$
Launder width $= 1.5 \text{ m}$
Launder slope = 0.004 m/m
Flow through launder $= 0.67$ cms
Critical depth $= 0.27 \text{ m}$
Units on $-line = 32$
Total flow, all units $= 21.4$ cms
Downstream depth = 3.24 m
Upstream depth = 2.92 m

Weir Clarifier

Invert of V notch = 2550.87Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 1.34 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 21.4 cms Head over weir = 0.07 m

Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 45 mFlow = 1.34 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on -line = 16Total flow, all units = 21.4 cms Friction loss = 0.02 m Fitting loss = 0.04 m Total loss = 0.06 m

Distribution Box Gate

Opening type = rectangular gate

2550.94

2551

Opening diameter/width = 1500 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 1.34 cms Total area of opening(s) = 4.5 m^2 Velocity through gate(s) = 0.3 m/sFlow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 21.4 cms Gate loss = 0.01 mDownstream water level = 2551 Upstream water level = 2551.01

Box 1 Weir

2551.52

Weir invert (top of weir) = 2551.13Weir length = 3.05 m Weir height = 3.5 m Weir 'C' coefficient = 1.813Flow over weir = 1.34 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 21.4 cms Head over weir = 0.39 m

Enter Pipe BOX 1

Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 110.9 mFlow = 5.35 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 6.25 m^2 Pipe hydraulic radius = 0.625Age factor = 1Solids factor = 1Velocity = 0.86 m/sUnits on -line = 4Total flow, all units = 21.4 cms Friction loss = 0.03 m Fitting loss = 0.06 mTotal loss = 0.09 m 0

General Box Gate

Opening type = rectangular gate

Opening diameter/width = 6000 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 5.35 cms Total area of opening(s) = 18 m² Velocity through gate(s) = 0.3 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 21.4 cms Gate loss = 0.01 m Downstream water level = 2551.61 Upstream water level = 2551.62

General box 1 Weir

2552.5

Weir invert (top of weir) = 2551.89Weir length = 6.1 m Weir height = 3 m Weir 'C' coefficient = 1.843Flow over weir = 5.35 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 21.4 cms Head over weir = 0.61 m

R Mix to Clarifiers Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3000 mmLength = 150.43 m Flow = 10.7 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 1.02 m/sUnits on -line = 2Total flow, all units = 21.4 cms Friction loss = 0.04 mFitting loss = 0.08 mTotal loss = 0.11 m 0

RM Exit Channel

Channel shape = Rectangular

Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 21.4 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 211.54 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.358 m Units on -line = 1Total flow, all units = 21.4 cms Depth downstream = 6.61 mBend loss = 0 mDepth upstream = 6.61 mVelocity = 0.1 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547 Number of gates = 4 Flow through gate(s) = 5.35 cms Total area of opening(s) = 50.27 m² Velocity through gate(s) = 0.11 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 21.4 cms Gate loss = 0 m Downstream water level = 2552.61 Upstream water level = 2552.61

RM

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 9 m Channel width/diameter = 8 m Flow = 5.35 cms Downstream channel invert = 2545 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 60.91 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.358 m Units on-line = 4 2552.61

Total flow, all units = 21.4 cms Depth downstream = 7.61 m Bend loss = 0 m Depth upstream = 7.62 m Velocity = 0.09 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 4 Flow through gate(s) = 5.35 cms Total area of opening(s) = 12.57 m² Velocity through gate(s) = 0.43 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 21.4 cms Gate loss = 0.03 m Downstream water level = 2552.62 Upstream water level = 2552.64

RM Enter Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 21.4 cmsDownstream channel invert = 2546.5Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 196.54 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.358 m Units on -line = 1Total flow, all units = 21.4 cms Depth downstream = 6.14 m Bend loss = 0 mDepth upstream = 6.14 m Velocity = 0.11 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 10.7 cms

2552.64

2552.64

Friction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.87 m/sUnits on-line = 2Total flow, all units = 21.4 cmsFriction loss = 0.01 mFitting loss = 0.07 mTotal loss = 0.08 m0

Junction Tank Grit Channel

2552.72

Channel shape = RectangularManning's 'n' = 0.013Channel length = 4 mChannel width/diameter = 45.2 mFlow = 10.7 cmsDownstream channel invert = 2547Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 258.57 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.179 m Units on -line = 2Total flow, all units = 21.4 cms Depth downstream = 5.72 m Bend loss = 0 mDepth upstream = 5.72 m Velocity = 0.04 m/s

Grit Weir

Weir invert (top of weir) = 2553.2Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 2.14 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 21.4 cmsHead over weir = 0.2 m

Grit Channel

Channel shape = Rectangular

2553.41

Manning's 'n' = 0.013Channel length = 40.5 mChannel width/diameter = 6 mFlow = 1.53 cmsDownstream channel invert = 2545Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 50.43 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.188 m Units on -line = 14Total flow, all units = 21.4 cms Depth downstream = 8.4 m Bend loss = 0 mDepth upstream = 8.41 m Velocity = 0.03 m/s

Screening Exit Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 2.14 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.54 m/s Flow behavior = orifice, downstream control Units on-line = 10 Total flow, all units = 21.4 cms Gate loss = 0.04 m Downstream water level = 2553.41 Upstream water level = 2553.44

Screen Channel 1 - 2

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 5 m Channel width/diameter = 2.4 m Flow = 1.78 cms Downstream channel invert = 2547.2 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 14.99 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.384 m Units on-line = 12 2553.44

Total flow, all units = 21.4 cms Depth downstream = 6.24 m Bend loss = 0 m Depth upstream = 6.25 m Velocity = 0.12 m/s

Fine Screen

Rack invert = 2548 Rack width = 1.8 m Channel width = 2 m Flow through rack = 2.14 cms Bar width = 5 mm Bar spacing = 10 mm Percent blocked = 0%Net rack open area = 6.53 m² Downstream depth = 5.45 m Velocity in channel = 0.2 m/sVelocity through bars = 0.33 m/sUnits on-line = 10Total flow, all units = 21.4 cms Rack head loss = 0 m

Screen Channel 2 -3

Channel shape = RectangularManning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.4 mFlow = 1.78 cmsDownstream channel invert = 2547.2Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 15 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.384 m Units on -line = 12Total flow, all units = 21.4 cms Depth downstream = 6.25 m Bend loss = 0 mDepth upstream = 6.25 m Velocity = 0.12 m/s

Medium Screen

Rack invert = 2548Rack width = 1.8 m Channel width = 2 m Flow through rack = 2.14 cms Bar width = 10 mm

2553.45

2553.45

Bar spacing = 30 mm Percent blocked = 0%Net rack open area = 7.36 m² Downstream depth = 5.45 m Velocity in channel = 0.2 m/sVelocity through bars = 0.29 m/sUnits on-line = 10Total flow, all units = 21.4 cmsRack head loss = 0 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 mChannel width/diameter = 2.4 mFlow = 1.78 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 13.58 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.384 m Units on -line = 12Total flow, all units = 21.4 cms Depth downstream = 5.66 m Bend loss = 0 mDepth upstream = 5.66 m Velocity = 0.13 m/s

Screening Enter Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 2.14 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.54 m/s Flow behavior = orifice, downstream control Units on-line = 10Total flow, all units = 21.4 cms Gate loss = 0.04 m Downstream water level = 2553.46Upstream water level = 2553.5

Screening Distribution Channel

 $Channel\ shape = Rectangular$

2553.46

Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 m Flow = 10.7 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 238.68 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.188 m Units on -line = 2Total flow, all units = 21.4 cms Depth downstream = 5.7 m Bend loss = 0 mDepth upstream = 5.7 mVelocity = 0.04 m/s

Initial Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 4000 mmLength = 28 mFlow = 10.7 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on -line = 2Total flow, all units = 21.4 cms Friction loss = 0 mFitting loss = 0.05 mTotal loss = 0.05 m0

Initial Gate

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 10.7 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.53 m/s 2553.55

Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 21.4 cms Gate loss = 0.04 m Downstream water level = 2553.55Upstream water level = 2553.59

Inicial Junction Tank

2553.59

Channel shape = RectangularManning's 'n' = 0.013Channel length = 13 mChannel width/diameter = 25 mFlow = 21.4 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 189.71 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.422 m Units on -line = 1Total flow, all units = 21.4 cms Depth downstream = 7.59 mBend loss = 0 mDepth upstream = 7.59 m Velocity = 0.11 m/s

HP CANOAS Cota 2542 - 38 V7 22 nov Q32.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
$32~\mathrm{cms}$	$9.18~\mathrm{cms}$		

Section Description

Water Surface Elevation

Starting water surface elevation	2543.56
Exit PipePipe shape = RectangularHeight = 3000 mmWidth = 4000 mmLength = 343 mFlow = 16 cmsFriction method = Manning's EquationFriction factor = 0.013Total fitting K value = 1.5Pipe area = 12 m²Pipe hydraulic radius = 0.857Age factor = 1Solids factor = 1Velocity = 1.33 m/sUnits on-line = 2Total flow, all units = 32 cmsFriction loss = 0.13 mFitting loss = 0.14 mTotal loss = 0.26 m0	2543.82
Chlorination Exit Tank Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 8 m Channel width/diameter = 154.5 m Flow = 32 cms Downstream channel invert = 2540.45 Channel slope = 0.0001 m/m Channel side slope = not applicable Area of flow = 520.61 m ² Flow profile = Mild Normal depth = 0.46 m Critical depth = 0.164 m Units on-line = 1	2543.82

	1	
	_	

Total flow, all units = 32 cms Depth downstream = 3.37 m Bend loss = 0 mDepth upstream = 3.37 m Velocity = 0.06 m/s**Chlorination Tank Weir** Weir invert (top of weir) = 2543.83Weir length = 23 m Weir height = 5.1 mWeir 'C' coefficient = 1.794Flow over weir = 8 cms Weir submergence = unsubmerged Units on -line = 4Total flow, all units = 32 cms Head over weir = 0.33 m **Chlorination Tank** Channel shape = RectangularManning's n' = 0.013Channel length = 356.5 mChannel width/diameter = 8 mFlow = 8 cmsDownstream channel invert = 2540Channel slope = 0.0001 m/mChannel side slope = not applicableArea of flow = 33.18 m^2 Flow profile = Mild Normal depth = 1.32 m Critical depth = 0.467 m Units on -line = 4Total flow, all units = 32 cms Depth downstream = 4.16 m Bend loss = 0 mDepth upstream = 4.13 m Velocity = 0.24 m/s

Chlorination Tank - Enter Gate

Opening type = rectangular gate Opening diameter/width = 8000 mm Gate height = 4000 mm Invert = 2540 Number of gates = 1 Flow through gate(s) = 8 cms Total area of opening(s) = 32 m^2 Velocity through gate(s) = 0.25 m/sFlow behavior = orifice, downstream control Units on-line = 4 2544.16

2544.17

Total flow, all units = 32 cmsGate loss = 0.01 mDownstream water level = 2544.17Upstream water level = 2544.18

Chlorination Enter Tank

2544.18

Channel shape = RectangularManning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 32 cmsDownstream channel invert = 2540Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 384.26 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.231 m Units on -line = 1Total flow, all units = 32 cms Depth downstream = 4.18 mBend loss = 0 mDepth upstream = 4.18 mVelocity = 0.08 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 522 mFlow = 16 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 1.52 m/sUnits on -line = 2Total flow, all units = 32 cmsFriction loss = 0.27 m Fitting loss = 0.18 mTotal loss = 0.45 m 0

Secondary Clarifier Exit Pipe

Pipe shape = Circular

Diameter = 1500 mmLength = 117 mFlow = 2 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on -line = 16Total flow, all units = 32 cms Friction loss = 0.09 mFitting loss = 0.11 mTotal loss = 0.2 m

2 Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2540 Number of openings = 1 Flow through opening(s) = 2 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 1.13 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 32 cms Orifice loss = 0.18 m Downstream water level = 2544.83 Upstream water level = 2545.01

Launder Channel 2 C

Launder invert = 2543Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 1 cmsCritical depth = 0.36 mUnits on-line = 32Total flow, all units = 32 cmsDownstream depth = 2.01 mUpstream depth = 1.66 m

Weir 2 Clarifier

Invert of V notch = 2545.05 Angle of V notch = 90 degrees 2545.01
Number of notches = 911Total flow over weir = 1.6 cms Weir submergence = unsubmerged Units on-line = 20Total flow, all units = 32 cms Head over weir = 0.07 m

2 Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 48.8 mFlow = 2.57 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.46 m/sUnits on -line = 16Total flow, all units = 41.2 cms Friction loss = 0.06 m Fitting loss = 0.16 mTotal loss = 0.23 m

Gate Clarifier Distribution Box

Opening type = rectangular gate Opening diameter/width = 1500 mm Gate height = 4000 mm Invert = 2541 Number of gates = 1 Flow through gate(s) = 2.57 cms Total area of opening(s) = 6 m² Velocity through gate(s) = 0.43 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 41.2 cms Gate loss = 0.02 m Downstream water level = 2545.35 Upstream water level = 2545.37

Box 2 Weir

Weir invert (top of weir) = 2545.53Weir length = 3.05 m Weir height = 5.04 m Weir 'C' coefficient = 1.807Flow over weir = 2.57 cms 2545.35

2545.37

Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 41.2 cms Head over weir = 0.6 m

Enter Pipe BOX 2

2546.34

Pipe shape = Rectangular Height = 2500 mmWidth = 3000 mmLength = 120.4 mFlow = 10.3 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 7.5 m^2 Pipe hydraulic radius = 0.682Age factor = 1Solids factor = 1Velocity = 1.37 m/sUnits on -line = 4Total flow, all units = 41.2 cms Friction loss = 0.06 m Fitting loss = 0.14 mTotal loss = 0.21 m0

General Box 2 Gate

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 Flow through gate(s) = 8 cms Total area of opening(s) = 21 m² Velocity through gate(s) = 0.38 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0.02 m Downstream water level = 2546.34 Upstream water level = 2546.36

General box 2 Weir

Weir invert (top of weir) = 2546.38 Weir length = 7.62 m Weir height = 4 m Weir 'C' coefficient = 1.828 Flow over weir = 10.3 cms 2546.36

Weir submergence = unsubmerged Units on-line = 4 Total flow, all units = 41.2 cms Head over weir = 0.82 m

Aeration Exit pipe

2547.87

Pipe shape = Rectangular Height = 3500 mmWidth = 6000 mmLength = 971 mFlow = 36.59 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 21 m^2 Pipe hydraulic radius = 1.105Age factor = 1Solids factor = 1Velocity = 1.74 m/sUnits on -line = 1Total flow, all units = 36.6 cms Friction loss = 0.44 m Fitting loss = 0.23 mTotal loss = 0.67 m 0

Aeration Exit Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 309.5 m Channel width/diameter = 4 mFlow = 6.87 cmsDownstream channel invert = 2542Channel slope = 0.002 m/mChannel side slope = not applicableArea of flow = 22.24 m^2 Flow profile = Mild Normal depth = 0.75 m Critical depth = 0.67 m Units on -line = 6Total flow, all units = 41.2 cms Depth downstream = 5.87 m Bend loss = 0 mDepth upstream = 5.25 m Velocity = 0.29 m/s

AB Tank Weir

Weir invert (top of weir) = 2547.9

Weir length = 32.6 mWeir height = 6.5 mWeir 'C' coefficient = 1.782Flow over weir = 1.71 cmsWeir submergence = unsubmerged Units on-line = 24Total flow, all units = 41.1 cmsHead over weir = 0.1 m

Aeration Basin

Channel shape = RectangularManning's 'n' = 0.013Channel length = 686 m Channel width/diameter = 11 mFlow = 1.71 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 98.95 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.136 m Units on -line = 24Total flow, all units = 41.1 cms Depth downstream = 9 mBend loss = 0 mDepth upstream = 9 mVelocity = 0.02 m/s

Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mm Gate height = 4000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.71 cms Total area of opening(s) = 12 m² Velocity through gate(s) = 0.14 m/s Flow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 41.2 cms Gate loss = 0 m Downstream water level = 2548 Upstream water level = 2548

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mm 2548

2548

Length = 77 mFlow = 1.71 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 1.52 m/sUnits on -line = 24Total flow, all units = 41.1 cms Friction loss = 0.15 m Fitting loss = 0.18 m Total loss = 0.32 m Total loss = 0.17 m 0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.71 cms Total area of opening(s) = 6.5 m^2 Velocity through gate(s) = 0.26 m/sFlow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 41.2 cms Gate loss = 0.01 mDownstream water level = 2548.32 Upstream water level = 2548.33

AB Distribution Box Weir

Weir invert (top of weir) = 2548.35Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815Flow over weir = 1.71 cms Weir submergence = unsubmerged Units on-line = 24Total flow, all units = 41.1 cms Head over weir = 0.46 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mm 2548.33

2548.81

Width = 3500 mmLength = 375 mFlow = 10.67 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 1.22 m/sUnits on -line = 3Total flow, all units = 32 cms Friction loss = 0.14 m Fitting loss = 0.14 mTotal loss = 0.28 m 0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 10.67 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 1.07 m/s Flow behavior = orifice, downstream control Units on-line = 3 Total flow, all units = 32 cms Gate loss = 0.15 m Downstream water level = 2549.09 Upstream water level = 2549.24

General Aeration Box Weir

Weir invert (top of weir) = 2549.26Weir length = 7.62 m Weir height = 3 m Weir 'C' coefficient = 1.846Flow over weir = 10.67 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 32 cms Head over weir = 0.83 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mm

2549.24

2550.09

Width = 3500 mmLength = 652 mFlow = 16 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 1.31 m/sUnits on -line = 2Total flow, all units = 32 cms Friction loss = 0.22 m Fitting loss = 0.16 mTotal loss = 0.38 m0

Clarifier Exit Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 105.4 m Flow = 2 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on -line = 16Total flow, all units = 32 cms Friction loss = 0.08 m Fitting loss = 0.12 mTotal loss = 0.2 m

Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2545 Number of openings = 1 Flow through opening(s) = 2 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 1.13 m/s Flow behavior = orifice, downstream control Units on-line = 16

2550.67

Clarifier Launder

2550.85

Launder invert $= 2547$
Launder length $= 81.7 \text{ m}$
Launder width $= 1.5 \text{ m}$
Launder slope = 0.004 m/m
Flow through launder $= 1$ cms
Critical depth $= 0.36$ m
Units on $-$ line $= 32$
Total flow, all units $= 32$ cms
Downstream depth $= 3.85$ m
Upstream depth = 3.53 m

Weir Clarifier

Invert of V notch = 2550.87Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 2 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 32 cms Head over weir = 0.08 m

Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 45 mFlow = 2 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on -line = 16Total flow, all units = 32 cms Friction loss = 0.04 mFitting loss = 0.1 mTotal loss = 0.13 m

Distribution Box Gate

Opening type = rectangular gate

2550.95

Opening diameter/width = 1500 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 2 cms Total area of opening(s) = 4.5 m^2 Velocity through gate(s) = 0.44 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 32 cmsGate loss = 0.03 mDownstream water level = 2551.08Upstream water level = 2551.11

Box 1 Weir

2551.64

Weir invert (top of weir) = 2551.13Weir length = 3.05 m Weir height = 3.5 m Weir 'C' coefficient = 1.813Flow over weir = 2 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 32 cms Head over weir = 0.51 m

Enter Pipe BOX 1

Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 110.9 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 6.25 m^2 Pipe hydraulic radius = 0.625Age factor = 1Solids factor = 1Velocity = 1.28 m/sUnits on -line = 4Total flow, all units = 32 cmsFriction loss = 0.06 m Fitting loss = 0.14 mTotal loss = 0.2 m0

General Box Gate

Opening type = rectangular gate

Opening diameter/width = 6000 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 8 cms Total area of opening(s) = 18 m² Velocity through gate(s) = 0.44 m/sFlow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0.03 mDownstream water level = 2551.84Upstream water level = 2551.87

General box 1 Weir

2552.69

Weir invert (top of weir) = 2551.89Weir length = 6.1 m Weir height = 3 m Weir 'C' coefficient = 1.843Flow over weir = 8 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 32 cms Head over weir = 0.8 m

R Mix to Clarifiers Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3000 mmLength = 150.43 m Flow = 16 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 1.52 m/sUnits on -line = 2Total flow, all units = 32 cmsFriction loss = 0.08 mFitting loss = 0.18 mTotal loss = 0.26 m 0

RM Exit Channel

Channel shape = Rectangular

Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 32 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 222.09 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.467 m Units on -line = 1Total flow, all units = 32 cms Depth downstream = 6.94 m Bend loss = 0 mDepth upstream = 6.94 m Velocity = 0.14 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547 Number of gates = 4 Flow through gate(s) = 8 cms Total area of opening(s) = 50.27 m² Velocity through gate(s) = 0.16 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0 m Downstream water level = 2552.94 Upstream water level = 2552.95

RM

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 9 m Channel width/diameter = 8 m Flow = 8 cms Downstream channel invert = 2545 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 63.57 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.467 m Units on-line = 4 2552.95

Total flow, all units = 32 cmsDepth downstream = 7.95 mBend loss = 0 mDepth upstream = 7.95 mVelocity = 0.13 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 4 Flow through gate(s) = 8 cms Total area of opening(s) = 12.57 m² Velocity through gate(s) = 0.64 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0.06 m Downstream water level = 2552.95 Upstream water level = 2553

RM Enter Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 32 cmsDownstream channel invert = 2546.5Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 208.17 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.467 m Units on -line = 1Total flow, all units = 32 cms Depth downstream = 6.5 m Bend loss = 0 mDepth upstream = 6.51 mVelocity = 0.15 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 16 cms 2553

2553.01

Friction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 1.31 m/sUnits on-line = 2Total flow, all units = 32 cmsFriction loss = 0.02 mFitting loss = 0.16 mTotal loss = 0.17 m0

Junction Tank Grit Channel

2553.18

Channel shape = RectangularManning's 'n' = 0.013Channel length = 4 mChannel width/diameter = 45.2 mFlow = 16 cmsDownstream channel invert = 2547Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 279.36 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.234 m Units on -line = 2Total flow, all units = 32 cms Depth downstream = 6.18 m Bend loss = 0 mDepth upstream = 6.18 m Velocity = 0.06 m/s

Grit Weir

Weir invert (top of weir) = 2553.2Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 3.2 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 32 cmsHead over weir = 0.27 m

Grit Channel

Channel shape = Rectangular

2553.47

Manning's 'n' = 0.013Channel length = 40.5 mChannel width/diameter = 6 mFlow = 2.29 cmsDownstream channel invert = 2545Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 50.81 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.246 m Units on -line = 14Total flow, all units = 32 cms Depth downstream = 8.47 m Bend loss = 0 mDepth upstream = 8.47 m Velocity = 0.05 m/s

Screening Exit Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 3.2 cmsTotal area of opening(s) = 4 m^2 Velocity through gate(s) = 0.8 m/sFlow behavior = orifice, downstream control Units on-line = 10Total flow, all units = 32 cmsGate loss = 0.08 mDownstream water level = 2553.47Upstream water level = 2553.55

Screen Channel 1 - 2

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 5 m Channel width/diameter = 2.4 m Flow = 2.67 cms Downstream channel invert = 2547.2 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 15.25 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.501 m Units on-line = 12 2553.55

Total flow, all units = 32 cmsDepth downstream = 6.35 mBend loss = 0 mDepth upstream = 6.36 mVelocity = 0.17 m/s

Fine Screen

Rack invert = 2548 Rack width = 1.8 m Channel width = 2 m Flow through rack = 3.2 cms Bar width = 5 mm Bar spacing = 10 mm Percent blocked = 0%Net rack open area = 6.67 m² Downstream depth = 5.56 m Velocity in channel = 0.29 m/s Velocity through bars = 0.48 m/s Units on-line = 10 Total flow, all units = 32 cms Rack head loss = 0.01 m

Screen Channel 2 -3

Channel shape = RectangularManning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.4 mFlow = 2.67 cmsDownstream channel invert = 2547.2Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 15.28 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.501 mUnits on -line = 12Total flow, all units = 32 cms Depth downstream = 6.37 m Bend loss = 0 mDepth upstream = 6.37 m Velocity = 0.17 m/s

Medium Screen

Rack invert = 2548Rack width = 1.8 m Channel width = 2 m Flow through rack = 3.2 cms Bar width = 10 mm

2553.57

2553.57

Bar spacing = 30 mm Percent blocked = 0%Net rack open area = 7.52 m² Downstream depth = 5.57 m Velocity in channel = 0.29 m/s Velocity through bars = 0.43 m/s Units on-line = 10 Total flow, all units = 32 cms Rack head loss = 0.01 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 mChannel width/diameter = 2.4 mFlow = 2.67 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 13.86 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.501 m Units on -line = 12Total flow, all units = 32 cms Depth downstream = 5.78 m Bend loss = 0 mDepth upstream = 5.78 m Velocity = 0.19 m/s

Screening Enter Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 3.2 cmsTotal area of opening(s) = 4 m^2 Velocity through gate(s) = 0.8 m/sFlow behavior = orifice, downstream control Units on-line = 10Total flow, all units = 32 cmsGate loss = 0.08 mDownstream water level = 2553.58Upstream water level = 2553.66

Screening Distribution Channel

 $Channel\ shape = Rectangular$

2553.58

2553.66

Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 m Flow = 16 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 245.66 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.246 m Units on -line = 2Total flow, all units = 32 cms Depth downstream = 5.86 m Bend loss = 0 mDepth upstream = 5.86 m Velocity = 0.07 m/s

Initial Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 4000 mmLength = 28 mFlow = 16 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1Solids factor = 1Velocity = 1.14 m/sUnits on -line = 2Total flow, all units = 32 cmsFriction loss = 0.01 m Fitting loss = 0.11 mTotal loss = 0.12 m0

Initial Gate

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 16 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.8 m/s 2553.78

Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 32 cms Gate loss = 0.08 m Downstream water level = 2553.78Upstream water level = 2553.86

Inicial Junction Tank

2553.87

Channel shape = RectangularManning's 'n' = 0.013Channel length = 13 mChannel width/diameter = 25 mFlow = 32 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 196.64 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.551 m Units on -line = 1Total flow, all units = 32 cms Depth downstream = 7.86 m Bend loss = 0 mDepth upstream = 7.87 m Velocity = 0.16 m/s

Anexo 3.2. Perfil hidráulico alternativa 2 Cota de inicio 2542.38

HP CANOAS Cota 2542 - 38 - 22 nov Q16 L2 - V9.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
$13.6~\mathrm{cms}$	$9.18~\mathrm{cms}$		

Section Description

Water Surface Elevation

Starting water surface elevation	2543.03
Exit Pipe Pipe shape = Rectangular Height = 3000 mm Width = 4000 mm Length = 343 m Flow = 6.8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 12 m^2 Pipe hydraulic radius = 0.857 Age factor = 1 Solids factor = 1 Velocity = 0.57 m/s Units on-line = 2 Total flow, all units = 13.6 cms Friction loss = 0.02 m Fitting loss = 0.02 m Total loss = 0.05 m 0	2543.08
Chlorination Exit Tank Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 8 m Channel width/diameter = 154.5 m Flow = 13.6 cms Downstream channel invert = 2540.45 Channel slope = 0.0001 m/m Channel side slope = not applicable Area of flow = 406.28 m ² Flow profile = Mild Normal depth = 0.28 m Critical depth = 0.093 m Units on-line = 1	2543.08

Total flow, all units = 13.6 cms Depth downstream = 2.63 m Bend loss = 0 m Depth upstream = 2.63 m Velocity = 0.03 m/s **Chlorination Tank Weir** Weir invert (top of weir) = 2543.84 Weir length = 23 m Weir height = 5.1 m Weir 'C' coefficient = 1.794 Flow over weir = 3.4 cms Weir submergence = unsubmerged Units on-line = 4 Total flow, all units = 13.6 cms Head over weir = 0.19 m

Chlorination Tank

Channel shape = RectangularManning's n' = 0.013Channel length = 356.5 m Channel width/diameter = 8 mFlow = 3.4 cmsDownstream channel invert = 2540Channel slope = 0.0001 m/mChannel side slope = not applicableArea of flow = 32.09 m^2 Flow profile = Mild Normal depth = 0.76 m Critical depth = 0.264 m Units on -line = 4Total flow, all units = 13.6 cms Depth downstream = 4.03 mBend loss = 0 mDepth upstream = 3.99 m Velocity = 0.11 m/s

Chlorination Tank - Enter Gate

Opening type = rectangular gate Opening diameter/width = 8000 mm Gate height = 4000 mm Invert = 2540 Number of gates = 1 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 32 m^2 Velocity through gate(s) = 0.11 m/sFlow behavior = orifice, downstream control Units on-line = 4

2544.03

2544.03

Total flow, all units = 13.6 cmsGate loss = 0 m Downstream water level = 2544.03Upstream water level = 2544.03

Chlorination Enter Tank

2544.03

Channel shape = RectangularManning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 13.6 cmsDownstream channel invert = 2540Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 370.81 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.131 m Units on -line = 1Total flow, all units = 13.6 cms Depth downstream = 4.03 m Bend loss = 0 mDepth upstream = 4.03 m Velocity = 0.04 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 522 mFlow = 6.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 0.65 m/sUnits on -line = 2Total flow, all units = 13.6 cms Friction loss = 0.05 m Fitting loss = 0.03 m Total loss = 0.08 m 0

Secondary Clarifier Exit Pipe

Pipe shape = Circular

Diameter = 1500 mmLength = 117 mFlow = 0.85 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.48 m/sUnits on -line = 16Total flow, all units = 13.6 cms Friction loss = 0.02 m Fitting loss = 0.02 mTotal loss = 0.04 m

2 Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2540 Number of openings = 1 Flow through opening(s) = 0.85 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 0.48 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 13.6 cms Orifice loss = 0.03 m Downstream water level = 2544.15 Upstream water level = 2544.18

Launder Channel 2 C

Launder invert = 2544Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.43 cmsCritical depth = 0.2 mUnits on-line = 32Total flow, all units = 13.6 cmsDownstream depth = 0.2 mUpstream depth = 0.2 m

Weir 2 Clarifier

Invert of V notch = 2545.09Angle of V notch = 90 degrees 2544.18

Number of notches = 911Total flow over weir = 0.68 cms Weir submergence = unsubmerged Units on-line = 20Total flow, all units = 13.6 cms Head over weir = 0.05 m

2 Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 48.8 mFlow = 1.42 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.81 m/sUnits on -line = 16Total flow, all units = 22.8 cms Friction loss = 0.02 m Fitting loss = 0.05 mTotal loss = 0.07 m

Gate Clarifier Distribution Box

Opening type = rectangular gate Opening diameter/width = 1500 mm Gate height = 4000 mm Invert = 2541 Number of gates = 1 Flow through gate(s) = 1.42 cms Total area of opening(s) = 6 m² Velocity through gate(s) = 0.24 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 22.8 cms Gate loss = 0.01 m Downstream water level = 2545.21 Upstream water level = 2545.22

Box 2 Weir

Weir invert (top of weir) = 2545.43Weir length = 3.05 m Weir height = 5.04 m Weir 'C' coefficient = 1.807Flow over weir = 1.42 cms 2545.21

2545.22

Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 22.8 cms Head over weir = 0.41 m

Enter Pipe BOX 2

2545.9

Pipe shape = Rectangular Height = 2500 mmWidth = 3000 mmLength = 120.4 mFlow = 5.7 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 7.5 m^2 Pipe hydraulic radius = 0.682Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on -line = 4Total flow, all units = 22.8 cms Friction loss = 0.02 m Fitting loss = 0.04 mTotal loss = 0.06 m0

General Box 2 Gate

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 21 m^2 Velocity through gate(s) = 0.16 m/sFlow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 13.6 cmsGate loss = 0 mDownstream water level = 2545.9Upstream water level = 2545.9

General box 2 Weir

Weir invert (top of weir) = 2546.28 Weir length = 7.62 m Weir height = 4 m Weir 'C' coefficient = 1.828 Flow over weir = 5.7 cms 2545.9

Weir submergence = unsubmerged Units on-line = 4 Total flow, all units = 22.8 cms Head over weir = 0.55 m

Aeration Exit pipe

2547

Pipe shape = Rectangular Height = 3500 mmWidth = 6000 mmLength = 971 mFlow = 18.19 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 21 m^2 Pipe hydraulic radius = 1.105Age factor = 1Solids factor = 1Velocity = 0.87 m/sUnits on -line = 1Total flow, all units = 18.2 cms Friction loss = 0.11 m Fitting loss = 0.06 mTotal loss = 0.17 m0

Aeration Exit Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 309.5 m Channel width/diameter = 4 mFlow = 3.8 cmsDownstream channel invert = 2542Channel slope = 0.002 m/mChannel side slope = not applicableArea of flow = 18.76 m^2 Flow profile = Mild Normal depth = 0.51 mCritical depth = 0.452 m Units on -line = 6Total flow, all units = 22.8 cms Depth downstream = 5 mBend loss = 0 mDepth upstream = 4.38 m Velocity = 0.19 m/s

AB Tank Weir

Weir invert (top of weir) = 2547.79

2547

Weir length = 32.6 mWeir height = 6.5 mWeir 'C' coefficient = 1.782Flow over weir = 0.95 cmsWeir submergence = unsubmerged Units on-line = 24Total flow, all units = 22.8 cmsHead over weir = 0.06 m

Aeration Basin

Channel shape = RectangularManning's 'n' = 0.013Channel length = 686 m Channel width/diameter = 11 mFlow = 0.95 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 97.4 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.091 m Units on -line = 24Total flow, all units = 22.8 cms Depth downstream = 8.85 m Bend loss = 0 mDepth upstream = 8.86 m Velocity = 0.01 m/s

Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mm Gate height = 4000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 0.95 cms Total area of opening(s) = 12 m^2 Velocity through gate(s) = 0.08 m/sFlow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 22.8 cms Gate loss = 0 m Downstream water level = 2547.86 Upstream water level = 2547.86

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mm 2547.86

2547.86

Length = 77 mFlow = 0.95 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 0.84 m/sUnits on -line = 24Total flow, all units = 22.8 cms Friction loss = 0.05 m Fitting loss = 0.05 mTotal loss = 0.1 mTotal loss = 0.17 m 0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 0.95 cms Total area of opening(s) = 6.5 m² Velocity through gate(s) = 0.15 m/s Flow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 22.8 cms Gate loss = 0 m Downstream water level = 2547.96 Upstream water level = 2547.96

AB Distribution Box Weir

Weir invert (top of weir) = 2548.24Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815Flow over weir = 0.95 cms Weir submergence = unsubmerged Units on-line = 24Total flow, all units = 22.8 cms Head over weir = 0.31 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mm 2547.96

2548.55

Width = 3500 mmLength = 375 mFlow = 4.53 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 0.52 m/sUnits on -line = 3Total flow, all units = 13.6 cms Friction loss = 0.03 m Fitting loss = 0.02 mTotal loss = 0.05 m0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 4.53 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 0.45 m/s Flow behavior = orifice, downstream control Units on-line = 3 Total flow, all units = 13.6 cms Gate loss = 0.03 m Downstream water level = 2548.6 Upstream water level = 2548.63

General Aeration Box Weir

Weir invert (top of weir) = 2549.15Weir length = 7.62 m Weir height = 3 m Weir 'C' coefficient = 1.846Flow over weir = 4.53 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 13.6 cms Head over weir = 0.47 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mm 2548.63

Width = 3500 mmLength = 652 mFlow = 6.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.56 m/sUnits on -line = 2Total flow, all units = 13.6 cms Friction loss = 0.04 mFitting loss = 0.03 m Total loss = 0.07 m0

Clarifier Exit Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 105.4 m Flow = 0.85 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.48 m/sUnits on -line = 16Total flow, all units = 13.6 cms Friction loss = 0.02 m Fitting loss = 0.02 mTotal loss = 0.04 m

Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2545 Number of openings = 1 Flow through opening(s) = 0.85 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 0.48 m/s Flow behavior = orifice, downstream control Units on-line = 16 2549.73

Total flow, all units $= 13.6$ cms
Orifice $loss = 0.03 m$
Downstream water level $= 2549.73$
Upstream water level $= 2549.76$

Clarifier Launder

2550.03

Launder invert $= 2549.5$
Launder length $= 81.7$ m
Launder width $= 1.5 \text{ m}$
Launder slope = 0.004 m/m
Flow through launder $= 0.43$ cms
Critical depth $= 0.2 \text{ m}$
Units on $-$ line $= 32$
Total flow, all units $= 13.6$ cms
Downstream depth = 0.26 m
Upstream depth = 0.2 m

Weir Clarifier

Invert of V notch = 2550.79Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 0.85 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 13.6 cms Head over weir = 0.06 m

Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 45 mFlow = 0.85 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.48 m/sUnits on -line = 16Total flow, all units = 13.6 cms Friction loss = 0.01 mFitting loss = 0.02 mTotal loss = 0.02 m

Distribution Box Gate

Opening type = rectangular gate

2550.85

Opening diameter/width = 1500 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 0.85 cms Total area of opening(s) = 4.5 m² Velocity through gate(s) = 0.19 m/s Flow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 13.6 cms Gate loss = 0 m Downstream water level = 2550.87Upstream water level = 2550.87

Box 1 Weir

2551.34

Weir invert (top of weir) = 2551.05Weir length = 3.05 m Weir height = 3.5 m Weir 'C' coefficient = 1.813Flow over weir = 0.85 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 13.6 cms Head over weir = 0.29 m

Enter Pipe BOX 1

Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 110.9 mFlow = 3.4 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 6.25 m^2 Pipe hydraulic radius = 0.625Age factor = 1Solids factor = 1Velocity = 0.54 m/sUnits on -line = 4Total flow, all units = 13.6 cms Friction loss = 0.01 m Fitting loss = 0.03 mTotal loss = 0.04 m 0

General Box Gate

Opening type = rectangular gate

Opening diameter/width = 6000 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 18 m^2 Velocity through gate(s) = 0.19 m/sFlow behavior = orifice, downstream control Units on-line = 4Total flow, all units = 13.6 cmsGate loss = 0 mDownstream water level = 2551.37Upstream water level = 2551.37

General box 1 Weir

2552.26

Weir invert (top of weir) = 2551.81Weir length = 6.1 m Weir height = 3 m Weir 'C' coefficient = 1.843Flow over weir = 3.4 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 13.6 cms Head over weir = 0.45 m

R Mix to Clarifiers Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3000 mmLength = 150.43 m Flow = 6.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 0.65 m/sUnits on -line = 2Total flow, all units = 13.6 cms Friction loss = 0.01 m Fitting loss = 0.03 m Total loss = 0.05 m 0

RM Exit Channel

Channel shape = Rectangular

Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 13.6 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 201.94 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.264 m Units on -line = 1Total flow, all units = 13.6 cms Depth downstream = 6.31 m Bend loss = 0 mDepth upstream = 6.31 m Velocity = 0.07 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547 Number of gates = 4 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 50.27 m^2 Velocity through gate(s) = 0.07 m/sFlow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 13.6 cmsGate loss = 0 mDownstream water level = 2552.31Upstream water level = 2552.31

RM

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 9 m Channel width/diameter = 8 m Flow = 3.4 cms Downstream channel invert = 2545 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 58.51 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.264 m Units on-line = 4 2552.31

Total flow, all units = 13.6 cms Depth downstream = 7.31 m Bend loss = 0 m Depth upstream = 7.31 m Velocity = 0.06 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 4 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 12.57 m^2 Velocity through gate(s) = 0.27 m/sFlow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 13.6 cmsGate loss = 0.01 mDownstream water level = 2552.31Upstream water level = 2552.32

RM Enter Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 13.6 cmsDownstream channel invert = 2546.5Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 186.41 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.264 m Units on -line = 1Total flow, all units = 13.6 cms Depth downstream = 5.82 m Bend loss = 0 mDepth upstream = 5.83 m Velocity = 0.07 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 6.8 cms 2552.32

2552.33

Friction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.56 m/sUnits on-line = 2Total flow, all units = 13.6 cmsFriction loss = 0 mFitting loss = 0.03 mTotal loss = 0.03 m0

Junction Tank Grit Channel

2552.36

Channel shape = RectangularManning's 'n' = 0.013Channel length = 4 mChannel width/diameter = 45.2 mFlow = 6.8 cmsDownstream channel invert = 2547Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 242.3 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.132 m Units on -line = 2Total flow, all units = 13.6 cms Depth downstream = 5.36 m Bend loss = 0 mDepth upstream = 5.36 m Velocity = 0.03 m/s

Grit Weir

Weir invert (top of weir) = 2553.12Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 1.36 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 13.6 cmsHead over weir = 0.15 m

Grit Channel

Channel shape = Rectangular

2553.27
Manning's 'n' = 0.013Channel length = 40.5 m Channel width/diameter = 6 mFlow = 0.97 cmsDownstream channel invert = 2545Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 49.63 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.139 m Units on -line = 14Total flow, all units = 13.6 cms Depth downstream = 8.27 m Bend loss = 0 mDepth upstream = 8.27 m Velocity = 0.02 m/s

Screening Exit Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 1.36 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.34 m/s Flow behavior = orifice, downstream control Units on-line = 10 Total flow, all units = 13.6 cms Gate loss = 0.02 m Downstream water level = 2553.27 Upstream water level = 2553.29

Screen Channel 1 - 2

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 5 m Channel width/diameter = 2.4 m Flow = 1.13 cms Downstream channel invert = 2547.2 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 14.61 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.284 m Units on-line = 12 2553.29

Total flow, all units = 13.6 cms Depth downstream = 6.09 m Bend loss = 0 m Depth upstream = 6.09 m Velocity = 0.08 m/s

Fine Screen

Rack invert = 2548 Rack width = 1.8 m Channel width = 2 m Flow through rack = 1.36 cms Bar width = 5 mm Bar spacing = 10 mm Percent blocked = 0%Net rack open area = 6.35 m² Downstream depth = 5.29 m Velocity in channel = 0.13 m/s Velocity through bars = 0.21 m/s Units on-line = 10 Total flow, all units = 13.6 cms Rack head loss = 0 m

Screen Channel 2 -3

Channel shape = RectangularManning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.4 mFlow = 1.13 cmsDownstream channel invert = 2547.2Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 14.62 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.284 m Units on -line = 12Total flow, all units = 13.6 cms Depth downstream = 6.09 m Bend loss = 0 mDepth upstream = 6.09 mVelocity = 0.08 m/s

Medium Screen

Rack invert = 2548Rack width = 1.8 m Channel width = 2 m Flow through rack = 1.36 cms Bar width = 10 mm 2553.29

2553.29

Bar spacing = 30 mm Percent blocked = 0%Net rack open area = 7.15 m² Downstream depth = 5.29 m Velocity in channel = 0.13 m/s Velocity through bars = 0.19 m/s Units on-line = 10 Total flow, all units = 13.6 cms Rack head loss = 0 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 mChannel width/diameter = 2.4 mFlow = 1.13 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 13.19 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.284 m Units on -line = 12Total flow, all units = 13.6 cms Depth downstream = 5.5 m Bend loss = 0 mDepth upstream = 5.5 mVelocity = 0.09 m/s

Screening Enter Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 1.36 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.34 m/s Flow behavior = orifice, downstream control Units on-line = 10 Total flow, all units = 13.6 cms Gate loss = 0.02 m Downstream water level = 2553.3 Upstream water level = 2553.31

Screening Distribution Channel

 $Channel\ shape = Rectangular$

2553.3

2553.31

Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 m Flow = 6.8 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 231.02 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.139 m Units on -line = 2Total flow, all units = 13.6 cms Depth downstream = 5.51 m Bend loss = 0 mDepth upstream = 5.52 m Velocity = 0.03 m/s

Initial Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 4000 mmLength = 28 mFlow = 6.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1Solids factor = 1Velocity = 0.49 m/sUnits on -line = 2Total flow, all units = 13.6 cms Friction loss = 0 mFitting loss = 0.02 mTotal loss = 0.02 m0

Initial Gate

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 6.8 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.34 m/s 2553.34

Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 13.6 cms Gate loss = 0.02 m Downstream water level = 2553.34Upstream water level = 2553.36

Inicial Junction Tank

2553.36

Channel shape = RectangularManning's 'n' = 0.013Channel length = 13 mChannel width/diameter = 25 mFlow = 13.6 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 183.9 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.312 m Units on -line = 1Total flow, all units = 13.6 cms Depth downstream = 7.36 m Bend loss = 0 mDepth upstream = 7.36 m Velocity = 0.07 m/s

HP CANOAS Cota 2542 - 38 - 22 nov Q21 L2 - V9.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
$16 \mathrm{cms}$	$9.18~\mathrm{cms}$		

Section Description

Water Surface Elevation

Starting water surface elevation	2543.12
Exit Pipe Pipe shape = Rectangular Height = 3000 mm Width = 4000 mm Length = 343 m Flow = 8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 12 m^2 Pipe hydraulic radius = 0.857 Age factor = 1 Solids factor = 1 Velocity = 0.67 m/s Units on-line = 2 Total flow, all units = 16 cms Friction loss = 0.03 m Fitting loss = 0.03 m Total loss = 0.07 m 0	2543.19
Chlorination Exit Tank Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 8 m Channel width/diameter = 154.5 m Flow = 16 cms Downstream channel invert = 2540.45 Channel slope = 0.0001 m/m Channel side slope = not applicable Area of flow = 423.25 m ² Flow profile = Mild Normal depth = 0.31 m Critical depth = 0.103 m Units on-line = 1	2543.19

2544.05

2544.05

	Total flow, all units $= 16 \text{ cms}$
	Depth downstream = 2.74 m
	Bend $loss = 0$ m
	Depth upstream $= 2.74$ m
	Velocity = 0.04 m/s
Chlor	ination Tank Weir
	Weir invert (top of weir) $= 2543.84$
	Weir length $= 23$ m
	Weir height $= 5.1 \text{ m}$
	Weir 'C' coefficient = 1.794
	Flow over weir $= 4 \text{ cms}$
	Weir submergence = unsubmerged
	Units on-line = 4
	Total flow, all units $= 16 \text{ cms}$
	Head over weir $= 0.21$ m
Chlor	ination Tank
	Channel shape = Rectangular
	Manning's 'n' = 0.013
	Channel length $= 356.5$ m
	Channel width/diameter = 8 m
	Flow = 4 cms
	Downstream channel invert = 2540
	Channel slope = 0.0001 m/m
	Channel side slope = not applicable
	Area of flow = 32.26 m^2
	Flow profile = Mild
	Normal depth = 0.84 m
	Critical depth = 0.295 m
	Units on-line = 4
	Total flow, all units $= 16 \text{ cms}$

2544.05

Chlorination Tank - Enter Gate

Bend loss = 0 m

Depth downstream = 4.05 m

Depth upstream = 4.01 mVelocity = 0.12 m/s

Opening type = rectangular gate Opening diameter/width = 8000 mmGate height = 4000 mmInvert = 2540Number of gates = 1 Flow through gate(s) = 4 cmsTotal area of opening(s) = 32 m^2 Velocity through gate(s) = 0.12 m/sFlow behavior = orifice, downstream control Units on-line = 4

Total flow, all units = 16 cmsGate loss = 0 mDownstream water level = 2544.05Upstream water level = 2544.05

Chlorination Enter Tank

2544.05

Channel shape = RectangularManning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 16 cmsDownstream channel invert = 2540Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 372.88 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.146 m Units on -line = 1Total flow, all units = 16 cms Depth downstream = 4.05 m Bend loss = 0 mDepth upstream = 4.05 m Velocity = 0.04 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 522 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on -line = 2Total flow, all units = 16 cmsFriction loss = 0.07 m Fitting loss = 0.04 m Total loss = 0.11 m 0

Secondary Clarifier Exit Pipe

Pipe shape = Circular

Diameter = 1500 mmLength = 117 mFlow = 1 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on -line = 16Total flow, all units = 16 cms Friction loss = 0.02 m Fitting loss = 0.03 m Total loss = 0.05 m

2 Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2540 Number of openings = 1 Flow through opening(s) = 1 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 0.57 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 16 cms Orifice loss = 0.05 m Downstream water level = 2544.22 Upstream water level = 2544.27

Launder Channel 2 C

Launder invert = 2544Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.5 cmsCritical depth = 0.22 mUnits on-line = 32Total flow, all units = 16 cmsDownstream depth = 0.27 mUpstream depth = 0.22 m

Weir 2 Clarifier

Invert of V notch = 2545.09Angle of V notch = 90 degrees 2544.27

Number of notches = 911Total flow over weir = 0.8 cms Weir submergence = unsubmerged Units on-line = 20Total flow, all units = 16 cms Head over weir = 0.05 m

2 Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 48.8 mFlow = 1.57 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.89 m/sUnits on -line = 16Total flow, all units = 25.2 cms Friction loss = 0.02 m Fitting loss = 0.06 mTotal loss = 0.08 m

Gate Clarifier Distribution Box

Opening type = rectangular gate Opening diameter/width = 1500 mm Gate height = 4000 mm Invert = 2541 Number of gates = 1 Flow through gate(s) = 1.57 cms Total area of opening(s) = 6 m² Velocity through gate(s) = 0.26 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 25.2 cms Gate loss = 0.01 m Downstream water level = 2545.23 Upstream water level = 2545.24

Box 2 Weir

Weir invert (top of weir) = 2545.43Weir length = 3.05 m Weir height = 5.04 m Weir 'C' coefficient = 1.807Flow over weir = 1.57 cms 2545.23

2545.24

Weir submergence = unsubmerged Units on-line = 16 Total flow, all units = 25.2 cms Head over weir = 0.43 m

Enter Pipe BOX 2

2545.94

Pipe shape = Rectangular Height = 2500 mmWidth = 3000 mmLength = 120.4 mFlow = 6.3 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 7.5 m^2 Pipe hydraulic radius = 0.682Age factor = 1Solids factor = 1Velocity = 0.84 m/sUnits on -line = 4Total flow, all units = 25.2 cms Friction loss = 0.02 m Fitting loss = 0.05 mTotal loss = 0.08 m0

General Box 2 Gate

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 Flow through gate(s) = 4 cms Total area of opening(s) = 21 m² Velocity through gate(s) = 0.19 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0 m Downstream water level = 2545.94 Upstream water level = 2545.94

General box 2 Weir

Weir invert (top of weir) = 2546.28 Weir length = 7.62 m Weir height = 4 m Weir 'C' coefficient = 1.828 Flow over weir = 6.3 cms 2545.94

Weir submergence = unsubmerged Units on-line = 4 Total flow, all units = 25.2 cms Head over weir = 0.59 m

Aeration Exit pipe

2547.08

Pipe shape = Rectangular Height = 3500 mmWidth = 6000 mmLength = 971 mFlow = 20.59 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 21 m^2 Pipe hydraulic radius = 1.105Age factor = 1Solids factor = 1Velocity = 0.98 m/sUnits on -line = 1Total flow, all units = 20.6 cms Friction loss = 0.14 m Fitting loss = 0.07 mTotal loss = 0.21 m0

Aeration Exit Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 309.5 m Channel width/diameter = 4 mFlow = 4.2 cmsDownstream channel invert = 2542Channel slope = 0.002 m/mChannel side slope = not applicableArea of flow = 19.08 m^2 Flow profile = Mild Normal depth = 0.54 mCritical depth = 0.483 m Units on -line = 6Total flow, all units = 25.2 cms Depth downstream = 5.08 m Bend loss = 0 mDepth upstream = 4.46 m Velocity = 0.21 m/s

AB Tank Weir

Weir invert (top of weir) = 2547.79

Weir length = 32.6 mWeir height = 6.5 mWeir 'C' coefficient = 1.782Flow over weir = 1.05 cmsWeir submergence = unsubmerged Units on-line = 24Total flow, all units = 25.2 cmsHead over weir = 0.07 m

Aeration Basin

Channel shape = RectangularManning's 'n' = 0.013Channel length = 686 m Channel width/diameter = 11 mFlow = 1.05 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 97.45 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.098 m Units on -line = 24Total flow, all units = 25.2 cms Depth downstream = 8.86 m Bend loss = 0 mDepth upstream = 8.86 m Velocity = 0.01 m/s

Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mm Gate height = 4000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.05 cms Total area of opening(s) = 12 m² Velocity through gate(s) = 0.09 m/s Flow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 25.2 cms Gate loss = 0 m Downstream water level = 2547.86 Upstream water level = 2547.86

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mm 2547.86

Length = 77 mFlow = 1.05 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 0.93 m/sUnits on -line = 24Total flow, all units = 25.2 cms Friction loss = 0.06 m Fitting loss = 0.07 mTotal loss = 0.12 m Total loss = 0.17 m 0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.05 cms Total area of opening(s) = 6.5 m^2 Velocity through gate(s) = 0.16 m/sFlow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 25.2 cms Gate loss = 0 m Downstream water level = 2547.98 Upstream water level = 2547.98

AB Distribution Box Weir

Weir invert (top of weir) = 2548.24Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815Flow over weir = 1.05 cms Weir submergence = unsubmerged Units on-line = 24Total flow, all units = 25.2 cms Head over weir = 0.33 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mm 2547.98

2548.57

Width = 3500 mmLength = 375 mFlow = 5.33 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 0.61 m/sUnits on -line = 3Total flow, all units = 16 cms Friction loss = 0.04 mFitting loss = 0.03 mTotal loss = 0.07 m0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 5.33 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 0.53 m/s Flow behavior = orifice, downstream control Units on-line = 3 Total flow, all units = 16 cms Gate loss = 0.04 m Downstream water level = 2548.64 Upstream water level = 2548.68

General Aeration Box Weir

Weir invert (top of weir) = 2549.15Weir length = 7.62 m Weir height = 3 m Weir 'C' coefficient = 1.846Flow over weir = 5.33 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 16 cms Head over weir = 0.52 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mm 2548.68

Width = 3500 mmLength = 652 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.65 m/sUnits on -line = 2Total flow, all units = 16 cms Friction loss = 0.06 m Fitting loss = 0.04 mTotal loss = 0.1 m0

Clarifier Exit Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 105.4 mFlow = 1 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on -line = 16Total flow, all units = 16 cms Friction loss = 0.02 m Fitting loss = 0.03 m Total loss = 0.05 m

Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2545 Number of openings = 1 Flow through opening(s) = 1 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 0.57 m/s Flow behavior = orifice, downstream control Units on-line = 16 2549.82

Total flow, all units $= 16 \mathrm{cms}$
Orifice $loss = 0.05 m$
Downstream water level $= 2549.82$
Upstream water level $= 2549.87$

Clarifier Launder

2550.05

Launder invert $= 2549.5$
Launder length $= 81.7 \text{ m}$
Launder width $= 1.5 \text{ m}$
Launder slope = 0.004 m/m
Flow through launder $= 0.5$ cms
Critical depth $= 0.22$ m
Units on - line = 32
Total flow, all units $= 16 \text{ cms}$
Downstream depth = 0.37 m
Upstream depth = 0.22 m

Weir Clarifier

Invert of V notch = 2550.79Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 1 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 16 cms Head over weir = 0.06 m

Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 45 mFlow = 1 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on -line = 16Total flow, all units = 16 cms Friction loss = 0.01 mFitting loss = 0.02 mTotal loss = 0.03 m

Distribution Box Gate

Opening type = rectangular gate

2550.85

2550.88

Opening diameter/width = 1500 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 1 cms Total area of opening(s) = 4.5 m^2 Velocity through gate(s) = 0.22 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 16 cmsGate loss = 0.01 mDownstream water level = 2550.88Upstream water level = 2550.89

Box 1 Weir

2551.37

Weir invert (top of weir) = 2551.05Weir length = 3.05 m Weir height = 3.5 m Weir 'C' coefficient = 1.813Flow over weir = 1 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 16 cms Head over weir = 0.32 m

Enter Pipe BOX 1

Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 110.9 mFlow = 4 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 6.25 m^2 Pipe hydraulic radius = 0.625Age factor = 1Solids factor = 1Velocity = 0.64 m/sUnits on -line = 4Total flow, all units = 16 cmsFriction loss = 0.01 m Fitting loss = 0.04 m Total loss = 0.05 m 0

General Box Gate

Opening type = rectangular gate

Opening diameter/width = 6000 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 4 cms Total area of opening(s) = 18 m² Velocity through gate(s) = 0.22 m/sFlow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0.01 mDownstream water level = 2551.42Upstream water level = 2551.43

General box 1 Weir

2552.31

Weir invert (top of weir) = 2551.81Weir length = 6.1 m Weir height = 3 m Weir 'C' coefficient = 1.843Flow over weir = 4 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 16 cms Head over weir = 0.5 m

R Mix to Clarifiers Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3000 mmLength = 150.43 m Flow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on -line = 2Total flow, all units = 16 cmsFriction loss = 0.02 m Fitting loss = 0.04 mTotal loss = 0.06 m 0

RM Exit Channel

Channel shape = Rectangular

Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 16 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 204.17 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.295 m Units on -line = 1Total flow, all units = 16 cms Depth downstream = 6.38 m Bend loss = 0 mDepth upstream = 6.38 m Velocity = 0.08 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547 Number of gates = 4 Flow through gate(s) = 4 cms Total area of opening(s) = 50.27 m² Velocity through gate(s) = 0.08 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0 m Downstream water level = 2552.38 Upstream water level = 2552.38

RM

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 9 m Channel width/diameter = 8 m Flow = 4 cms Downstream channel invert = 2545 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 59.07 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.295 m Units on-line = 4 2552.38

Total flow, all units = 16 cms Depth downstream = 7.38 m Bend loss = 0 m Depth upstream = 7.38 m Velocity = 0.07 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 4 Flow through gate(s) = 4 cms Total area of opening(s) = 12.57 m² Velocity through gate(s) = 0.32 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0.01 m Downstream water level = 2552.38 Upstream water level = 2552.4

RM Enter Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 16 cmsDownstream channel invert = 2546.5Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 188.79 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.295 m Units on -line = 1Total flow, all units = 16 cms Depth downstream = 5.9 m Bend loss = 0 mDepth upstream = 5.9 mVelocity = 0.08 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 8 cms 2552.4

2552.4

Friction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.65 m/sUnits on-line = 2Total flow, all units = 16 cmsFriction loss = 0 mFitting loss = 0.04 mTotal loss = 0.04 m0

Junction Tank Grit Channel

2552.44

Channel shape = RectangularManning's 'n' = 0.013Channel length = 4 mChannel width/diameter = 45.2 mFlow = 8 cmsDownstream channel invert = 2547Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 245.91 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.148 m Units on -line = 2Total flow, all units = 16 cms Depth downstream = 5.44 m Bend loss = 0 mDepth upstream = 5.44 m Velocity = 0.03 m/s

Grit Weir

Weir invert (top of weir) = 2553.12Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 1.6 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 16 cmsHead over weir = 0.17 m

Grit Channel

Channel shape = Rectangular

2553.29

Manning's 'n' = 0.013Channel length = 40.5 m Channel width/diameter = 6 mFlow = 1.14 cmsDownstream channel invert = 2545Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 49.73 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.155 m Units on -line = 14Total flow, all units = 16 cms Depth downstream = 8.29 m Bend loss = 0 mDepth upstream = 8.29 m Velocity = 0.02 m/s

Screening Exit Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 1.6 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.4 m/s Flow behavior = orifice, downstream control Units on-line = 10 Total flow, all units = 16 cms Gate loss = 0.02 m Downstream water level = 2553.29 Upstream water level = 2553.31

Screen Channel 1 - 2

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 5 m Channel width/diameter = 2.4 m Flow = 1.33 cms Downstream channel invert = 2547.2 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 14.67 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.316 m Units on-line = 12 2553.31

Total flow, all units = 16 cms Depth downstream = 6.11 m Bend loss = 0 m Depth upstream = 6.11 m Velocity = 0.09 m/s

Fine Screen

Rack invert = 2548Rack width = 1.8 m Channel width = 2 m Flow through rack = 1.6 cms Bar width = 5 mm Bar spacing = 10 mm Percent blocked = 0%Net rack open area = 6.38 m² Downstream depth = 5.31 m Velocity in channel = 0.15 m/s Velocity through bars = 0.25 m/s Units on-line = 10Total flow, all units = 16 cms Rack head loss = 0 m

Screen Channel 2 -3

Channel shape = RectangularManning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.4 mFlow = 1.33 cmsDownstream channel invert = 2547.2Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 14.68 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.316 m Units on -line = 12Total flow, all units = 16 cms Depth downstream = 6.12 m Bend loss = 0 mDepth upstream = 6.12 m Velocity = 0.09 m/s

Medium Screen

Rack invert = 2548Rack width = 1.8 m Channel width = 2 m Flow through rack = 1.6 cms Bar width = 10 mm

2553.32

2553.32

Bar spacing = 30 mm Percent blocked = 0%Net rack open area = 7.18 m² Downstream depth = 5.32 m Velocity in channel = 0.15 m/s Velocity through bars = 0.22 m/s Units on-line = 10Total flow, all units = 16 cms Rack head loss = 0 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 mChannel width/diameter = 2.4 mFlow = 1.33 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 13.25 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.316 m Units on -line = 12Total flow, all units = 16 cms Depth downstream = 5.52 m Bend loss = 0 mDepth upstream = 5.52 m Velocity = 0.1 m/s

Screening Enter Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 1.6 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.4 m/s Flow behavior = orifice, downstream control Units on-line = 10 Total flow, all units = 16 cms Gate loss = 0.02 m Downstream water level = 2553.32 Upstream water level = 2553.34

Screening Distribution Channel

Channel shape = Rectangular

2553.32

2553.34

Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 m Flow = 8 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 232.29 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.155 m Units on -line = 2Total flow, all units = 16 cms Depth downstream = 5.54 mBend loss = 0 mDepth upstream = 5.55 m Velocity = 0.03 m/s

Initial Pipe

Pipe shape = RectangularHeight = 3500 mmWidth = 4000 mmLength = 28 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on -line = 2Total flow, all units = 16 cmsFriction loss = 0 mFitting loss = 0.03 m Total loss = 0.03 m0

Initial Gate

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 8 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.4 m/s 2553.38

Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 16 cms Gate loss = 0.02 m Downstream water level = 2553.38Upstream water level = 2553.4

Inicial Junction Tank

2553.4

Channel shape = RectangularManning's 'n' = 0.013Channel length = 13 mChannel width/diameter = 25 mFlow = 16 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 185.04 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.347 m Units on -line = 1Total flow, all units = 16 cms Depth downstream = 7.4 m Bend loss = 0 mDepth upstream = 7.4 mVelocity = 0.09 m/s

HP CANOAS Cota 2542 - 38 - 22 nov Q21 L2 - V9.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
$21.4~\mathrm{cms}$	$9.18~\mathrm{cms}$		

Section Description

Water Surface Elevation

Starting water surface elevation	2543.29
Exit Pipe Pipe shape = Rectangular Height = 3000 mm Width = 4000 mm Length = 343 m Flow = 10.7 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 12 m^2 Pipe hydraulic radius = 0.857 Age factor = 1 Solids factor = 1 Velocity = 0.89 m/s Units on-line = 2 Total flow, all units = 21.4 cms Friction loss = 0.06 m Fitting loss = 0.06 m Total loss = 0.12 m 0	2543.41
Chlorination Exit Tank Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 8 m Channel width/diameter = 154.5 m Flow = 21.4 cms Downstream channel invert = 2540.45 Channel slope = 0.0001 m/m Channel side slope = not applicable Area of flow = 457.24 m^2 Flow profile = Mild Normal depth = 0.36 m Critical depth = 0.125 m Units on-line = 1	2543.41

Total flow, all units = 21.4 cms Depth downstream = 2.96 m Bend loss = 0 mDepth upstream = 2.96 m Velocity = 0.05 m/s

Chlorination Tank Weir

2544.1

Weir invert (top of weir) = 2543.84Weir length = 23 m Weir height = 5.1 mWeir 'C' coefficient = 1.794Flow over weir = 5.35 cms Weir submergence = unsubmerged Units on -line = 4Total flow, all units = 21.4 cms Head over weir = 0.26 m

Chlorination Tank

Channel shape = RectangularManning's n' = 0.013Channel length = 356.5 mChannel width/diameter = 8 mFlow = 5.35 cmsDownstream channel invert = 2540Channel slope = 0.0001 m/mChannel side slope = not applicableArea of flow = 32.62 m^2 Flow profile = Mild Normal depth = 1.01 mCritical depth = 0.358 m Units on -line = 4Total flow, all units = 21.4 cms Depth downstream = 4.1 mBend loss = 0 mDepth upstream = 4.06 m Velocity = 0.16 m/s

Chlorination Tank - Enter Gate

Opening type = rectangular gate Opening diameter/width = 8000 mmGate height = 4000 mmInvert = 2540Number of gates = 1Flow through gate(s) = 5.35 cms Total area of opening(s) = 32 m^2 Velocity through gate(s) = 0.17 m/sFlow behavior = orifice, downstream control Units on -line = 4

2544.1

Total flow, all units = 21.4 cms Gate loss = 0 m Downstream water level = 2544.1Upstream water level = 2544.1

Chlorination Enter Tank

2544.1

Channel shape = RectangularManning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 21.4 cmsDownstream channel invert = 2540Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 377.23 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.177 m Units on -line = 1Total flow, all units = 21.4 cms Depth downstream = 4.1 mBend loss = 0 mDepth upstream = 4.1 mVelocity = 0.06 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 522 mFlow = 10.7 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 1.02 m/sUnits on -line = 2Total flow, all units = 21.4 cms Friction loss = 0.12 m Fitting loss = 0.08 mTotal loss = 0.2 m0

Secondary Clarifier Exit Pipe

Pipe shape = Circular

Diameter = 1500 mmLength = 117 mFlow = 1.34 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on -line = 16Total flow, all units = 21.4 cms Friction loss = 0.04 mFitting loss = 0.05 mTotal loss = 0.09 m

2 Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2540 Number of openings = 1 Flow through opening(s) = 1.34 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 0.76 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 21.4 cms Orifice loss = 0.08 m Downstream water level = 2544.39 Upstream water level = 2544.47

Launder Channel 2 C

Launder invert = 2544Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.67 cmsCritical depth = 0.27 mUnits on-line = 32Total flow, all units = 21.4 cmsDownstream depth = 0.47 mUpstream depth = 0.27 m

Weir 2 Clarifier

Invert of V notch = 2545.09 Angle of V notch = 90 degrees 2544.47

2544.64

Number of notches = 911Total flow over weir = 1.07 cms Weir submergence = unsubmerged Units on-line = 20Total flow, all units = 21.4 cms Head over weir = 0.06 m

2 Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 48.8 mFlow = 1.91 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.08 m/sUnits on -line = 16Total flow, all units = 30.6 cms Friction loss = 0.04 m Fitting loss = 0.09 mTotal loss = 0.13 m

Gate Clarifier Distribution Box

Opening type = rectangular gate Opening diameter/width = 1500 mm Gate height = 4000 mm Invert = 2541 Number of gates = 1 Flow through gate(s) = 1.91 cms Total area of opening(s) = 6 m² Velocity through gate(s) = 0.32 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 30.6 cms Gate loss = 0.01 m Downstream water level = 2545.27 Upstream water level = 2545.28

Box 2 Weir

Weir invert (top of weir) = 2545.43Weir length = 3.05 m Weir height = 5.04 m Weir 'C' coefficient = 1.807Flow over weir = 1.91 cms 2545.27

2545.28

Weir submergence = unsubmerged Units on-line = 16 Total flow, all units = 30.6 cms Head over weir = 0.49 m

Enter Pipe BOX 2

2546.04

Pipe shape = Rectangular Height = 2500 mmWidth = 3000 mmLength = 120.4 mFlow = 7.64 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 7.5 m^2 Pipe hydraulic radius = 0.682Age factor = 1Solids factor = 1Velocity = 1.02 m/sUnits on -line = 4Total flow, all units = 30.6 cms Friction loss = 0.04 mFitting loss = 0.08 mTotal loss = 0.11 m0

General Box 2 Gate

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 Flow through gate(s) = 5.35 cms Total area of opening(s) = 21 m² Velocity through gate(s) = 0.25 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 21.4 cms Gate loss = 0.01 m Downstream water level = 2546.04 Upstream water level = 2546.05

General box 2 Weir

Weir invert (top of weir) = 2546.28Weir length = 7.62 m Weir height = 4 m Weir 'C' coefficient = 1.828Flow over weir = 7.64 cms 2546.05

Weir submergence = unsubmerged Units on-line = 4 Total flow, all units = 30.6 cms Head over weir = 0.67 m

Aeration Exit pipe

2547.29

Pipe shape = Rectangular Height = 3500 mmWidth = 6000 mmLength = 971 mFlow = 25.99 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 21 m^2 Pipe hydraulic radius = 1.105Age factor = 1Solids factor = 1Velocity = 1.24 m/sUnits on -line = 1Total flow, all units = 26 cmsFriction loss = 0.22 m Fitting loss = 0.12 mTotal loss = 0.34 m0

Aeration Exit Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 309.5 m Channel width/diameter = 4 mFlow = 5.1 cmsDownstream channel invert = 2542Channel slope = 0.002 m/mChannel side slope = not applicableArea of flow = 19.92 m^2 Flow profile = Mild Normal depth = 0.62 mCritical depth = 0.55 m Units on -line = 6Total flow, all units = 30.6 cms Depth downstream = 5.29 m Bend loss = 0 mDepth upstream = 4.67 mVelocity = 0.24 m/s

AB Tank Weir

Weir invert (top of weir) = 2547.79

Weir length = 32.6 mWeir height = 6.5 mWeir 'C' coefficient = 1.782Flow over weir = 1.27 cmsWeir submergence = unsubmerged Units on-line = 24Total flow, all units = 30.5 cmsHead over weir = 0.08 m

Aeration Basin

Channel shape = RectangularManning's 'n' = 0.013Channel length = 686 m Channel width/diameter = 11 mFlow = 1.27 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 97.56 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.111 mUnits on -line = 24Total flow, all units = 30.6 cms Depth downstream = 8.87 m Bend loss = 0 mDepth upstream = 8.87 m Velocity = 0.01 m/s

Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mm Gate height = 4000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.27 cms Total area of opening(s) = 12 m² Velocity through gate(s) = 0.11 m/s Flow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 30.6 cms Gate loss = 0 m Downstream water level = 2547.87 Upstream water level = 2547.87

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mm 2547.87

2547.87

Length = 77 mFlow = 1.27 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on -line = 24Total flow, all units = 30.6 cms Friction loss = 0.08 m Fitting loss = 0.1 mTotal loss = 0.18 m Total loss = 0.17 m 0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.27 cms Total area of opening(s) = 6.5 m^2 Velocity through gate(s) = 0.2 m/sFlow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 30.6 cms Gate loss = 0.01 mDownstream water level = 2548.05Upstream water level = 2548.06

AB Distribution Box Weir

Weir invert (top of weir) = 2548.24Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815Flow over weir = 1.27 cms Weir submergence = unsubmerged Units on-line = 24Total flow, all units = 30.5 cms Head over weir = 0.38 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mm 2548.06

2548.61
Width = 3500 mmLength = 375 mFlow = 7.13 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 0.82 m/sUnits on -line = 3Total flow, all units = 21.4 cms Friction loss = 0.06 m Fitting loss = 0.06 mTotal loss = 0.13 m0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 7.13 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 0.71 m/s Flow behavior = orifice, downstream control Units on-line = 3 Total flow, all units = 21.4 cms Gate loss = 0.07 m Downstream water level = 2548.74 Upstream water level = 2548.81

General Aeration Box Weir

Weir invert (top of weir) = 2549.15Weir length = 7.62 m Weir height = 3 m Weir 'C' coefficient = 1.846Flow over weir = 7.13 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 21.4 cms Head over weir = 0.64 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mm 2548.81

Width = 3500 mmLength = 652 mFlow = 10.7 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.87 m/sUnits on -line = 2Total flow, all units = 21.4 cms Friction loss = 0.1 mFitting loss = 0.07 mTotal loss = 0.17 m0

Clarifier Exit Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 105.4 m Flow = 1.34 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on -line = 16Total flow, all units = 21.4 cms Friction loss = 0.04 m Fitting loss = 0.05 mTotal loss = 0.09 m

Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2545 Number of openings = 1 Flow through opening(s) = 1.34 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 0.76 m/s Flow behavior = orifice, downstream control Units on-line = 16

2550.05

Total flow, all units $= 21.4$ cms
Orifice $loss = 0.08 \text{ m}$
Downstream water level $= 2550.05$
Upstream water level $= 2550.13$

Clarifier Launder

2550.19

Launder invert $= 2549.5$
Launder length $= 81.7 \text{ m}$
Launder width $= 1.5 \text{ m}$
Launder slope = 0.004 m/m
Flow through launder $= 0.67$ cms
Critical depth $= 0.27 \text{ m}$
Units on - line = 32
Total flow, all units $= 21.4$ cms
Downstream depth $= 0.63$ m
Upstream depth $= 0.36$ m

Weir Clarifier

Invert of V notch = 2550.79Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 1.34 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 21.4 cms Head over weir = 0.07 m

Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 45 mFlow = 1.34 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on -line = 16Total flow, all units = 21.4 cms Friction loss = 0.02 mFitting loss = 0.04 m Total loss = 0.06 m

Distribution Box Gate

Opening type = rectangular gate

2550.86

Opening diameter/width = 1500 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 1.34 cms Total area of opening(s) = 4.5 m² Velocity through gate(s) = 0.3 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 21.4 cms Gate loss = 0.01 m Downstream water level = 2550.92 Upstream water level = 2550.93

Box 1 Weir

2551.44

Weir invert (top of weir) = 2551.05Weir length = 3.05 m Weir height = 3.5 m Weir 'C' coefficient = 1.813Flow over weir = 1.34 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 21.4 cms Head over weir = 0.39 m

Enter Pipe BOX 1

Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 110.9 mFlow = 5.35 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 6.25 m^2 Pipe hydraulic radius = 0.625Age factor = 1Solids factor = 1Velocity = 0.86 m/sUnits on -line = 4Total flow, all units = 21.4 cms Friction loss = 0.03 m Fitting loss = 0.06 mTotal loss = 0.09 m 0

General Box Gate

Opening type = rectangular gate

Opening diameter/width = 6000 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 5.35 cms Total area of opening(s) = 18 m² Velocity through gate(s) = 0.3 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 21.4 cms Gate loss = 0.01 m Downstream water level = 2551.53 Upstream water level = 2551.54

General box 1 Weir

2552.42

Weir invert (top of weir) = 2551.81Weir length = 6.1 m Weir height = 3 m Weir 'C' coefficient = 1.843Flow over weir = 5.35 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 21.4 cms Head over weir = 0.61 m

R Mix to Clarifiers Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3000 mmLength = 150.43 m Flow = 10.7 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 1.02 m/sUnits on -line = 2Total flow, all units = 21.4 cms Friction loss = 0.04 mFitting loss = 0.08 mTotal loss = 0.11 m 0

RM Exit Channel

 $Channel \ shape = Rectangular$

Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 21.4 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 208.98 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.358 m Units on -line = 1Total flow, all units = 21.4 cms Depth downstream = 6.53 m Bend loss = 0 mDepth upstream = 6.53 m Velocity = 0.1 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547 Number of gates = 4 Flow through gate(s) = 5.35 cms Total area of opening(s) = 50.27 m² Velocity through gate(s) = 0.11 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 21.4 cms Gate loss = 0 m Downstream water level = 2552.53 Upstream water level = 2552.53

RM

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 9 m Channel width/diameter = 8 m Flow = 5.35 cms Downstream channel invert = 2545 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 60.27 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.358 m Units on-line = 4 2552.53

Total flow, all units = 21.4 cms Depth downstream = 7.53 m Bend loss = 0 m Depth upstream = 7.54 m Velocity = 0.09 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 4 Flow through gate(s) = 5.35 cms Total area of opening(s) = 12.57 m² Velocity through gate(s) = 0.43 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 21.4 cms Gate loss = 0.03 m Downstream water level = 2552.54 Upstream water level = 2552.56

RM Enter Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 21.4 cmsDownstream channel invert = 2546.5Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 193.98 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.358 m Units on -line = 1Total flow, all units = 21.4 cms Depth downstream = 6.06 m Bend loss = 0 mDepth upstream = 6.06 m Velocity = 0.11 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 10.7 cms 2552.56

2552.56

Friction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.87 m/sUnits on-line = 2Total flow, all units = 21.4 cmsFriction loss = 0.01 mFitting loss = 0.07 mTotal loss = 0.08 m0

Junction Tank Grit Channel

2552.64

Channel shape = RectangularManning's 'n' = 0.013Channel length = 4 mChannel width/diameter = 45.2 mFlow = 10.7 cmsDownstream channel invert = 2547Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 254.95 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.179 m Units on -line = 2Total flow, all units = 21.4 cms Depth downstream = 5.64 m Bend loss = 0 mDepth upstream = 5.64 m Velocity = 0.04 m/s

Grit Weir

Weir invert (top of weir) = 2553.12Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 2.14 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 21.4 cmsHead over weir = 0.2 m

Grit Channel

Channel shape = Rectangular

2553.33

Manning's 'n' = 0.013Channel length = 40.5 mChannel width/diameter = 6 mFlow = 1.53 cmsDownstream channel invert = 2545Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 49.95 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.188 m Units on -line = 14Total flow, all units = 21.4 cms Depth downstream = 8.32 m Bend loss = 0 mDepth upstream = 8.33 m Velocity = 0.03 m/s

Screening Exit Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 2.14 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.54 m/s Flow behavior = orifice, downstream control Units on-line = 10 Total flow, all units = 21.4 cms Gate loss = 0.04 m Downstream water level = 2553.33 Upstream water level = 2553.36

Screen Channel 1 - 2

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 5 m Channel width/diameter = 2.4 m Flow = 1.78 cms Downstream channel invert = 2547.2 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 14.79 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.384 m Units on-line = 12 2553.36

Total flow, all units = 21.4 cms Depth downstream = 6.16 m Bend loss = 0 m Depth upstream = 6.17 m Velocity = 0.12 m/s

Fine Screen

Rack invert = 2548 Rack width = 1.8 m Channel width = 2 m Flow through rack = 2.14 cms Bar width = 5 mm Bar spacing = 10 mm Percent blocked = 0%Net rack open area = 6.44 m² Downstream depth = 5.37 m Velocity in channel = 0.2 m/sVelocity through bars = 0.33 m/sUnits on-line = 10Total flow, all units = 21.4 cms Rack head loss = 0.01 m

Screen Channel 2 -3

Channel shape = RectangularManning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.4 mFlow = 1.78 cmsDownstream channel invert = 2547.2Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 14.81 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.384 m Units on -line = 12Total flow, all units = 21.4 cms Depth downstream = 6.17 m Bend loss = 0 mDepth upstream = 6.17 m Velocity = 0.12 m/s

Medium Screen

Rack invert = 2548Rack width = 1.8 m Channel width = 2 m Flow through rack = 2.14 cms Bar width = 10 mm

2553.37

2553.37

Bar spacing = 30 mm Percent blocked = 0%Net rack open area = 7.25 m² Downstream depth = 5.37 m Velocity in channel = 0.2 m/sVelocity through bars = 0.3 m/sUnits on-line = 10Total flow, all units = 21.4 cmsRack head loss = 0 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 mChannel width/diameter = 2.4 mFlow = 1.78 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 13.38 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.384 m Units on -line = 12Total flow, all units = 21.4 cms Depth downstream = 5.58 m Bend loss = 0 mDepth upstream = 5.58 m Velocity = 0.13 m/s

Screening Enter Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 2.14 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.54 m/s Flow behavior = orifice, downstream control Units on-line = 10 Total flow, all units = 21.4 cms Gate loss = 0.04 m Downstream water level = 2553.38 Upstream water level = 2553.42

Screening Distribution Channel

 $Channel\ shape = Rectangular$

2553.38

2553.42

Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 m Flow = 10.7 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 235.34 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.188 m Units on -line = 2Total flow, all units = 21.4 cms Depth downstream = 5.62 m Bend loss = 0 mDepth upstream = 5.62 m Velocity = 0.05 m/s

Initial Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 4000 mmLength = 28 mFlow = 10.7 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on -line = 2Total flow, all units = 21.4 cms Friction loss = 0 mFitting loss = 0.05 mTotal loss = 0.05 m0

Initial Gate

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 10.7 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.53 m/s 2553.47

Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 21.4 cms Gate loss = 0.04 m Downstream water level = 2553.47Upstream water level = 2553.51

Inicial Junction Tank

2553.51

Channel shape = RectangularManning's 'n' = 0.013Channel length = 13 mChannel width/diameter = 25 mFlow = 21.4 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 187.71 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.422 m Units on -line = 1Total flow, all units = 21.4 cms Depth downstream = 7.51 mBend loss = 0 mDepth upstream = 7.51 m Velocity = 0.11 m/s

HP CANOAS Cota 2542 - 38 - 22 nov Q32 L2 - V9.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
$32~\mathrm{cms}$	$9.18~\mathrm{cms}$		

Section Description

Water Surface Elevation

Starting water surface elevation	2543.56
Exit Pipe Pipe shape = Rectangular Height = 3000 mm Width = 4000 mm Length = 343 m Flow = 16 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 12 m^2 Pipe hydraulic radius = 0.857 Age factor = 1 Solids factor = 1 Velocity = 1.33 m/s Units on-line = 2 Total flow, all units = 32 cms Friction loss = 0.13 m Fitting loss = 0.14 m Total loss = 0.26 m 0	2543.82
Chlorination Exit Tank Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 8 m Channel width/diameter = 154.5 m Flow = 32 cms Downstream channel invert = 2540.45 Channel slope = 0.0001 m/m Channel side slope = not applicable Area of flow = 520.61 m ² Flow profile = Mild Normal depth = 0.46 m Critical depth = 0.164 m Units on-line = 1	2543.82

Total flow, all units = 32 cms Depth downstream = 3.37 m Bend loss = 0 mDepth upstream = 3.37 m Velocity = 0.06 m/s**Chlorination Tank Weir** Weir invert (top of weir) = 2543.84Weir length = 23 m Weir height = 5.1 mWeir 'C' coefficient = 1.794Flow over weir = 8 cms Weir submergence = unsubmerged Units on -line = 4Total flow, all units = 32 cms Head over weir = 0.33 m **Chlorination Tank** Channel shape = RectangularManning's n' = 0.013Channel length = 356.5 m Channel width/diameter = 8 mFlow = 8 cmsDownstream channel invert = 2540Channel slope = 0.0001 m/mChannel side slope = not applicableArea of flow = 33.26 m^2 Flow profile = Mild Normal depth = 1.32 m Critical depth = 0.467 mUnits on -line = 4Total flow, all units = 32 cms Depth downstream = 4.17 mBend loss = 0 mDepth upstream = 4.14 mVelocity = 0.24 m/s**Chlorination Tank - Enter Gate** Opening type = rectangular gate

Opening type = rectangular gate Opening diameter/width = 8000 mm Gate height = 4000 mm Invert = 2540 Number of gates = 1 Flow through gate(s) = 8 cms Total area of opening(s) = 32 m² Velocity through gate(s) = 0.25 m/s Flow behavior = orifice, downstream control Units on-line = 4 2544.17

2544.18

Total flow, all units = 32 cmsGate loss = 0.01 mDownstream water level = 2544.18Upstream water level = 2544.19

Chlorination Enter Tank

2544.19

Channel shape = RectangularManning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 32 cmsDownstream channel invert = 2540Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 385.18 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.231 m Units on -line = 1Total flow, all units = 32 cms Depth downstream = 4.19 mBend loss = 0 mDepth upstream = 4.19 m Velocity = 0.08 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 522 mFlow = 16 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 1.52 m/sUnits on -line = 2Total flow, all units = 32 cmsFriction loss = 0.27 m Fitting loss = 0.18 mTotal loss = 0.45 m 0

Secondary Clarifier Exit Pipe

Pipe shape = Circular

Diameter = 1500 mmLength = 117 mFlow = 2 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on -line = 16Total flow, all units = 32 cms Friction loss = 0.09 m Fitting loss = 0.11 mTotal loss = 0.2 m

2 Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2540 Number of openings = 1 Flow through opening(s) = 2 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 1.13 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 32 cms Orifice loss = 0.18 m Downstream water level = 2544.84 Upstream water level = 2545.02

Launder Channel 2 C

Launder invert = 2544Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 1 cmsCritical depth = 0.36 mUnits on-line = 32Total flow, all units = 32 cmsDownstream depth = 1.02 mUpstream depth = 0.71 m

Weir 2 Clarifier

Invert of V notch = 2545.09 Angle of V notch = 90 degrees 2545.02

Number of notches = 911Total flow over weir = 1.6 cms Weir submergence = unsubmerged Units on-line = 20Total flow, all units = 32 cms Head over weir = 0.07 m

2 Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 48.8 mFlow = 2.57 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.46 m/sUnits on -line = 16Total flow, all units = 41.2 cms Friction loss = 0.06 m Fitting loss = 0.16 mTotal loss = 0.23 m

Gate Clarifier Distribution Box

Opening type = rectangular gate Opening diameter/width = 1500 mm Gate height = 4000 mm Invert = 2541 Number of gates = 1 Flow through gate(s) = 2.57 cms Total area of opening(s) = 6 m² Velocity through gate(s) = 0.43 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 41.2 cms Gate loss = 0.02 m Downstream water level = 2545.39 Upstream water level = 2545.41

Box 2 Weir

Weir invert (top of weir) = 2545.43Weir length = 3.05 m Weir height = 5.04 m Weir 'C' coefficient = 1.807Flow over weir = 2.57 cms 2545.39

2545.41

Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 41.2 cms Head over weir = 0.6 m

Enter Pipe BOX 2

2546.24

Pipe shape = Rectangular Height = 2500 mmWidth = 3000 mmLength = 120.4 mFlow = 10.3 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 7.5 m^2 Pipe hydraulic radius = 0.682Age factor = 1Solids factor = 1Velocity = 1.37 m/sUnits on -line = 4Total flow, all units = 41.2 cms Friction loss = 0.06 m Fitting loss = 0.14 mTotal loss = 0.21 m0

General Box 2 Gate

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 Flow through gate(s) = 8 cms Total area of opening(s) = 21 m² Velocity through gate(s) = 0.38 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0.02 m Downstream water level = 2546.24 Upstream water level = 2546.26

General box 2 Weir

Weir invert (top of weir) = 2546.28Weir length = 7.62 m Weir height = 4 m Weir 'C' coefficient = 1.828Flow over weir = 10.3 cms 2546.26

Weir submergence = unsubmerged Units on-line = 4 Total flow, all units = 41.2 cms Head over weir = 0.82 m

Aeration Exit pipe

2547.77

Pipe shape = Rectangular Height = 3500 mmWidth = 6000 mmLength = 971 mFlow = 36.59 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 21 m^2 Pipe hydraulic radius = 1.105Age factor = 1Solids factor = 1Velocity = 1.74 m/sUnits on -line = 1Total flow, all units = 36.6 cms Friction loss = 0.44 m Fitting loss = 0.23 mTotal loss = 0.67 m 0

Aeration Exit Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 309.5 m Channel width/diameter = 4 mFlow = 6.87 cmsDownstream channel invert = 2542Channel slope = 0.002 m/mChannel side slope = not applicableArea of flow = 21.84 m^2 Flow profile = Mild Normal depth = 0.75 m Critical depth = 0.67 m Units on -line = 6Total flow, all units = 41.2 cms Depth downstream = 5.77 m Bend loss = 0 mDepth upstream = 5.15 m Velocity = 0.3 m/s

AB Tank Weir

Weir invert (top of weir) = 2547.79

Weir length = 32.6 mWeir height = 6.5 mWeir 'C' coefficient = 1.782Flow over weir = 1.71 cmsWeir submergence = unsubmerged Units on-line = 24Total flow, all units = 41.1 cmsHead over weir = 0.1 m

Aeration Basin

Channel shape = RectangularManning's 'n' = 0.013Channel length = 686 m Channel width/diameter = 11 mFlow = 1.71 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 97.75 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.136 m Units on -line = 24Total flow, all units = 41.1 cms Depth downstream = 8.89 m Bend loss = 0 mDepth upstream = 8.89 m Velocity = 0.02 m/s

Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mm Gate height = 4000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.71 cms Total area of opening(s) = 12 m² Velocity through gate(s) = 0.14 m/s Flow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 41.2 cms Gate loss = 0 m Downstream water level = 2547.89 Upstream water level = 2547.89

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mm 2547.89

2547.89

Length = 77 mFlow = 1.71 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 1.52 m/sUnits on -line = 24Total flow, all units = 41.1 cms Friction loss = 0.15 m Fitting loss = 0.18 m Total loss = 0.32 m Total loss = 0.17 m 0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.71 cms Total area of opening(s) = 6.5 m^2 Velocity through gate(s) = 0.26 m/sFlow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 41.2 cms Gate loss = 0.01 mDownstream water level = 2548.21 Upstream water level = 2548.22

AB Distribution Box Weir

Weir invert (top of weir) = 2548.24Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815Flow over weir = 1.71 cms Weir submergence = unsubmerged Units on-line = 24Total flow, all units = 41.1 cms Head over weir = 0.46 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mm 2548.22

Width = 3500 mmLength = 375 mFlow = 10.67 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 1.22 m/sUnits on -line = 3Total flow, all units = 32 cms Friction loss = 0.14 mFitting loss = 0.14 mTotal loss = 0.28 m 0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 10.67 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 1.07 m/s Flow behavior = orifice, downstream control Units on-line = 3 Total flow, all units = 32 cms Gate loss = 0.15 m Downstream water level = 2548.98 Upstream water level = 2549.13

General Aeration Box Weir

Weir invert (top of weir) = 2549.15Weir length = 7.62 m Weir height = 3 m Weir 'C' coefficient = 1.846Flow over weir = 10.67 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 32 cms Head over weir = 0.83 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mm

2549.13

2549.98

Width = 3500 mmLength = 652 mFlow = 16 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 1.31 m/sUnits on -line = 2Total flow, all units = 32 cms Friction loss = 0.22 m Fitting loss = 0.16 mTotal loss = 0.38 m0

Clarifier Exit Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 105.4 mFlow = 2 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on -line = 16Total flow, all units = 32 cms Friction loss = 0.08 m Fitting loss = 0.12 mTotal loss = 0.2 m

Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2545 Number of openings = 1 Flow through opening(s) = 2 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 1.13 m/s Flow behavior = orifice, downstream control Units on-line = 16

2550.56

Total flow, all units $= 32 \mathrm{cms}$
Orifice $loss = 0.18 \text{ m}$
Downstream water level $= 2550.56$
Upstream water level $= 2550.74$

Clarifier Launder

2550.77

Launder invert $= 2549.5$
Launder length $= 81.7 \text{ m}$
Launder width $= 1.5 \text{ m}$
Launder slope = 0.004 m/m
Flow through launder $= 1 \text{ cms}$
Critical depth = 0.36 m
Units on-line = 32
Total flow, all units $= 32$ cms
Downstream depth = 1.24 m
Upstream depth = 0.95 m

Weir Clarifier

Invert of V notch = 2550.79Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 2 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 32 cms Head over weir = 0.08 m

Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 45 mFlow = 2 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on -line = 16Total flow, all units = 32 cms Friction loss = 0.04 mFitting loss = 0.1 mTotal loss = 0.13 m

Distribution Box Gate

Opening type = rectangular gate

2550.87

2551

Opening diameter/width = 1500 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 2 cms Total area of opening(s) = 4.5 m^2 Velocity through gate(s) = 0.44 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 32 cmsGate loss = 0.03 mDownstream water level = 2551Upstream water level = 2551.03

Box 1 Weir

2551.56

Weir invert (top of weir) = 2551.05Weir length = 3.05 m Weir height = 3.5 m Weir 'C' coefficient = 1.813Flow over weir = 2 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 32 cms Head over weir = 0.51 m

Enter Pipe BOX 1

Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 110.9 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 6.25 m^2 Pipe hydraulic radius = 0.625Age factor = 1Solids factor = 1Velocity = 1.28 m/sUnits on -line = 4Total flow, all units = 32 cmsFriction loss = 0.06 m Fitting loss = 0.14 mTotal loss = 0.2 m0

General Box Gate

Opening type = rectangular gate

Opening diameter/width = 6000 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 8 cms Total area of opening(s) = 18 m² Velocity through gate(s) = 0.44 m/sFlow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0.03 mDownstream water level = 2551.76Upstream water level = 2551.79

General box 1 Weir

2552.61

Weir invert (top of weir) = 2551.81Weir length = 6.1 m Weir height = 3 m Weir 'C' coefficient = 1.843Flow over weir = 8 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 32 cms Head over weir = 0.8 m

R Mix to Clarifiers Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3000 mmLength = 150.43 m Flow = 16 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 1.52 m/sUnits on -line = 2Total flow, all units = 32 cmsFriction loss = 0.08 mFitting loss = 0.18 mTotal loss = 0.26 m 0

RM Exit Channel

Channel shape = Rectangular

Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 32 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 219.54 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.467 m Units on -line = 1Total flow, all units = 32 cms Depth downstream = 6.86 m Bend loss = 0 mDepth upstream = 6.86 m Velocity = 0.15 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547 Number of gates = 4 Flow through gate(s) = 8 cms Total area of opening(s) = 50.27 m² Velocity through gate(s) = 0.16 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0 m Downstream water level = 2552.86 Upstream water level = 2552.87

RM

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 9 m Channel width/diameter = 8 m Flow = 8 cms Downstream channel invert = 2545 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 62.93 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.467 m Units on-line = 4 2552.87

Total flow, all units = 32 cms Depth downstream = 7.87 m Bend loss = 0 m Depth upstream = 7.87 m Velocity = 0.13 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 4 Flow through gate(s) = 8 cms Total area of opening(s) = 12.57 m² Velocity through gate(s) = 0.64 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0.06 m Downstream water level = 2552.87 Upstream water level = 2552.93

RM Enter Channel

Channel shape = RectangularManning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 32 cmsDownstream channel invert = 2546.5Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 205.62 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.467 m Units on -line = 1Total flow, all units = 32 cms Depth downstream = 6.43 m Bend loss = 0 mDepth upstream = 6.43 m Velocity = 0.16 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 16 cms 2552.93

2552.93

Friction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 1.31 m/sUnits on-line = 2Total flow, all units = 32 cmsFriction loss = 0.02 mFitting loss = 0.16 mTotal loss = 0.17 m0

Junction Tank Grit Channel

2553.1

Channel shape = RectangularManning's 'n' = 0.013Channel length = 4 mChannel width/diameter = 45.2 mFlow = 16 cmsDownstream channel invert = 2547Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 275.75 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.234 m Units on -line = 2Total flow, all units = 32 cms Depth downstream = 6.1 mBend loss = 0 mDepth upstream = 6.1 mVelocity = 0.06 m/s

Grit Weir

Weir invert (top of weir) = 2553.12Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 3.2 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 32 cmsHead over weir = 0.27 m

Grit Channel

Channel shape = Rectangular

2553.39

Manning's 'n' = 0.013Channel length = 40.5 mChannel width/diameter = 6 mFlow = 2.29 cmsDownstream channel invert = 2545Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 50.33 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.246 m Units on -line = 14Total flow, all units = 32 cms Depth downstream = 8.39 m Bend loss = 0 mDepth upstream = 8.39 m Velocity = 0.05 m/s

Screening Exit Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 3.2 cmsTotal area of opening(s) = 4 m^2 Velocity through gate(s) = 0.8 m/sFlow behavior = orifice, downstream control Units on-line = 10Total flow, all units = 32 cmsGate loss = 0.08 mDownstream water level = 2553.39Upstream water level = 2553.47

Screen Channel 1 - 2

Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 5 m Channel width/diameter = 2.4 m Flow = 2.67 cms Downstream channel invert = 2547.2 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 15.06 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.501 m Units on-line = 12 2553.47

Total flow, all units = 32 cmsDepth downstream = 6.27 mBend loss = 0 mDepth upstream = 6.28 mVelocity = 0.18 m/s

Fine Screen

Rack invert = 2548 Rack width = 1.8 m Channel width = 2 m Flow through rack = 3.2 cms Bar width = 5 mm Bar spacing = 10 mm Percent blocked = 0%Net rack open area = 6.57 m² Downstream depth = 5.48 m Velocity in channel = 0.29 m/s Velocity through bars = 0.49 m/s Units on-line = 10 Total flow, all units = 32 cms Rack head loss = 0.01 m

Screen Channel 2 -3

Channel shape = RectangularManning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.4 mFlow = 2.67 cmsDownstream channel invert = 2547.2Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 15.09 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.501 mUnits on -line = 12Total flow, all units = 32 cms Depth downstream = 6.29 m Bend loss = 0 mDepth upstream = 6.29 m Velocity = 0.18 m/s

Medium Screen

Rack invert = 2548Rack width = 1.8 m Channel width = 2 m Flow through rack = 3.2 cms Bar width = 10 mm

2553.49

2553.49

Bar spacing = 30 mm Percent blocked = 0%Net rack open area = 7.41 m² Downstream depth = 5.49 m Velocity in channel = 0.29 m/s Velocity through bars = 0.43 m/s Units on-line = 10Total flow, all units = 32 cms Rack head loss = 0.01 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 mChannel width/diameter = 2.4 mFlow = 2.67 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 13.67 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.501 m Units on -line = 12Total flow, all units = 32 cms Depth downstream = 5.7 m Bend loss = 0 mDepth upstream = 5.7 mVelocity = 0.2 m/s

Screening Enter Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 3.2 cmsTotal area of opening(s) = 4 m^2 Velocity through gate(s) = 0.8 m/sFlow behavior = orifice, downstream control Units on-line = 10Total flow, all units = 32 cmsGate loss = 0.08 mDownstream water level = 2553.5Upstream water level = 2553.58

Screening Distribution Channel

 $Channel\ shape = Rectangular$

2553.5

2553.58

Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 m Flow = 16 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicableArea of flow = 242.34 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.246 m Units on -line = 2Total flow, all units = 32 cms Depth downstream = 5.78 mBend loss = 0 mDepth upstream = 5.79 m Velocity = 0.07 m/s

Initial Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 4000 mmLength = 28 mFlow = 16 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1Solids factor = 1Velocity = 1.14 m/sUnits on -line = 2Total flow, all units = 32 cmsFriction loss = 0.01 mFitting loss = 0.11 mTotal loss = 0.12 m0

Initial Gate

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 16 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.8 m/s 2553.71

Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 32 cms Gate loss = 0.08 m Downstream water level = 2553.71Upstream water level = 2553.79

Inicial Junction Tank

2553.8

Channel shape = RectangularManning's 'n' = 0.013Channel length = 13 m Channel width/diameter = 25 mFlow = 32 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 194.89 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.551 mUnits on -line = 1Total flow, all units = 32 cms Depth downstream = 7.79 mBend loss = 0 mDepth upstream = 7.8 mVelocity = 0.16 m/s

Anexo 3.3. Perfil hidráulico alternativa 1 Cota de inicio 2540.23
HP CANOAS 17 03 2014 L1 v2 2540 Q13.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
13.6 cms	9.18 cms		

Section Description

Water Surface Elevation

Starting water surface elevation	2540.88
Starting water surface elevation Exit Pipe Pipe shape = Rectangular Height = 3000 mm Width = 4000 mm Length = 227.5 m Flow = 6.8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 12 m^2 Pipe hydraulic radius = 0.857 Age factor = 1 Solids factor = 1 Velocity = 0.57 m/s Units on-line = 2 Total flow, all units = 13.6 cms Friction loss = 0.02 m Fitting loss = 0.04 m	2540.88 2540.92
0	

Chlorination Exit Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 m Channel width/diameter = 154.5 m Flow = 13.6 cms Downstream channel invert = 2538.63Channel slope = 0.0001 m/m Channel side slope = not applicable Area of flow = 353.73 m² Flow profile = Mild Normal depth = 0.28 m Critical depth = 0.093 m

Water Surface Elevation

Section Description

Units on-line = 1 Total flow, all units = 13.6 cms Depth downstream = 2.29 m Bend loss = 0 m Depth upstream = 2.29 m Velocity = 0.04 m/s

Chlorination Tank Weir

Weir invert (top of weir) = 2541.65Weir length = 23 m Weir height = 5.1 m Weir 'C' coefficient = 1.794Flow over weir = 3.4 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 13.6 cms Head over weir = 0.19 m

Chlorination Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 356.5 mChannel width/diameter = 8 mFlow = 3.4 cmsDownstream channel invert = 2540Channel slope = 0.0001 m/mChannel side slope = not applicable Area of flow = 14.58 m^2 Flow profile = Mild Normal depth = 0.76 mCritical depth = 0.264 mUnits on-line = 4Total flow, all units = 13.6 cms Depth downstream = 1.84 mBend loss = 0 mDepth upstream = 1.81 mVelocity = 0.23 m/s

Chlorination Tank - Enter Gate

Opening type = rectangular gate Opening diameter/width = 8000 mmGate height = 4000 mmInvert = 2540Number of gates = 1 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 32 m^2 Velocity through gate(s) = 0.11 m/s 2541.84

2541.84

Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 13.6 cms Gate loss = 0 m Downstream water level = 2541.84Upstream water level = 2541.84

Chlorination Enter Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 13.6 cmsDownstream channel invert = 2539.02Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 259.9 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.131 mUnits on-line = 1Total flow, all units = 13.6 cms Depth downstream = 2.82 mBend loss = 0 mDepth upstream = 2.83 mVelocity = 0.05 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 1003 mFlow = 6.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 0.65 m/sUnits on-line = 2Total flow, all units = 13.6 cms Friction loss = 0.09 mFitting loss = 0.03 m Total loss = 0.13 m0

2541.85

Secondary Clarifier Exit Pipe Pipe shape = Circular Diameter = 1500 mmLength = 118 mFlow = 0.85 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.48 m/sUnits on-line = 16Total flow. all units = 13.6 cms Friction loss = 0.02 mFitting loss = 0.02 mTotal loss = 0.04 m

2 Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2540 Number of openings = 1 Flow through opening(s) = 0.85 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 0.48 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 13.6 cms Orifice loss = 0.03 m Downstream water level = 2542.01 Upstream water level = 2542.04

Launder Channel 2 C

Launder invert = 2542.5Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.43 cmsCritical depth = 0.2 mUnits on-line = 32Total flow, all units = 13.6 cmsDownstream depth = 0.2 mUpstream depth = 0.2 m 2542.01

2543.07

Weir 2 Clarifier Invert of V notch = 2543.3 Angle of V notch = 90 degrees Number of notches = 911 Total flow over weir = 0.85 cms Weir submergence = unsubmerged Units on-line = 16 Total flow, all units = 13.6 cms Head over weir = 0.05 m	2543.35
2 Clarifier Enter Pipe Pipe shape = Circular Diameter = 1500 mm Length = 48.8 m Flow = 1.42 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375 Age factor = 1 Solids factor = 1 Velocity = 0.81 m/s Units on-line = 16 Total flow, all units = 22.8 cms Friction loss = 0.02 m Fitting loss = 0.07 m	2543.42
Gate Clarifier Distribution Box Opening type = rectangular gate Opening diameter/width = 1500 mm Gate height = 4000 mm Invert = 2541 Number of gates = 1 Flow through gate(s) = 1.42 cms Total area of opening(s) = 6 m ² Velocity through gate(s) = 0.24 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 22.8 cms Gate loss = 0.01 m Downstream water level = 2543.42 Upstream water level = 2543.43	2543.43

Box 2 Weir

Weir invert (top of weir) = 2543.65Weir length = 3.05 m Weir height = 5.04 m Weir 'C' coefficient = 1.807Flow over weir = 1.42 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 22.8 cms Head over weir = 0.41 m

Enter Pipe BOX 2

Pipe shape = Rectangular Height = 2500 mmWidth = 3000 mmLength = 285.5 mFlow = 5.7 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 7.5 m^2 Pipe hydraulic radius = 0.682Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on-line = 4Total flow, all units = 22.8 cms Friction loss = 0.05 mFitting loss = 0.04 mTotal loss = 0.09 m0

General Box 2 Gate

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 21 m^2 Velocity through gate(s) = 0.16 m/sFlow behavior = orifice, downstream control Units on-line = 4Total flow, all units = 13.6 cmsGate loss = 0 mDownstream water level = 2544.15Upstream water level = 2544.15 2544.15

Water Surface Elevation

General box 2 Weir	2545.15
Weir invert (top of weir) $= 2544.6$	
Weir length = 7.62 m	
Weir height = 4 m	
Weir 'C' coefficient = 1.828	
Flow over weir $= 5.7$ cms	
Weir submergence = unsubmerged	
Units on-line $= 4$	
Total flow, all units = 22.8 cms	
Head over weir = 0.55 m	
Aeration Exit pipe	2545.25
Pipe shape = Rectangular	
Height = 3500 mm	
Width = 6000 mm	
Length = 336 m	
Flow = 18.19 cms	
Friction method = Manning's Equation	
Friction factor $= 0.013$	
Total fitting K value = 1.5	
Pipe area = 21 m^2	
Pipe hydraulic radius = 1.105	
Age factor $= 1$	
Solids factor $= 1$	
Velocity = 0.87 m/s	
Units on-line $= 1$	
Total flow, all units = 18.2 cms	
Friction loss = 0.04 m	
Fitting loss = 0.06 m	
Total loss = 0.09 m	
0	
Aeration Exit Channel	2545.25
Channel shape = Rectangular	
Manning's 'n' = 0.013	
Channel length = 309.5 m	
Channel width/diameter = 4 m	
Flow = 3.8 cms	
Downstream channel invert = 2542.8	
Channel slope = 0.002 m/m	
Channel side slope = not applicable	
Area of flow = 8.57 m^2	
Flow profile = Mild	
Normal depth = 0.51 m	
Critical depth = 0.452 m	
Units on-line $= 6$	
Total flow, all units $= 22.8$ cms	

Depth downstream = 2.45 m Bend loss = 0 m Depth upstream = 1.83 m Velocity = 0.39 m/s **AB Tank Weir** Weir invert (top of weir) = 2545.85 Weir length = 32.6 m Weir height = 6.5 m Weir 'C' coefficient = 1.782Flow over weir = 0.95 cms Weir submergence = unsubmerged Units on-line = 24 Total flow, all units = 22.8 cms Head over weir = 0.06 m

Aeration Basin

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 686 mChannel width/diameter = 11 mFlow = 0.95 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 76.06 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.091 mUnits on-line = 24Total flow, all units = 22.8 cms Depth downstream = 6.91 mBend loss = 0 mDepth upstream = 6.92 mVelocity = 0.01 m/s

Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mmGate height = 4000 mmInvert = 2543Number of gates = 1 Flow through gate(s) = 0.95 cmsTotal area of opening(s) = 12 m^2 Velocity through gate(s) = 0.08 m/sFlow behavior = orifice, downstream control Units on-line = 24

2545.91

2545.92

Total flow, all units = 22.8 cms Gate loss = 0 m Downstream water level = 2545.92Upstream water level = 2545.92

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mmLength = 77 mFlow = 0.95 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 0.84 m/sUnits on-line = 24Total flow, all units = 22.8 cms Friction loss = 0.05 mFitting loss = 0.05 mTotal loss = 0.1 mTotal loss = 0.17 m0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 0.95 cms Total area of opening(s) = 6.5 m² Velocity through gate(s) = 0.15 m/s Flow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 22.8 cms Gate loss = 0 m Downstream water level = 2546.02 Upstream water level = 2546.02

AB Distribution Box Weir

Weir invert (top of weir) = 2546.3 Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815 2546.02

2546.02

Flow over weir = 0.95 cms Weir submergence = unsubmerged Units on-line = 24 Total flow, all units = 22.8 cms Head over weir = 0.31 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mmWidth = 3500 mmLength = 375 mFlow = 4.53 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 0.52 m/sUnits on-line = 3Total flow, all units = 13.6 cms Friction loss = 0.03 m Fitting loss = 0.02 mTotal loss = 0.05 m0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 4.53 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 0.45 m/s Flow behavior = orifice, downstream control Units on-line = 3 Total flow, all units = 13.6 cms Gate loss = 0.03 m Downstream water level = 2546.66 Upstream water level = 2546.69

General Aeration Box Weir

Weir invert (top of weir) = 2547.21 Weir length = 7.62 m Weir height = 3 m 2546.66

2546.69

Weir 'C' coefficient = 1.846Flow over weir = 4.53 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 13.6 cms Head over weir = 0.47 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 273 mFlow = 6.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.56 m/sUnits on-line = 2Total flow, all units = 13.6 cms Friction loss = 0.02 mFitting loss = 0.03 mTotal loss = 0.05 m0

Clarifier Exit Pipe

Pipe shape = CircularDiameter = 1500 mmLength = 81.6 mFlow = 0.85 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.48 m/sUnits on-line = 16Total flow. all units = 13.6 cms Friction loss = 0.01 mFitting loss = 0.02 mTotal loss = 0.03 m

2547.73

Water Surface Elevation

Clarifier Orifice Opening type = circular orifice $\frac{1}{2}$ Opening diameter/width = 1500 mmOpening height = not applicable Invert = 2545Number of openings = 1Flow through opening(s) = 0.85 cms Total area of opening(s) = 1.77 m^2 Velocity through opening(s) = 0.48 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 13.6 cms Orifice loss = 0.03 mDownstream water level = 2547.76Upstream water level = 2547.79**Clarifier Launder** Launder invert = 2548.2Launder length = 81.7 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.43 cms Critical depth = 0.2 mUnits on-line = 32Total flow, all units = 13.6 cms Downstream depth = 0.2 mUpstream depth = 0.2 mWeir Clarifier

Invert of V notch = 2548.9Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 0.85 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 13.6 cms Head over weir = 0.06 m

Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mm Length = 45 m Flow = 0.85 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 1.767 m^2 2547.79

2548.73

2548.96

Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.48 m/sUnits on-line = 16Total flow, all units = 13.6 cms Friction loss = 0.01 mFitting loss = 0.02 mTotal loss = 0.02 m**Distribution Box Gate** Opening type = rectangular gate Opening diameter/width = 1500 mmGate height = 3000 mmInvert = 2545Number of gates = 1Flow through gate(s) = 0.85 cms Total area of opening(s) = 4.5 m^2 Velocity through gate(s) = 0.19 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 13.6 cms Gate loss = 0 mDownstream water level = 2548.98Upstream water level = 2548.98**Box 1 Weir** Weir invert (top of weir) = 2549.15Weir length = 3.05 m Weir height = 3.5 mWeir 'C' coefficient = 1.813Flow over weir = 0.85 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 13.6 cms Head over weir = 0.29 m **Enter Pipe BOX 1** Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 262.7 mFlow = 3.4 cmsFriction method = Manning's Equation Friction factor = 0.013

Total fitting K value = 1.7

Pipe area = 6.25 m^2

2548.98

2549.44

Pipe hydraulic radius = 0.625Age factor = 1 Solids factor = 1 Velocity = 0.54 m/s Units on-line = 4 Total flow, all units = 13.6 cms Friction loss = 0.02 m Fitting loss = 0.03 m Total loss = 0.05 m 0

General Box Gate

2549.49

Water Surface Elevation

Opening type = rectangular gate Opening diameter/width = 6000 mm Gate height = 3000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 3.4 cms Total area of opening(s) = 18 m² Velocity through gate(s) = 0.19 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 13.6 cms Gate loss = 0 m Downstream water level = 2549.49 Upstream water level = 2549.49

General box 1 Weir

Weir invert (top of weir) = 2550Weir length = 6.1 mWeir height = 3 mWeir 'C' coefficient = 1.843Flow over weir = 3.4 cmsWeir submergence = unsubmerged Units on-line = 4Total flow, all units = 13.6 cmsHead over weir = 0.45 m

R Mix to Clarifiers Pipe

Pipe shape = Rectangular Height = 3500 mm Width = 3000 mm Length = 77.5 m Flow = 6.8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 2550.45

Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1 Solids factor = 1 Velocity = 0.65 m/sUnits on-line = 2 Total flow, all units = 13.6 cmsFriction loss = 0.01 mFitting loss = 0.03 mTotal loss = 0.04 m0

RM Exit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 13.6 cmsDownstream channel invert = 2549Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 47.7 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.264 mUnits on-line = 1Total flow, all units = 13.6 cms Depth downstream = 1.49 mBend loss = 0 mDepth upstream = 1.49 mVelocity = 0.29 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547 Number of gates = 4 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 50.27 m^2 Velocity through gate(s) = 0.07 m/sFlow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 13.6 cmsGate loss = 0 mDownstream water level = 2550.49Upstream water level = 2550.49 2550.49

2550.49

RM

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 9 mChannel width/diameter = 8 mFlow = 3.4 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 35.95 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.264 mUnits on-line = 4Total flow, all units = 13.6 cms Depth downstream = 4.49 mBend loss = 0 mDepth upstream = 4.49 m Velocity = 0.09 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 4 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 12.57 m^2 Velocity through gate(s) = 0.27 m/sFlow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 13.6 cmsGate loss = 0.01 mDownstream water level = 2550.49Upstream water level = 2550.5

RM Enter Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 m Channel width/diameter = 32 m Flow = 13.6 cms Downstream channel invert = 2548Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 80.17 m² 2550.5

Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.264 m Units on-line = 1 Total flow, all units = 13.6 cms Depth downstream = 2.5 m Bend loss = 0 m Depth upstream = 2.51 m Velocity = 0.17 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 6.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.56 m/sUnits on-line = 2Total flow, all units = 13.6 cms Friction loss = 0 mFitting loss = 0.03 m Total loss = 0.03 m0

Junction Tank Grit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 4 m Channel width/diameter = 45.2 m Flow = 6.8 cms Downstream channel invert = 2548Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 114.83 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.132 m Units on-line = 2Total flow, all units = 13.6 cms Depth downstream = 2.54 m 2550.54

Bend loss = 0 m Depth upstream = 2.54 m Velocity = 0.06 m/s

Grit Weir

2551.43

Weir invert (top of weir) = 2551.28Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 1.36 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 13.6 cmsHead over weir = 0.15 m

Grit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 55 mChannel width/diameter = 4 mFlow = 0.97 cmsDownstream channel invert = 2546.55Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 19.53 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.182 mUnits on-line = 14Total flow, all units = 13.6 cms Depth downstream = 4.88 mBend loss = 0 mDepth upstream = 4.88 mVelocity = 0.05 m/s

Screening Exit Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 2.72 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.68 m/s Flow behavior = orifice, downstream control Units on-line = 5 Total flow, all units = 13.6 cms 2551.43

Gate loss = 0.06 m
Downstream water level $= 2551.43$
Upstream water level = 2551.49

Screen Channel 1 - 2

2551.5

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 5 mChannel width/diameter = 2.5 mFlow = 2.72 cmsDownstream channel invert = 2549.24Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 5.64 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.495 mUnits on-line = 5Total flow, all units = 13.6 cms Depth downstream = 2.25 mBend loss = 0 mDepth upstream = 2.26 mVelocity = 0.48 m/s

Fine Screen

Rack invert = 2550.3Rack width = 2.5 mChannel width = 2.5 mFlow through rack = 2.72 cms Bar width = 6 mmBar spacing = 6 mmPercent blocked = 0%Net rack open area = 1.49 m^2 Downstream depth = 1.2 mVelocity in channel = 0.91 m/sVelocity through bars = 1.82 m/sUnits on-line = 5Total flow, all units = 13.6 cms Rack head loss = 0.18 m

Screen Channel 2 -3

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.5 mFlow = 2.72 cmsDownstream channel invert = 2550 2551.68

Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 4.19 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.495 mUnits on-line = 5Total flow, all units = 13.6 cmsDepth downstream = 1.68 mBend loss = 0 mDepth upstream = 1.68 mVelocity = 0.65 m/s

Medium Screen

2551.71

Rack invert = 2550 Rack width = 2.5 m Channel width = 2.5 m Flow through rack = 2.72 cms Bar width = 10 mm Bar spacing = 25 mm Percent blocked = 0%Net rack open area = 2.98 m² Downstream depth = 1.68 m Velocity in channel = 0.65 m/s Velocity through bars = 0.91 m/s Units on-line = 5 Total flow, all units = 13.6 cms Rack head loss = 0.03 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 mChannel width/diameter = 2.5 mFlow = 2.72 cmsDownstream channel invert = 2550Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 4.27 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.495 mUnits on-line = 5Total flow, all units = 13.6 cms Depth downstream = 1.71 mBend loss = 0 mDepth upstream = 1.71 m

2551.77

Screening Enter Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 2.72 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.68 m/s Flow behavior = orifice, downstream control Units on-line = 5 Total flow, all units = 13.6 cms Gate loss = 0.06 m Downstream water level = 2551.71 Upstream water level = 2551.77

Screening Distribution Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 mFlow = 6.8 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 166.48 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.139 m Units on-line = 2Total flow, all units = 13.6 cms Depth downstream = 3.97 mBend loss = 0 mDepth upstream = 3.97 mVelocity = 0.04 m/s

Initial Pipe

Pipe shape = Rectangular Height = 3500 mm Width = 4000 mm Length = 28 m Flow = 6.8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.7 2551.77

Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1Solids factor = 1Velocity = 0.49 m/sUnits on-line = 2Total flow, all units = 13.6 cmsFriction loss = 0 mFitting loss = 0.02 mTotal loss = 0.02 m0

Initial Gate

2551.82

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 6.8 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.34 m/s Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 13.6 cms Gate loss = 0.02 m Downstream water level = 2551.8 Upstream water level = 2551.82

Inicial Junction Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 13 mChannel width/diameter = 25 mFlow = 13.6 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 145.4 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.312 m Units on-line = 1Total flow, all units = 13.6 cms Depth downstream = 5.82 mBend loss = 0 mDepth upstream = 5.82 mVelocity = 0.09 m/s

HP CANOAS 17 03 2014 L1 v2 2540 Q16.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
16 cms	9.18 cms		

Section Description Water Surface Elevation Starting water surface elevation 2540.97 **Exit Pipe** 2541.02 Pipe shape = Rectangular Height = 3000 mmWidth = 4000 mmLength = 227.5 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 12 m^2 Pipe hydraulic radius = 0.857Age factor = 1Solids factor = 1Velocity = 0.67 m/sUnits on-line = 2Total flow, all units = 16 cms Friction loss = 0.02 mFitting loss = 0.03 mTotal loss = 0.05 m0 **Chlorination Exit Tank** 2541.02

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 m Channel width/diameter = 154.5 m Flow = 16 cms Downstream channel invert = 2538.63Channel slope = 0.0001 m/m Channel side slope = not applicable Area of flow = 369.2 m² Flow profile = Mild Normal depth = 0.31 m Critical depth = 0.103 m

Water Surface Elevation

Section Description

Units on-line = 1 Total flow, all units = 16 cms Depth downstream = 2.39 m Bend loss = 0 m Depth upstream = 2.39 m Velocity = 0.04 m/s

Chlorination Tank Weir

Weir invert (top of weir) = 2541.65Weir length = 23 m Weir height = 5.1 m Weir 'C' coefficient = 1.794Flow over weir = 4 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 16 cms Head over weir = 0.21 m

Chlorination Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 356.5 mChannel width/diameter = 8 mFlow = 4 cmsDownstream channel invert = 2540Channel slope = 0.0001 m/mChannel side slope = not applicable Area of flow = 14.75 m^2 Flow profile = Mild Normal depth = 0.84 mCritical depth = 0.295 m Units on-line = 4Total flow, all units = 16 cms Depth downstream = 1.86 mBend loss = 0 mDepth upstream = 1.83 mVelocity = 0.27 m/s

Chlorination Tank - Enter Gate

Opening type = rectangular gate Opening diameter/width = 8000 mmGate height = 4000 mmInvert = 2540Number of gates = 1 Flow through gate(s) = 4 cms Total area of opening(s) = 32 m^2 Velocity through gate(s) = 0.12 m/s 2541.86

2541.87

Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0 m Downstream water level = 2541.87Upstream water level = 2541.87

Chlorination Enter Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 16 cmsDownstream channel invert = 2539.02Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 262.14 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.146 m Units on-line = 1Total flow, all units = 16 cms Depth downstream = 2.85 mBend loss = 0 mDepth upstream = 2.85 mVelocity = 0.06 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 1003 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on-line = 2Total flow, all units = 16 cms Friction loss = 0.13 m Fitting loss = 0.04 mTotal loss = 0.18 m0

2541.87

Secondary Clarifier Exit Pipe Pipe shape = Circular Diameter = 1500 mmLength = 118 mFlow = 1 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on-line = 16Total flow. all units = 16 cms Friction loss = 0.02 mFitting loss = 0.03 m Total loss = 0.05 m**2** Clarifier Orifice Opening type = circular orifice $\frac{1}{2}$ Opening diameter/width = 1500 mm

Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2540 Number of openings = 1 Flow through opening(s) = 1 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 0.57 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 16 cms Orifice loss = 0.05 m Downstream water level = 2542.1 Upstream water level = 2542.15

Launder Channel 2 C

Launder invert = 2542.5Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.5 cmsCritical depth = 0.22 mUnits on-line = 32Total flow, all units = 16 cmsDownstream depth = 0.22 mUpstream depth = 0.22 m 2543.09

Weir 2 Clarifier Invert of V notch = 2543.3 Angle of V notch = 90 degrees Number of notches = 911 Total flow over weir = 1 cms Weir submergence = unsubmerged Units on-line = 16 Total flow, all units = 16 cms Head over weir = 0.06 m	2543.36
2 Clarifier Enter Pipe Pipe shape = Circular Diameter = 1500 mm Length = 48.8 m Flow = 1.57 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375 Age factor = 1 Solids factor = 1 Velocity = 0.89 m/s Units on-line = 16 Total flow, all units = 25.2 cms Friction loss = 0.02 m Fitting loss = 0.06 m Total loss = 0.08 m	2543.44
Gate Clarifier Distribution Box Opening type = rectangular gate Opening diameter/width = 1500 mm Gate height = 4000 mm Invert = 2541 Number of gates = 1 Flow through gate(s) = 1.57 cms Total area of opening(s) = 6 m ² Velocity through gate(s) = 0.26 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 25.2 cms Gate loss = 0.01 m Downstream water level = 2543.44 Upstream water level = 2543.45	2543.45

Box 2 Weir

Weir invert (top of weir) = 2543.65Weir length = 3.05 m Weir height = 5.04 m Weir 'C' coefficient = 1.807Flow over weir = 1.57 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 25.2 cms Head over weir = 0.43 m

Enter Pipe BOX 2

Pipe shape = Rectangular Height = 2500 mmWidth = 3000 mmLength = 285.5 mFlow = 6.3 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 7.5 m^2 Pipe hydraulic radius = 0.682Age factor = 1Solids factor = 1Velocity = 0.84 m/sUnits on-line = 4Total flow. all units = 25.2 cms Friction loss = 0.06 mFitting loss = 0.05 mTotal loss = 0.11 m0

General Box 2 Gate

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 Flow through gate(s) = 4 cms Total area of opening(s) = 21 m² Velocity through gate(s) = 0.19 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0 m Downstream water level = 2544.19 Upstream water level = 2544.19 2544.19

Water Surface Elevation

General box 2 Weir	2545.19
Weir invert (top of weir) $= 2544.6$	
Weir length = 7.62 m	
Weir height = 4 m	
Weir 'C' coefficient = 1.828	
Flow over weir = 6.3 cms	
Weir submergence = unsubmerged	
Units on-line $= 4$	
Total flow, all units = 25.2 cms	
Head over weir = 0.59 m	
Aeration Exit pipe	2545.31
Pipe shape = Rectangular	2010101
Height = 3500 mm	
Width = 6000 mm	
Length = 336 m	
Flow = 20.59 cms	
Friction method = Manning's Equation	
Friction factor $= 0.013$	
Total fitting K value = 1.5	
Pipe area = 21 m^2	
Pipe hydraulic radius $= 1.105$	
Age factor $= 1$	
Solids factor $= 1$	
Velocity = 0.98 m/s	
Units on-line $= 1$	
Total flow, all units = 20.6 cms	
Friction loss = 0.05 m	
Fitting loss = 0.07 m	
1 otal 1 oss = 0.12 m	
0	
Aeration Exit Channel	2545.31
Channel shape = Rectangular	
Manning's 'n' = 0.013	
Channel length = 309.5 m	
Channel width/diameter = 4 m	
Flow = 4.2 cms	
Downstream channel invert = 2542.8	
Channel slope = 0.002 m/m	
Channel side slope = not applicable	
Area of flow = 8.81 m^2	
Flow profile = Mild	
Normal depth = 0.54 m	
Critical depth = 0.483 m	
Units on-line = 6	
10tal flow all units = 25.2 cms	

Depth downstream = 2.51 mBend loss = 0 mDepth upstream = 1.89 mVelocity = 0.42 m/s**AB Tank Weir** Weir invert (top of weir) = 2545.85Weir length = 32.6 mWeir height = 6.5 mWeir height = 6.5 mWeir 'C' coefficient = 1.782Flow over weir = 1.05 cmsWeir submergence = unsubmerged Units on-line = 24Total flow, all units = 25.2 cmsHead over weir = 0.07 m

Aeration Basin

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 686 mChannel width/diameter = 11 mFlow = 1.05 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 76.11 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.098 mUnits on-line = 24Total flow, all units = 25.2 cms Depth downstream = 6.92 mBend loss = 0 mDepth upstream = 6.92 mVelocity = 0.01 m/s

Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mmGate height = 4000 mmInvert = 2543Number of gates = 1 Flow through gate(s) = 1.05 cmsTotal area of opening(s) = 12 m^2 Velocity through gate(s) = 0.09 m/sFlow behavior = orifice, downstream control Units on-line = 24

2545.92

2545.92

Total flow, all units = 25.2 cmsGate loss = 0 m Downstream water level = 2545.92Upstream water level = 2545.92

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mmLength = 77 mFlow = 1.05 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 0.93 m/sUnits on-line = 24Total flow, all units = 25.2 cms Friction loss = 0.06 mFitting loss = 0.07 mTotal loss = 0.12 mTotal loss = 0.17 m0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.05 cms Total area of opening(s) = 6.5 m^2 Velocity through gate(s) = 0.16 m/sFlow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 25.2 cms Gate loss = 0 m Downstream water level = 2546.04 Upstream water level = 2546.04

AB Distribution Box Weir

Weir invert (top of weir) = 2546.3 Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815 2546.04

2546.04

Flow over weir = 1.05 cms Weir submergence = unsubmerged Units on-line = 24Total flow, all units = 25.2 cms Head over weir = 0.33 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mmWidth = 3500 mmLength = 375 mFlow = 5.33 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 0.61 m/sUnits on-line = 3Total flow, all units = 16 cms Friction loss = 0.04 mFitting loss = 0.03 m Total loss = 0.07 m0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 5.33 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 0.53 m/s Flow behavior = orifice, downstream control Units on-line = 3 Total flow, all units = 16 cms Gate loss = 0.04 m Downstream water level = 2546.7 Upstream water level = 2546.74

General Aeration Box Weir

Weir invert (top of weir) = 2547.21 Weir length = 7.62 m Weir height = 3 m 2546.7

2546.74

Weir 'C' coefficient = 1.846Flow over weir = 5.33 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 16 cms Head over weir = 0.52 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 273 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.65 m/sUnits on-line = 2Total flow, all units = 16 cms Friction loss = 0.02 mFitting loss = 0.04 mTotal loss = 0.06 m0

Clarifier Exit Pipe

Pipe shape = CircularDiameter = 1500 mmLength = 81.6 mFlow = 1 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on-line = 16Total flow, all units = 16 cms Friction loss = 0.02 mFitting loss = 0.03 mTotal loss = 0.05 m

2547.8

Water Surface Elevation

Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2545 Number of openings = 1 Flow through opening(s) = 1 cms Total area of opening(s) = 1.77 m^2 Velocity through opening(s) = 0.57 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 16 cmsOrifice loss = 0.05 mDownstream water level = 2547.85Upstream water level = 2547.9

Clarifier Launder

Launder invert = 2548.2Launder length = 81.7 m Launder width = 1.5 m Launder slope = 0.004 m/m Flow through launder = 0.5 cms Critical depth = 0.22 m Units on-line = 32Total flow, all units = 16 cms Downstream depth = 0.22 m Upstream depth = 0.22 m

Weir Clarifier

Invert of V notch = 2548.9Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 1 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 16 cms Head over weir = 0.06 m

Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mm Length = 45 m Flow = 1 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 1.767 m² 2547.9

2548.75

2548.96

Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on-line = 16Total flow, all units = 16 cms Friction loss = 0.01 mFitting loss = 0.02 mTotal loss = 0.03 m**Distribution Box Gate** Opening type = rectangular gate Opening diameter/width = 1500 mmGate height = 3000 mmInvert = 2545Number of gates = 1Flow through gate(s) = 1 cmsTotal area of opening(s) = 4.5 m^2 Velocity through gate(s) = 0.22 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 16 cms Gate loss = 0.01 mDownstream water level = 2548.99Upstream water level = 2549**Box 1 Weir** Weir invert (top of weir) = 2549.15Weir length = 3.05 m Weir height = 3.5 mWeir 'C' coefficient = 1.813Flow over weir = 1 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 16 cms Head over weir = 0.32 m **Enter Pipe BOX 1** Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 262.7 mFlow = 4 cmsFriction method = Manning's Equation

Friction factor = 0.013

2549

2549.47

Water Surface Elevation

Section Description

Pipe hydraulic radius = 0.625Age factor = 1 Solids factor = 1 Velocity = 0.64 m/s Units on-line = 4 Total flow, all units = 16 cms Friction loss = 0.03 m Fitting loss = 0.04 m Total loss = 0.07 m 0

General Box Gate

Opening type = rectangular gate Opening diameter/width = 6000 mmGate height = 3000 mmInvert = 2544Number of gates = 1 Flow through gate(s) = 4 cms Total area of opening(s) = 18 m^2 Velocity through gate(s) = 0.22 m/sFlow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cmsGate loss = 0.01 mDownstream water level = 2549.54Upstream water level = 2549.55

General box 1 Weir

Weir invert (top of weir) = 2550Weir length = 6.1 mWeir height = 3 mWeir 'C' coefficient = 1.843Flow over weir = 4 cmsWeir submergence = unsubmerged Units on-line = 4Total flow, all units = 16 cmsHead over weir = 0.5 m

R Mix to Clarifiers Pipe

Pipe shape = Rectangular Height = 3500 mm Width = 3000 mm Length = 77.5 m Flow = 8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 2549.55

2550.5
Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1 Solids factor = 1 Velocity = 0.76 m/sUnits on-line = 2 Total flow, all units = 16 cmsFriction loss = 0.01 mFitting loss = 0.04 mTotal loss = 0.05 m0

RM Exit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 16 cmsDownstream channel invert = 2549Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 49.94 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.295 m Units on-line = 1Total flow, all units = 16 cms Depth downstream = 1.56 mBend loss = 0 mDepth upstream = 1.56 mVelocity = 0.32 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547 Number of gates = 4 Flow through gate(s) = 4 cms Total area of opening(s) = 50.27 m² Velocity through gate(s) = 0.08 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0 m Downstream water level = 2550.56 Upstream water level = 2550.56 2550.56

2550.56

RM

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 9 mChannel width/diameter = 8 mFlow = 4 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 36.51 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.295 m Units on-line = 4Total flow, all units = 16 cms Depth downstream = 4.56 mBend loss = 0 mDepth upstream = 4.56 mVelocity = 0.11 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 4 Flow through gate(s) = 4 cms Total area of opening(s) = 12.57 m² Velocity through gate(s) = 0.32 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0.01 m Downstream water level = 2550.56 Upstream water level = 2550.58

RM Enter Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 m Channel width/diameter = 32 m Flow = 16 cms Downstream channel invert = 2548Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 82.56 m² 2550.58

Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.295 m Units on-line = 1 Total flow, all units = 16 cms Depth downstream = 2.58 m Bend loss = 0 m Depth upstream = 2.58 m Velocity = 0.19 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.65 m/sUnits on-line = 2Total flow, all units = 16 cms Friction loss = 0 mFitting loss = 0.04 mTotal loss = 0.04 m0

Junction Tank Grit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 4 m Channel width/diameter = 45.2 m Flow = 8 cms Downstream channel invert = 2548Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 118.45 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.148 m Units on-line = 2Total flow, all units = 16 cms Depth downstream = 2.62 m 2550.62

Bend loss = 0 m Depth upstream = 2.62 m Velocity = 0.07 m/s

Grit Weir

2551.45

Weir invert (top of weir) = 2551.28Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 1.6 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 16 cmsHead over weir = 0.17 m

Grit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 55 mChannel width/diameter = 4 mFlow = 1.14 cmsDownstream channel invert = 2546.55Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 19.59 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.203 mUnits on-line = 14Total flow, all units = 16 cms Depth downstream = 4.9 mBend loss = 0 mDepth upstream = 4.9 mVelocity = 0.06 m/s

Screening Exit Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 2.67 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.67 m/s Flow behavior = orifice, downstream control Units on-line = 6 Total flow, all units = 16 cms 2551.45

Gate loss = 0.06 m
Downstream water level $= 2551.45$
Upstream water level = 2551.51

Screen Channel 1 - 2

2551.51

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 5 mChannel width/diameter = 2.5 mFlow = 2.67 cmsDownstream channel invert = 2549.24Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 5.67 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.488 mUnits on-line = 6Total flow, all units = 16 cms Depth downstream = 2.27 mBend loss = 0 mDepth upstream = 2.27 mVelocity = 0.47 m/s

Fine Screen

Rack invert = 2550.3Rack width = 2.5 mChannel width = 2.5 mFlow through rack = 2.67 cms Bar width = 6 mmBar spacing = 6 mmPercent blocked = 0%Net rack open area = 1.51 m^2 Downstream depth = 1.21 mVelocity in channel = 0.88 m/sVelocity through bars = 1.76 m/sUnits on-line = 6Total flow, all units = 16 cms Rack head loss = 0.17 m

Screen Channel 2 -3

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.5 mFlow = 2.67 cmsDownstream channel invert = 2550 2551.68

Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 4.2 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.488 mUnits on-line = 6Total flow, all units = 16 cmsDepth downstream = 1.68 mBend loss = 0 mDepth upstream = 1.68 mVelocity = 0.63 m/s

Medium Screen

2551.71

Rack invert = 2550 Rack width = 2.5 m Channel width = 2.5 m Flow through rack = 2.67 cms Bar width = 10 mm Bar spacing = 25 mm Percent blocked = 0%Net rack open area = 2.99 m² Downstream depth = 1.68 m Velocity in channel = 0.63 m/s Velocity through bars = 0.89 m/s Units on-line = 6 Total flow, all units = 16 cms Rack head loss = 0.03 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 mChannel width/diameter = 2.5 mFlow = 2.67 cmsDownstream channel invert = 2550Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 4.28 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.488 mUnits on-line = 6Total flow, all units = 16 cms Depth downstream = 1.71 mBend loss = 0 mDepth upstream = 1.71 m

2551.77

Velocity	= 0.62	m/s

Screening Enter Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 2.67 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.67 m/s Flow behavior = orifice, downstream control Units on-line = 6 Total flow, all units = 16 cms Gate loss = 0.06 m Downstream water level = 2551.71 Upstream water level = 2551.77

Screening Distribution Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 mFlow = 8 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 166.48 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.155 mUnits on-line = 2Total flow, all units = 16 cms Depth downstream = 3.97 mBend loss = 0 mDepth upstream = 3.97 mVelocity = 0.05 m/s

Initial Pipe

Pipe shape = Rectangular Height = 3500 mm Width = 4000 mm Length = 28 m Flow = 8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.7 2551.77

Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on-line = 2Total flow, all units = 16 cmsFriction loss = 0 mFitting loss = 0.03 mTotal loss = 0.03 m0

Initial Gate

2551.82

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 8 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.4 m/s Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 16 cms Gate loss = 0.02 m Downstream water level = 2551.8 Upstream water level = 2551.82

Inicial Junction Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 13 mChannel width/diameter = 25 mFlow = 16 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 145.54 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.347 m Units on-line = 1Total flow, all units = 16 cms Depth downstream = 5.82 mBend loss = 0 mDepth upstream = 5.82 mVelocity = 0.11 m/s

HP CANOAS 17 03 2014 L1 v2 2540 Q21.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
21.6 cms	9.18 cms		

Section Description Water Surface Elevation Starting water surface elevation 2541.14 **Exit Pipe** 2541.24 Pipe shape = Rectangular Height = 3000 mmWidth = 4000 mmLength = 227.5 mFlow = 10.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 12 m^2 Pipe hydraulic radius = 0.857Age factor = 1Solids factor = 1Velocity = 0.9 m/sUnits on-line = 2Total flow, all units = 21.6 cms Friction loss = 0.04 mFitting loss = 0.06 mTotal loss = 0.1 m0

Chlorination Exit Tank Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 m Channel width/diameter = 154.5 m Flow = 21.6 cms Downstream channel invert = 2538.63Channel slope = 0.0001 m/m Channel side slope = not applicable Area of flow = 403.18 m² Flow profile = Mild Normal depth = 0.37 m Critical depth = 0.126 m

Water Surface Elevation

Units on-line = 1 Total flow, all units = 21.6 cms Depth downstream = 2.61 m Bend loss = 0 m Depth upstream = 2.61 m Velocity = 0.05 m/s

Chlorination Tank Weir

Weir invert (top of weir) = 2541.65Weir length = 23 m Weir height = 5.1 m Weir 'C' coefficient = 1.794Flow over weir = 5.4 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 21.6 cms Head over weir = 0.26 m

Chlorination Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 356.5 mChannel width/diameter = 8 mFlow = 5.4 cmsDownstream channel invert = 2540Channel slope = 0.0001 m/mChannel side slope = not applicable Area of flow = 15.14 m^2 Flow profile = Mild Normal depth = 1.02 mCritical depth = 0.36 mUnits on-line = 4Total flow, all units = 21.6 cms Depth downstream = 1.91 mBend loss = 0.01 mDepth upstream = 1.88 mVelocity = 0.35 m/s

Chlorination Tank - Enter Gate

Opening type = rectangular gate Opening diameter/width = 8000 mmGate height = 4000 mmInvert = 2540Number of gates = 1 Flow through gate(s) = 5.4 cmsTotal area of opening(s) = 32 m^2 Velocity through gate(s) = 0.17 m/s 2541.91

2541.92

Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 21.6 cms Gate loss = 0 m Downstream water level = 2541.92Upstream water level = 2541.92

Chlorination Enter Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 21.6 cmsDownstream channel invert = 2539.02Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 267.06 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.178 mUnits on-line = 1Total flow, all units = 21.6 cms Depth downstream = 2.9 mBend loss = 0 mDepth upstream = 2.9 mVelocity = 0.08 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 1003 mFlow = 10.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 1.03 m/sUnits on-line = 2Total flow, all units = 21.6 cms Friction loss = 0.24 m Fitting loss = 0.08 mTotal loss = 0.32 m0

2541.92

Secondary Clarifier Exit Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 118 mFlow = 1.35 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on-line = 16Total flow, all units = 21.6 cms Friction loss = 0.04 mFitting loss = 0.05 mTotal loss = 0.09 m

2 Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2540 Number of openings = 1 Flow through opening(s) = 1.35 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 0.76 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 21.6 cms Orifice loss = 0.08 m Downstream water level = 2542.33 Upstream water level = 2542.41

Launder Channel 2 C

Launder invert = 2542.5Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.68 cmsCritical depth = 0.27 mUnits on-line = 32Total flow, all units = 21.6 cmsDownstream depth = 0.27 mUpstream depth = 0.27 m 2542.33

2542.41

Weir 2 Clarifier Invert of V notch = 2543.3 Angle of V notch = 90 degrees Number of notches = 911 Total flow over weir = 1.35 cms Weir submergence = unsubmerged Units on-line = 16 Total flow, all units = 21.6 cms Head over weir = 0.06 m	2543.36
2 Clarifier Enter Pipe Pipe shape = Circular Diameter = 1500 mm Length = 48.8 m Flow = 1.92 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375 Age factor = 1 Solids factor = 1 Velocity = 1.09 m/s Units on-line = 16 Total flow, all units = 30.8 cms Friction loss = 0.04 m Fitting loss = 0.09 m Total loss = 0.13 m	2543.49
Gate Clarifier Distribution Box Opening type = rectangular gate Opening diameter/width = 1500 mm Gate height = 4000 mm Invert = 2541 Number of gates = 1 Flow through gate(s) = 1.92 cms Total area of opening(s) = 6 m ² Velocity through gate(s) = 0.32 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 30.8 cms Gate loss = 0.01 m Downstream water level = 2543.49 Upstream water level = 2543.5	2543.5

Box 2 Weir

Weir invert (top of weir) = 2543.65Weir length = 3.05 m Weir height = 5.04 m Weir 'C' coefficient = 1.807Flow over weir = 1.92 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 30.8 cms Head over weir = 0.5 m Enter Pipe BOX 2

Pipe shape = Rectangular Height = 2500 mmWidth = 3000 mmLength = 285.5 mFlow = 7.7 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 7.5 m^2 Pipe hydraulic radius = 0.682Age factor = 1Solids factor = 1Velocity = 1.03 m/sUnits on-line = 4Total flow. all units = 30.8 cms Friction loss = 0.08 mFitting loss = 0.08 mTotal loss = 0.17 m0

General Box 2 Gate

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 Flow through gate(s) = 5.4 cms Total area of opening(s) = 21 m² Velocity through gate(s) = 0.26 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 21.6 cms Gate loss = 0.01 m Downstream water level = 2544.31 Upstream water level = 2544.32 2544.31

Water Surface Elevation

General box 2 Weir	2545.27
Weir invert (top of weir) = 2544.6	
Weir length = 7.62 m	
Weir height = 4 m	
Weir 'C' coefficient = 1.828	
Flow over weir = 7.7 cms	
Weir submergence = unsubmerged	
Units on-line $= 4$	
Total flow, all units $= 30.8$ cms	
Head over weir $= 0.67$ m	
Aeration Exit pipe	2545.47
Pipe shape = Rectangular	
Height = 3500 mm	
Width = 6000 mm	
Length = 336 m	
Flow = 26.19 cms	
Friction method = Manning's Equation	
Friction factor $= 0.013$	
Total fitting K value = 1.5	
Pipe area = 21 m^2	
Pipe hydraulic radius $= 1.105$	
Age factor $= 1$	
Solids factor $= 1$	
Velocity = 1.25 m/s	
Units on-line $= 1$	
Total flow, all units = 26.2 cms	
Friction loss = 0.08 m	
Fitting loss = 0.12 m	
Total loss = 0.2 m	
0	
Aeration Exit Channel	2545.47
Channel shape = Rectangular	
Manning's 'n' $= 0.013$	
Channel length = 309.5 m	
Channel width/diameter = 4 m	
Flow = 5.13 cms	
Downstream channel invert = 2542.8	
Channel slope = 0.002 m/m	
Channel side slope = not applicable	
Area of flow = 9.45 m^2	
Flow profile = Mild	
Normal depth = 0.62 m	
Critical depth = 0.552 m	
Units on-line = 6	
Total flow, all units = 30.8 cms	

7

Depth downstream = 2.67 m Bend loss = 0 m Depth upstream = 2.05 m Velocity = 0.48 m/s
AB lank weir
Weir invert (top of weir) = 2545.85
Weir length = 32.6 m
Weir height = 6.5 m
Weir 'C' coefficient = 1.782
Flow over weir = 1.28 cms
Weir submergence = unsubmerged
Units on-line $= 24$
Total flow, all units $= 30.7$ cms
Head over weir = 0.08 m
veration Basin
Channel shape = Rectangular
Manning's 'n' = 0.013
Channel length = 686 m
Channel width/diameter = 11 m
Flow = 1.28 cms
Downstream channel invert = 2539
Channel slope = 0 m/m
Channel side slope = not applicable
Area of flow = 76.22 m^2
Flow profile = Horizontal
Normal depth = Infinite

Velocity = 0.02 m/s

Bend loss = 0 m

Critical depth = 0.112 mUnits on-line = 24

Depth upstream = 6.93 m

Total flow, all units = 30.8 cms Depth downstream = 6.93 m

Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mmGate height = 4000 mmInvert = 2543Number of gates = 1Flow through gate(s) = 1.28 cms Total area of opening(s) = 12 m^2 Velocity through gate(s) = 0.11 m/sFlow behavior = orifice, downstream control Units on-line = 24

2545.93

2545.93

Total flow, all units = 30.8 cms Gate loss = 0 m Downstream water level = 2545.93Upstream water level = 2545.93

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mmLength = 77 mFlow = 1.28 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on-line = 24Total flow, all units = 30.7 cms Friction loss = 0.08 mFitting loss = 0.1 mTotal loss = 0.18 mTotal loss = 0.17 m0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.28 cms Total area of opening(s) = 6.5 m² Velocity through gate(s) = 0.2 m/s Flow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 30.8 cms Gate loss = 0.01 m Downstream water level = 2546.11 Upstream water level = 2546.12

AB Distribution Box Weir

Weir invert (top of weir) = 2546.3 Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815 2546.11

2546.12

Flow over weir = 1.28 cms Weir submergence = unsubmerged Units on-line = 24Total flow, all units = 30.7 cms Head over weir = 0.38 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mmWidth = 3500 mmLength = 375 mFlow = 7.2 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 0.82 m/sUnits on-line = 3Total flow, all units = 21.6 cms Friction loss = 0.07 mFitting loss = 0.06 mTotal loss = 0.13 m0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 7.2 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 0.72 m/sFlow behavior = orifice, downstream control Units on-line = 3 Total flow, all units = 21.6 cms Gate loss = 0.07 mDownstream water level = 2546.8 Upstream water level = 2546.87

General Aeration Box Weir

Weir invert (top of weir) = 2547.21 Weir length = 7.62 m Weir height = 3 m 2546.8

2546.87

Weir 'C' coefficient = 1.846Flow over weir = 7.2 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 21.6 cms Head over weir = 0.64 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 273 mFlow = 10.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.88 m/sUnits on-line = 2Total flow, all units = 21.6 cms Friction loss = 0.04 mFitting loss = 0.07 mTotal loss = 0.11 m0

Clarifier Exit Pipe

Pipe shape = CircularDiameter = 1500 mmLength = 81.6 mFlow = 1.35 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on-line = 16Total flow, all units = 21.6 cms Friction loss = 0.03 m Fitting loss = 0.05 mTotal loss = 0.08 m

2547.96

Water Surface Elevation

Clarifier Orifice 2548.12 Opening type = circular orifice $\frac{1}{2}$ Opening diameter/width = 1500 mmOpening height = not applicable Invert = 2545Number of openings = 1Flow through opening(s) = 1.35 cms Total area of opening(s) = 1.77 m^2 Velocity through opening(s) = 0.76 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 21.6 cms Orifice loss = 0.08 mDownstream water level = 2548.04Upstream water level = 2548.12**Clarifier Launder** Launder invert = 2548.2Launder length = 81.7 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.68 cms Critical depth = 0.27 mUnits on-line = 32Total flow, all units = 21.6 cms Downstream depth = 0.27 mUpstream depth = 0.27 mWeir Clarifier Invert of V notch = 2548.9Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 1.35 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 21.6 cms Head over weir = 0.07 m **Clarifier Enter Pipe** Pipe shape = Circular Diameter = 1500 mmLength = 45 mFlow = 1.35 cmsFriction method = Manning's Equation Friction factor = 0.013

Total fitting K value = 1.5Pipe area = 1.767 m^2

2548.8

2548.97

Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on-line = 16Total flow, all units = 21.6 cms Friction loss = 0.02 mFitting loss = 0.04 mTotal loss = 0.06 m **Distribution Box Gate** Opening type = rectangular gate Opening diameter/width = 1500 mmGate height = 3000 mmInvert = 2545Number of gates = 1Flow through gate(s) = 1.35 cms Total area of opening(s) = 4.5 m^2 Velocity through gate(s) = 0.3 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 21.6 cms Gate loss = 0.01 mDownstream water level = 2549.03Upstream water level = 2549.04**Box 1 Weir** Weir invert (top of weir) = 2549.15Weir length = 3.05 m Weir height = 3.5 mWeir 'C' coefficient = 1.813Flow over weir = 1.35 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 21.6 cms Head over weir = 0.39 m **Enter Pipe BOX 1** Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 262.7 mFlow = 5.4 cms

Friction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 6.25 m^2

2549.04

2549.54

```
Pipe hydraulic radius = 0.625
Age factor = 1
Solids factor = 1
Velocity = 0.86 m/s
Units on-line = 4
Total flow, all units = 21.6 cms
Friction loss = 0.06 m
Fitting loss = 0.06 m
Total loss = 0.13 m
0
```

General Box Gate

2549.68

Opening type = rectangular gate Opening diameter/width = 6000 mmGate height = 3000 mmInvert = 2544Number of gates = 1 Flow through gate(s) = 5.4 cmsTotal area of opening(s) = 18 m^2 Velocity through gate(s) = 0.3 m/sFlow behavior = orifice, downstream control Units on-line = 4Total flow, all units = 21.6 cmsGate loss = 0.01 mDownstream water level = 2549.67Upstream water level = 2549.68

General box 1 Weir

Weir invert (top of weir) = 2550Weir length = 6.1 mWeir height = 3 mWeir 'C' coefficient = 1.843Flow over weir = 5.4 cmsWeir submergence = unsubmerged Units on-line = 4Total flow, all units = 21.6 cmsHead over weir = 0.61 m

R Mix to Clarifiers Pipe

Pipe shape = Rectangular Height = 3500 mm Width = 3000 mm Length = 77.5 m Flow = 10.8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 2550.61

Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1 Solids factor = 1 Velocity = 1.03 m/sUnits on-line = 2 Total flow, all units = 21.6 cmsFriction loss = 0.02 mFitting loss = 0.08 mTotal loss = 0.1 m0

RM Exit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 21.6 cmsDownstream channel invert = 2549Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 54.73 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.36 mUnits on-line = 1Total flow, all units = 21.6 cms Depth downstream = 1.71 mBend loss = 0 mDepth upstream = 1.71 mVelocity = 0.39 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547 Number of gates = 4 Flow through gate(s) = 5.4 cms Total area of opening(s) = 50.27 m² Velocity through gate(s) = 0.11 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 21.6 cms Gate loss = 0 m Downstream water level = 2550.71 Upstream water level = 2550.71 2550.71

RM

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 9 mChannel width/diameter = 8 mFlow = 5.4 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 37.71 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.36 mUnits on-line = 4Total flow, all units = 21.6 cms Depth downstream = 4.71 mBend loss = 0 mDepth upstream = 4.72 mVelocity = 0.14 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 4 Flow through gate(s) = 5.4 cms Total area of opening(s) = 12.57 m² Velocity through gate(s) = 0.43 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 21.6 cms Gate loss = 0.03 m Downstream water level = 2550.72 Upstream water level = 2550.74

RM Enter Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 m Channel width/diameter = 32 m Flow = 21.6 cms Downstream channel invert = 2548Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 87.75 m²

2550.74

Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.36 m Units on-line = 1 Total flow, all units = 21.6 cms Depth downstream = 2.74 m Bend loss = 0 m Depth upstream = 2.74 m Velocity = 0.25 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 10.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.88 m/sUnits on-line = 2Total flow, all units = 21.6 cms Friction loss = 0.01 mFitting loss = 0.07 mTotal loss = 0.08 m0

Junction Tank Grit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 4 m Channel width/diameter = 45.2 m Flow = 10.8 cms Downstream channel invert = 2548Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 127.49 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.18 m Units on-line = 2Total flow, all units = 21.6 cms Depth downstream = 2.82 m 2550.82

Bend loss = 0 m Depth upstream = 2.82 m Velocity = 0.08 m/s

Grit Weir

2551.49

Weir invert (top of weir) = 2551.28Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 2.16 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 21.6 cmsHead over weir = 0.21 m

Grit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 55 mChannel width/diameter = 4 mFlow = 1.54 cmsDownstream channel invert = 2546.55Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 19.74 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.248 m Units on-line = 14Total flow, all units = 21.6 cms Depth downstream = 4.94 mBend loss = 0 mDepth upstream = 4.94 mVelocity = 0.08 m/s

Screening Exit Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 2.16 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.54 m/s Flow behavior = orifice, downstream control Units on-line = 10 Total flow, all units = 21.6 cms 2551.49

Gate loss = 0.04 m
Downstream water level $= 2551.49$
Upstream water level $= 2551.53$

Screen Channel 1 - 2

2551.53

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 5 mChannel width/diameter = 2.5 mFlow = 2.16 cmsDownstream channel invert = 2549.24Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 5.72 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.424 m Units on-line = 10Total flow, all units = 21.6 cms Depth downstream = 2.29 mBend loss = 0 mDepth upstream = 2.29 mVelocity = 0.38 m/s

Fine Screen

Rack invert = 2550.3Rack width = 2.5 mChannel width = 2.5 mFlow through rack = 2.16 cms Bar width = 6 mmBar spacing = 6 mmPercent blocked = 0%Net rack open area = 1.53 m^2 Downstream depth = 1.23 m Velocity in channel = 0.7 m/sVelocity through bars = 1.41 m/sUnits on-line = 10Total flow, all units = 21.6 cms Rack head loss = 0.11 m

Screen Channel 2 -3

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.5 mFlow = 2.16 cmsDownstream channel invert = 2550 2551.64

Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 4.09 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.424 mUnits on-line = 10Total flow, all units = 21.6 cmsDepth downstream = 1.64 mBend loss = 0 mDepth upstream = 1.64 mVelocity = 0.53 m/s

Medium Screen

2551.66

Rack invert = 2550 Rack width = 2.5 m Channel width = 2.5 m Flow through rack = 2.16 cms Bar width = 10 mm Bar spacing = 25 mm Percent blocked = 0% Net rack open area = 2.91 m² Downstream depth = 1.64 m Velocity in channel = 0.53 m/s Velocity through bars = 0.74 m/s Units on-line = 10 Total flow, all units = 21.6 cms Rack head loss = 0.02 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 mChannel width/diameter = 2.5 mFlow = 2.16 cmsDownstream channel invert = 2550Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 4.15 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.424 m Units on-line = 10Total flow, all units = 21.6 cms Depth downstream = 1.66 mBend loss = 0 mDepth upstream = 1.66 m

2551.7

Velocity =	0.52 m/s
------------	----------

Screening Enter Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 2.16 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.54 m/s Flow behavior = orifice, downstream control Units on-line = 10 Total flow, all units = 21.6 cms Gate loss = 0.04 m Downstream water level = 2551.66 Upstream water level = 2551.7

Screening Distribution Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 mFlow = 10.8 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 163.4 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.19 mUnits on-line = 2Total flow, all units = 21.6 cms Depth downstream = 3.9 mBend loss = 0 mDepth upstream = 3.9 mVelocity = 0.07 m/s

Initial Pipe

Pipe shape = Rectangular Height = 3500 mm Width = 4000 mm Length = 28 m Flow = 10.8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.7 2551.7

Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1Solids factor = 1Velocity = 0.77 m/sUnits on-line = 2Total flow, all units = 21.6 cmsFriction loss = 0 mFitting loss = 0.05 mTotal loss = 0.05 m0

Initial Gate

2551.8

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 10.8 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.54 m/s Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 21.6 cms Gate loss = 0.04 m Downstream water level = 2551.76 Upstream water level = 2551.8

Inicial Junction Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 13 mChannel width/diameter = 25 mFlow = 21.6 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 144.98 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.424 m Units on-line = 1Total flow, all units = 21.6 cms Depth downstream = 5.8 mBend loss = 0 mDepth upstream = 5.8 mVelocity = 0.15 m/s

HP CANOAS 17 03 2014 L1 v2 2540 Q32.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
32 cms	9.18 cms		

Section Description	Water Surface Elevation	
Starting water surface elevation	2541.41	
Exit Pipe	2541.63	
Pipe shape = Rectangular		
Height = 3000 mm		
Width = 4000 mm		
Length = 227.5 m		
Flow = 16 cms		
Friction method = Manning's Equation		
Friction factor $= 0.013$		
Total fitting K value = 1.5		
Pipe area = 12 m^2		
Pipe hydraulic radius $= 0.857$		
Age factor $= 1$		
Solids factor = 1		
Velocity = 1.33 m/s		
Units on-line $= 2$		
Total flow, all units = 32 cms		
Friction loss = 0.08 m		
Fitting $loss = 0.14 \text{ m}$		
Total loss = 0.22 m		
0		
Chlorination Exit Tank	2541.63	

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 m Channel width/diameter = 154.5 m Flow = 32 cms Downstream channel invert = 2538.63Channel slope = 0.0001 m/m Channel side slope = not applicable Area of flow = 463.42 m² Flow profile = Mild Normal depth = 0.46 m Critical depth = 0.164 m

Units on-line = 1Total flow, all units = 32 cms Depth downstream = 3 mBend loss = 0 mDepth upstream = 3 mVelocity = 0.07 m/s**Chlorination Tank Weir** Weir invert (top of weir) = 2541.65Weir length = 23 mWeir height = 5.1 mWeir 'C' coefficient = 1.794Flow over weir = 8 cmsWeir submergence = unsubmerged Units on-line = 4Total flow, all units = 32 cmsHead over weir = 0.33 m **Chlorination Tank** Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 356.5 mChannel width/diameter = 8 mFlow = 8 cmsDownstream channel invert = 2540Channel slope = 0.0001 m/mChannel side slope = not applicable Area of flow = 15.77 m^2 Flow profile = Mild Normal depth = 1.32 mCritical depth = 0.467 mUnits on-line = 4Total flow, all units = 32 cms Depth downstream = 1.98 mBend loss = 0.02 mDepth upstream = 1.97 mVelocity = 0.5 m/s**Chlorination Tank - Enter Gate** Opening type = rectangular gate Opening diameter/width = 8000 mm

Opening diameter/width = 8000 mmGate height = 4000 mmInvert = 2540Number of gates = 1 Flow through gate(s) = 8 cmsTotal area of opening(s) = 32 m^2 Velocity through gate(s) = 0.25 m/s

2541.98

2542.01

Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0.01 mDownstream water level = 2542.01Upstream water level = 2542.02

Chlorination Enter Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 32 cmsDownstream channel invert = 2539.02Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 275.78 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.231 mUnits on-line = 1Total flow, all units = 32 cmsDepth downstream = 3 mBend loss = 0 mDepth upstream = 3 mVelocity = 0.12 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 1003 mFlow = 16 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 1.52 m/sUnits on-line = 2Total flow, all units = 32 cms Friction loss = 0.52 mFitting loss = 0.18 mTotal loss = 0.7 m0

2542.02

Secondary Clarifier Exit Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 118 mFlow = 2 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on-line = 16Total flow, all units = 32 cms Friction loss = 0.09 mFitting loss = 0.11 mTotal loss = 0.2 m

2 Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2540 Number of openings = 1 Flow through opening(s) = 2 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 1.13 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 32 cms Orifice loss = 0.18 m Downstream water level = 2542.92 Upstream water level = 2543.1

Launder Channel 2 C

Launder invert = 2542.5Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 1 cmsCritical depth = 0.36 mUnits on-line = 32Total flow, all units = 32 cmsDownstream depth = 0.6 mUpstream depth = 0.37 m 2542.92

2543.1

Weir 2 Clarifier Invert of V notch = 2543.3 Angle of V notch = 90 degrees Number of notches = 911 Total flow over weir = 2 cms Weir submergence = unsubmerged Units on-line = 16 Total flow, all units = 32 cms Head over weir = 0.08 m	2543.38
2 Clarifier Enter Pipe Pipe shape = Circular Diameter = 1500 mm Length = 48.8 m Flow = 2.57 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375 Age factor = 1 Solids factor = 1 Velocity = 1.46 m/s Units on-line = 16 Total flow, all units = 41.2 cms Friction loss = 0.06 m Fitting loss = 0.16 m Total loss = 0.23 m	2543.6
Gate Clarifier Distribution BoxOpening type = rectangular gateOpening diameter/width = 1500 mmGate height = 4000 mmInvert = 2541 Number of gates = 1Flow through gate(s) = 2.57 cmsTotal area of opening(s) = 6 m²Velocity through gate(s) = 0.43 m/sFlow behavior = orifice, downstream controlUnits on-line = 16 Total flow, all units = 41.2 cmsGate loss = 0.02 mDownstream water level = 2543.6 Upstream water level = 2543.62	2543.62

Box 2 Weir

Weir invert (top of weir) = 2543.65Weir length = 3.05 m Weir height = 5.04 m Weir 'C' coefficient = 1.807Flow over weir = 2.57 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 41.2 cms Head over weir = 0.6 m

Enter Pipe BOX 2

Pipe shape = Rectangular Height = 2500 mmWidth = 3000 mmLength = 285.5 mFlow = 10.3 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 7.5 m^2 Pipe hydraulic radius = 0.682Age factor = 1Solids factor = 1Velocity = 1.37 m/sUnits on-line = 4Total flow, all units = 41.2 cms Friction loss = 0.15 mFitting loss = 0.14 mTotal loss = 0.3 m0

General Box 2 Gate

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 Flow through gate(s) = 8 cms Total area of opening(s) = 21 m² Velocity through gate(s) = 0.38 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0.02 m Downstream water level = 2544.55 Upstream water level = 2544.57 2544.55
Water Surface Elevation

General box 2 Weir	2545.42
Weir invert (top of weir) = 2544.6	
Weir length = 7.62 m	
Weir height = 4 m	
Weir 'C' coefficient = 1.828	
Flow over weir = 10.3 cms	
Weir submergence = unsubmerged	
Units on-line $= 4$	
Total flow, all units = 41.2 cms	
Head over weir = 0.82 m	
Aeration Exit pipe	2545.8
Pipe shape = Rectangular	201000
Height = 3500 mm	
Width = 6000 mm	
Length = 336 m	
Flow = 36.59 cms	
Friction method = Manning's Equation	
Friction factor $= 0.013$	
Total fitting K value = 1.5	
Pipe area = 21 m^2	
Pipe hydraulic radius $= 1.105$	
Age factor $= 1$	
Solids factor $= 1$	
Velocity = 1.74 m/s	
Units on-line $= 1$	
Total flow, all units $= 36.6$ cms	
Friction loss = 0.15 m	
Fitting loss = 0.23 m	
Total loss = 0.38 m	
0	
Aeration Exit Channel	2545.81
Channel shape = Rectangular	
Manning's 'n' = 0.013	
Channel length = 309.5 m	
Channel width/diameter = 4 m	
Flow = 6.86 cms	
Downstream channel invert = 2542.8	
Channel slope = 0.002 m/m	
Channel side slope = not applicable	
Area of flow = 10.78 m^2	
Flow profile = Mild	
Normal depth = 0.75 m	
Critical depth = 0.67 m	
Units on-line $= 6$	
Total flow, all units = 41.2 cms	

Depth downstream = 3 mBend loss = 0 mDepth upstream = 2.39 mVelocity = 0.57 m/s**AB Tank Weir** Weir invert (top of weir) = 2545.85Weir length = 32.6 mWeir height = 6.5 mWeir 'C' coefficient = 1.782Flow over weir = 1.71 cms Weir submergence = unsubmerged Units on-line = 24Total flow, all units = 41.1 cms Head over weir = 0.1 m**Aeration Basin** Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 686 mChannel width/diameter = 11 mFlow = 1.71 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 76.41 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.136 m Units on-line = 24Total flow, all units = 41.1 cms Depth downstream = 6.95 mBend loss = 0 mDepth upstream = 6.95 mVelocity = 0.02 m/s

Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mmGate height = 4000 mmInvert = 2543Number of gates = 1 Flow through gate(s) = 1.71 cmsTotal area of opening(s) = 12 m^2 Velocity through gate(s) = 0.14 m/sFlow behavior = orifice, downstream control Units on-line = 24

2545.95

2545.95

Total flow, all units = 41.2 cms Gate loss = 0 m Downstream water level = 2545.95Upstream water level = 2545.95

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mmLength = 77 mFlow = 1.71 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 1.52 m/sUnits on-line = 24Total flow, all units = 41.1 cms Friction loss = 0.15 mFitting loss = 0.18 mTotal loss = 0.32 mTotal loss = 0.17 m0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.71 cms Total area of opening(s) = 6.5 m² Velocity through gate(s) = 0.26 m/s Flow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 41.2 cms Gate loss = 0.01 m Downstream water level = 2546.27 Upstream water level = 2546.28

AB Distribution Box Weir

Weir invert (top of weir) = 2546.3 Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815 2546.27

2546.28

Flow over weir = 1.71 cmsWeir submergence = unsubmerged Units on-line = 24Total flow, all units = 41.1 cmsHead over weir = 0.46 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mmWidth = 3500 mmLength = 375 mFlow = 10.67 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 1.22 m/sUnits on-line = 3Total flow, all units = 32 cmsFriction loss = 0.14 mFitting loss = 0.14 mTotal loss = 0.28 m0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 10.67 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 1.07 m/s Flow behavior = orifice, downstream control Units on-line = 3 Total flow, all units = 32 cms Gate loss = 0.15 m Downstream water level = 2547.04 Upstream water level = 2547.19

General Aeration Box Weir

Weir invert (top of weir) = 2547.21 Weir length = 7.62 m Weir height = 3 m 2547.04

2547.19

Weir 'C' coefficient = 1.846Flow over weir = 10.67 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 32 cms Head over weir = 0.83 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 273 mFlow = 16 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 1.31 m/sUnits on-line = 2Total flow, all units = 32 cms Friction loss = 0.09 mFitting loss = 0.16 mTotal loss = 0.25 m0

Clarifier Exit Pipe

Pipe shape = CircularDiameter = 1500 mmLength = 81.6 mFlow = 2 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on-line = 16Total flow, all units = 32 cms Friction loss = 0.07 mFitting loss = 0.12 mTotal loss = 0.18 m

2548.29

Water Surface Elevation

Clarifier Orifice Opening type = circular orifice $\frac{1}{2}$ Opening diameter/width = 1500 mmOpening height = not applicable Invert = 2545Number of openings = 1Flow through opening(s) = 2 cmsTotal area of opening(s) = 1.77 m^2 Velocity through opening(s) = 1.13 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 32 cms Orifice loss = 0.18 mDownstream water level = 2548.47Upstream water level = 2548.65**Clarifier Launder** Launder invert = 2548.2Launder length = 81.7 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 1 cms Critical depth = 0.36 mUnits on-line = 32Total flow, all units = 32 cmsDownstream depth = 0.45 mUpstream depth = 0.36 mWeir Clarifier Invert of V notch = 2548.9Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 2 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 32 cms Head over weir = 0.08 m **Clarifier Enter Pipe** Pipe shape = Circular Diameter = 1500 mmLength = 45 mFlow = 2 cmsFriction method = Manning's Equation Friction factor = 0.013

Total fitting K value = 1.5Pipe area = 1.767 m²

2548.65

2548.88

2548.98

Pipe area = 6.25 m^2

Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on-line = 16Total flow, all units = 32 cms Friction loss = 0.04 mFitting loss = 0.1 mTotal loss = 0.13 m**Distribution Box Gate** Opening type = rectangular gate Opening diameter/width = 1500 mmGate height = 3000 mmInvert = 2545Number of gates = 1Flow through gate(s) = 2 cmsTotal area of opening(s) = 4.5 m^2 Velocity through gate(s) = 0.44 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 32 cms Gate loss = 0.03 mDownstream water level = 2549.11Upstream water level = 2549.14**Box 1 Weir** Weir invert (top of weir) = 2549.15Weir length = 3.05 m Weir height = 3.5 mWeir 'C' coefficient = 1.813Flow over weir = 2 cmsWeir submergence = unsubmerged Units on-line = 16Total flow, all units = 32 cms Head over weir = 0.51 m**Enter Pipe BOX 1** Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 262.7 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7

2549.14

2549.66

Water Surface Elevation

2549.97

Section Description

Pipe hydraulic radius = 0.625Age factor = 1 Solids factor = 1 Velocity = 1.28 m/s Units on-line = 4 Total flow, all units = 32 cms Friction loss = 0.14 m Fitting loss = 0.14 m Total loss = 0.28 m 0

General Box Gate

Opening type = rectangular gate Opening diameter/width = 6000 mm Gate height = 3000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 8 cms Total area of opening(s) = 18 m² Velocity through gate(s) = 0.44 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0.03 m Downstream water level = 2549.94 Upstream water level = 2549.97

General box 1 Weir

Weir invert (top of weir) = 2550Weir length = 6.1 mWeir height = 3 mWeir 'C' coefficient = 1.843Flow over weir = 8 cmsWeir submergence = unsubmerged Units on-line = 4Total flow, all units = 32 cmsHead over weir = 0.8 m

R Mix to Clarifiers Pipe

Pipe shape = Rectangular Height = 3500 mm Width = 3000 mm Length = 77.5 m Flow = 16 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 2550.8

Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 1.52 m/sUnits on-line = 2Total flow, all units = 32 cmsFriction loss = 0.04 mFitting loss = 0.18 mTotal loss = 0.22 m0

RM Exit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 32 cmsDownstream channel invert = 2549Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 64.66 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.467 mUnits on-line = 1Total flow, all units = 32 cms Depth downstream = 2.02 mBend loss = 0 mDepth upstream = 2.02 mVelocity = 0.5 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547 Number of gates = 4 Flow through gate(s) = 8 cms Total area of opening(s) = 50.27 m² Velocity through gate(s) = 0.16 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0 m Downstream water level = 2551.02 Upstream water level = 2551.03

2551.02

RM

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 9 mChannel width/diameter = 8 mFlow = 8 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 40.21 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.467 mUnits on-line = 4Total flow, all units = 32 cmsDepth downstream = 5.03 mBend loss = 0 mDepth upstream = 5.03 mVelocity = 0.2 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 4 Flow through gate(s) = 8 cms Total area of opening(s) = 12.57 m² Velocity through gate(s) = 0.64 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0.06 m Downstream water level = 2551.03 Upstream water level = 2551.08

RM Enter Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 m Channel width/diameter = 32 m Flow = 32 cms Downstream channel invert = 2548Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 98.73 m² 2551.08

Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.467 m Units on-line = 1 Total flow, all units = 32 cms Depth downstream = 3.08 m Bend loss = 0 m Depth upstream = 3.09 m Velocity = 0.32 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 16 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 1.31 m/sUnits on-line = 2Total flow, all units = 32 cms Friction loss = 0.02 mFitting loss = 0.16 mTotal loss = 0.17 m0

Junction Tank Grit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 4 m Channel width/diameter = 45.2 m Flow = 16 cms Downstream channel invert = 2548Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 147.38 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.234 m Units on-line = 2Total flow, all units = 32 cms Depth downstream = 3.26 m 2551.26

Bend loss = 0 m Depth upstream = 3.26 m Velocity = 0.11 m/s

Grit Weir

2551.55

Weir invert (top of weir) = 2551.28Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 3.2 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 32 cmsHead over weir = 0.27 m

Grit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 55 mChannel width/diameter = 4 mFlow = 2.29 cmsDownstream channel invert = 2546.55Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 19.99 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.322 m Units on-line = 14Total flow, all units = 32 cms Depth downstream = 5 mBend loss = 0 mDepth upstream = 5 mVelocity = 0.11 m/s

Screening Exit Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 3.2 cmsTotal area of opening(s) = 4 m^2 Velocity through gate(s) = 0.8 m/sFlow behavior = orifice, downstream control Units on-line = 10Total flow, all units = 32 cms 2551.55

Gate loss = 0.08 mDownstream water level = 2551.55Upstream water level = 2551.63

Screen Channel 1 - 2

2551.64

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 5 mChannel width/diameter = 2.5 mFlow = 3.2 cmsDownstream channel invert = 2549.24Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 5.99 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.551 mUnits on-line = 10Total flow, all units = 32 cms Depth downstream = 2.39 mBend loss = 0 mDepth upstream = 2.4 mVelocity = 0.53 m/s

Fine Screen

Rack invert = 2550.3Rack width = 2.5 mChannel width = 2.5 mFlow through rack = 3.2 cms Bar width = 6 mmBar spacing = 6 mmPercent blocked = 0%Net rack open area = 1.67 m^2 Downstream depth = 1.34 m Velocity in channel = 0.96 m/sVelocity through bars = 1.92 m/sUnits on-line = 10Total flow, all units = 32 cms Rack head loss = 0.2 m

Screen Channel 2 -3

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.5 mFlow = 3.2 cmsDownstream channel invert = 2550 2551.84

Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 4.59 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.551 mUnits on-line = 10Total flow, all units = 32 cmsDepth downstream = 1.84 mBend loss = 0 mDepth upstream = 1.84 mVelocity = 0.7 m/s

Medium Screen

2551.87

Rack invert = 2550 Rack width = 2.5 m Channel width = 2.5 m Flow through rack = 3.2 cms Bar width = 10 mm Bar spacing = 25 mm Percent blocked = 0%Net rack open area = 3.26 m² Downstream depth = 1.84 m Velocity in channel = 0.7 m/s Velocity through bars = 0.98 m/s Units on-line = 10 Total flow, all units = 32 cms Rack head loss = 0.03 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 mChannel width/diameter = 2.5 mFlow = 3.2 cmsDownstream channel invert = 2550Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 4.69 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.551 mUnits on-line = 10Total flow, all units = 32 cms Depth downstream = 1.87 mBend loss = 0 mDepth upstream = 1.88 m

2551.96

Velocity =	0.68	m/s
------------	------	-----

Screening Enter Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 3.2 cmsTotal area of opening(s) = 4 m^2 Velocity through gate(s) = 0.8 m/sFlow behavior = orifice, downstream control Units on-line = 10Total flow, all units = 32 cmsGate loss = 0.08 mDownstream water level = 2551.88Upstream water level = 2551.96

Screening Distribution Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 mFlow = 16 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 174.36 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.246 mUnits on-line = 2Total flow, all units = 32 cms Depth downstream = 4.16 mBend loss = 0 mDepth upstream = 4.16 mVelocity = 0.09 m/s

Initial Pipe

Pipe shape = Rectangular Height = 3500 mm Width = 4000 mm Length = 28 m Flow = 16 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.7 2551.96

Water Surface Elevation

Section Description

Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1Solids factor = 1Velocity = 1.14 m/sUnits on-line = 2Total flow, all units = 32 cmsFriction loss = 0.01 mFitting loss = 0.11 mTotal loss = 0.12 m0

Initial Gate

2552.17

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 16 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.8 m/s Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 32 cms Gate loss = 0.08 m Downstream water level = 2552.08 Upstream water level = 2552.17

Inicial Junction Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 13 mChannel width/diameter = 25 mFlow = 32 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 154.14 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.551 mUnits on-line = 1Total flow, all units = 32 cms Depth downstream = 6.17 mBend loss = 0 mDepth upstream = 6.17 mVelocity = 0.21 m/s

Anexo 3.4.Perfil hidráulico alternativa 2 Cota de inicio 2540.23

HP CANOAS 17 03 2014 L2 2540-23 Q13.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
13.6 cms	9.18 cms		

Section Description

Water Surface Elevation

Starting water surface elevation	2540.88
Starting water surface elevationExit PipePipe shape = RectangularHeight = 3000 mmWidth = 4000 mmLength = 343 mFlow = 6.8 cmsFriction method = Manning's EquationFriction factor = 0.013Total fitting K value = 1.5Pipe area = 12 m²Pipe hydraulic radius = 0.857Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on-line = 2Total flow, all units = 13.6 cmsFriction loss = 0.02 mFitting loss = 0.05 m	2540.88 2540.93
U	

Chlorination Exit Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 m Channel width/diameter = 154.5 m Flow = 13.6 cms Downstream channel invert = 2538.67Channel slope = 0.0001 m/m Channel side slope = not applicable Area of flow = 349.09 m² Flow profile = Mild Normal depth = 0.28 m Critical depth = 0.093 m

Water Surface Elevation

Section Description

Units on-line = 1 Total flow, all units = 13.6 cms Depth downstream = 2.26 m Bend loss = 0 m Depth upstream = 2.26 m Velocity = 0.04 m/s

Chlorination Tank Weir

Weir invert (top of weir) = 2541.68Weir length = 23 m Weir height = 5.1 m Weir 'C' coefficient = 1.794Flow over weir = 3.4 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 13.6 cms Head over weir = 0.19 m

Chlorination Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 356.5 mChannel width/diameter = 8 mFlow = 3.4 cmsDownstream channel invert = 2539Channel slope = 0.0001 m/mChannel side slope = not applicable Area of flow = 22.81 m^2 Flow profile = Mild Normal depth = 0.76 mCritical depth = 0.264 mUnits on-line = 4Total flow, all units = 13.6 cms Depth downstream = 2.87 mBend loss = 0 mDepth upstream = 2.83 mVelocity = 0.15 m/s

Chlorination Tank - Enter Gate

Opening type = rectangular gate Opening diameter/width = 8000 mmGate height = 4000 mmInvert = 2540Number of gates = 1 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 32 m^2 Velocity through gate(s) = 0.11 m/s 2541.87

2541.87

Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 13.6 cms Gate loss = 0 m Downstream water level = 2541.87Upstream water level = 2541.87

Chlorination Enter Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 13.6 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 264.14 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.131 mUnits on-line = 1Total flow, all units = 13.6 cms Depth downstream = 2.87 mBend loss = 0 mDepth upstream = 2.87 mVelocity = 0.05 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 522 mFlow = 6.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 0.65 m/sUnits on-line = 2Total flow, all units = 13.6 cms Friction loss = 0.05 mFitting loss = 0.03 m Total loss = 0.08 m0

2541.87

Secondary Clarifier Exit Pipe 2541.99 Pipe shape = Circular Diameter = 1500 mmLength = 117 mFlow = 0.85 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.48 m/sUnits on-line = 16Total flow. all units = 13.6 cms Friction loss = 0.02 mFitting loss = 0.02 mTotal loss = 0.04 m**2** Clarifier Orifice 2542.02 Opening type = circular orifice $\frac{1}{2}$ Opening diameter/width = 1500 mmOpening height = not applicable Invert = 2540Number of openings = 1Flow through opening(s) = 0.85 cms Total area of opening(s) = 1.77 m^2 Velocity through opening(s) = 0.48 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 13.6 cms Orifice loss = 0.03 mDownstream water level = 2541.99Upstream water level = 2542.02Launder Channel 2 C 2542.57 Launder invert = 2542Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.43 cms Critical depth = 0.2 mUnits on-line = 32

Weir 2 Clarifier	2543
Invert of V notch = 2542.95	
Angle of V notch = 90 degrees	
Number of notches $= 911$	
Total flow over weir = 0.85 cms	
Weir submergence = unsubmerged	
Units on-line $= 16$	
Total flow, all units = 13.6 cms	
Head over weir = 0.05 m	
2 Clarifier Enter Pipe	2543.07
Pipe shape = $Circular$	
Diameter = 1500 mm	
Length = 48.8 m	
Flow = 1.42 cms	
Friction method = Manning's Equation	
Friction factor $= 0.013$	
Total fitting K value = 1.5	
Pipe area = 1.767 m^2	
Pipe hydraulic radius $= 0.375$	
Age factor $= 1$	
Solids factor $= 1$	
Velocity = 0.81 m/s	
Units on-line $= 16$	
Total flow, all units = 22.8 cms	
Friction loss = 0.02 m	
Fitting loss = 0.05 m	
Total loss = 0.07 m	
Gate Clarifier Distribution Box	2543.08
Opening type = rectangular gate	
Opening diameter/width = 1500 mm	
Gate height = 4000 mm	
Invert = 2541	
Number of gates $= 1$	
Flow through gate(s) = 1.42 cms	
Total area of opening(s) = 6 m^2	
Velocity through gate(s) = 0.24 m/s	
Flow behavior = orifice, downstream control	
Units on-line $= 16$	
Total flow, all units = 22.8 cms	
Gate loss = 0.01 m	
Downstream water level = 2543.07	
Upstream water level = 2543.08	

Box 2 Weir

Weir invert (top of weir) = 2543.28Weir length = 3.05 m Weir height = 5.04 m Weir 'C' coefficient = 1.807Flow over weir = 1.42 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 22.8 cms Head over weir = 0.41 m Enter Pipe BOX 2 Pipe shape = Rectangular Height = 2500 mm Width = 3000 mm Length = 120.4 m Flow = 5.7 cms

2543.75

Height = 2500 mm Width = 3000 mm Length = 120.4 m Flow = 5.7 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 7.5 m² Pipe hydraulic radius = 0.682 Age factor = 1 Solids factor = 1 Velocity = 0.76 m/s Units on-line = 4 Total flow, all units = 22.8 cms Friction loss = 0.02 m Fitting loss = 0.04 m Total loss = 0.06 m 0

General Box 2 Gate

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 Flow through gate(s) = 3.4 cms Total area of opening(s) = 21 m^2 Velocity through gate(s) = 0.16 m/s Flow behavior = orifice, downstream control Units on-line = 4Total flow, all units = 13.6 cms Gate loss = 0 m Downstream water level = 2543.75Upstream water level = 2543.75

Water Surface Elevation

General box 2 Weir Weir invert (top of weir) = 2544.13 Weir length = 7.62 m Weir height = 4 m Weir 'C' coefficient = 1.828 Flow over weir = 5.7 cms Weir submergence = unsubmerged Units on-line = 4 Total flow, all units = 22.8 cms Head over weir = 0.55 m	2544.68
Aeration Exit pipe Pipe shape = Rectangular Height = 3500 mm Width = 6000 mm Length = 971 m Flow = 18.19 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 21 m^2 Pipe hydraulic radius = 1.105 Age factor = 1 Solids factor = 1 Velocity = 0.87 m/s Units on-line = 1 Total flow, all units = 18.2 cms Friction loss = 0.11 m Fitting loss = 0.06 m Total loss = 0.17 m	2544.85
Aeration Exit Channel Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 309.5 m Channel width/diameter = 4 m Flow = 3.8 cms Downstream channel invert = 2540 Channel slope = 0.002 m/m Channel side slope = not applicable Area of flow = 18.16 m^2 Flow profile = Mild Normal depth = 0.51 m Critical depth = 0.452 m Units on-line = 6 Total flow, all units = 22.8 cms	2544.85

.85

Depth downstream = 4.85 m
Bend loss = 0 m
Depth upstream = 4.23 m
Velocity = 0.2 m/s
AB Tank Weir
Weir invert (top of weir) $= 2545.64$
Weir length = 32.6 m
Weir height = 6.5 m
Weir 'C' coefficient = 1.782
Flow over weir = 0.95 cms
Weir submergence = unsubmerged
Units on-line $= 24$
Total flow, all units = 22.8 cms
Head over weir = 0.06 m
Aeration Basin
Channel shape = Rectangular
Manning's 'n' = 0.013
Channel length = 686 m
Channel width/diameter = 11 m
Flow = 0.95 cms
Downstream channel invert = 2539
Channel slope = 0 m/m
Channel side slope = not applicable
Area of flow = $/3.75 \text{ m}^2$
Flow profile = Horizontal
Normal depth = infinite Critical depth = 0.001 m
Unite an line = 24
$\frac{1}{1000} = \frac{1}{24}$
Denth downstream = 6.7 m
Bend loss = 0 m
Denth unstream = 6.71 m
Velocity = 0.01 m/s
Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mm Gate height = 4000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 0.95 cms Total area of opening(s) = 12 m² Velocity through gate(s) = 0.08 m/s Flow behavior = orifice, downstream control Units on-line = 24 2545.7

2545.71

Total flow, all units = 22.8 cms Gate loss = 0 m Downstream water level = 2545.71Upstream water level = 2545.71

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mmLength = 77 mFlow = 0.95 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 0.84 m/sUnits on-line = 24Total flow, all units = 22.8 cms Friction loss = 0.05 mFitting loss = 0.05 mTotal loss = 0.1 mTotal loss = 0.17 m0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 0.95 cms Total area of opening(s) = 6.5 m² Velocity through gate(s) = 0.15 m/s Flow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 22.8 cms Gate loss = 0 m Downstream water level = 2545.81 Upstream water level = 2545.81

AB Distribution Box Weir

Weir invert (top of weir) = 2546.09 Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815 2545.81

2545.81

Flow over weir = 0.95 cms Weir submergence = unsubmerged Units on-line = 24 Total flow, all units = 22.8 cms Head over weir = 0.31 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mmWidth = 3500 mmLength = 375 mFlow = 4.53 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 0.52 m/sUnits on-line = 3Total flow, all units = 13.6 cms Friction loss = 0.03 m Fitting loss = 0.02 mTotal loss = 0.05 m0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 4.53 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 0.45 m/s Flow behavior = orifice, downstream control Units on-line = 3 Total flow, all units = 13.6 cms Gate loss = 0.03 m Downstream water level = 2546.45 Upstream water level = 2546.48

General Aeration Box Weir

Weir invert (top of weir) = 2547 Weir length = 7.62 m Weir height = 3 m 2546.45

2546.48

Weir 'C' coefficient = 1.846Flow over weir = 4.53 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 13.6 cms Head over weir = 0.47 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 652 mFlow = 6.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.56 m/sUnits on-line = 2Total flow, all units = 13.6 cms Friction loss = 0.04 mFitting loss = 0.03 mTotal loss = 0.07 m0

Clarifier Exit Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 105.4 mFlow = 0.85 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.48 m/sUnits on-line = 16Total flow. all units = 13.6 cms Friction loss = 0.02 mFitting loss = 0.02 mTotal loss = 0.04 m

2547.54

Water Surface Elevation

Clarifier Orifice 2547.61 Opening type = circular orifice $\frac{1}{2}$ Opening diameter/width = 1500 mmOpening height = not applicable Invert = 2546Number of openings = 1Flow through opening(s) = 0.85 cms Total area of opening(s) = 1.77 m^2 Velocity through opening(s) = 0.48 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 13.6 cms Orifice loss = 0.03 mDownstream water level = 2547.58Upstream water level = 2547.61**Clarifier Launder** Launder invert = 2548Launder length = 81.7 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.43 cms Critical depth = 0.2 mUnits on-line = 32Total flow, all units = 13.6 cms Downstream depth = 0.2 mUpstream depth = 0.2 mWeir Clarifier Invert of V notch = 2548.75Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 0.85 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 13.6 cms Head over weir = 0.06 m **Clarifier Enter Pipe** Pipe shape = Circular Diameter = 1500 mm

Length = 45 mFlow = 0.85 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2

2548.53

2548.81

Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.48 m/sUnits on-line = 16Total flow, all units = 13.6 cms Friction loss = 0.01 mFitting loss = 0.02 mTotal loss = 0.02 m2548.83 **Distribution Box Gate** Opening type = rectangular gate Opening diameter/width = 1500 mmGate height = 3000 mmInvert = 2545Number of gates = 1Flow through gate(s) = 0.85 cms Total area of opening(s) = 4.5 m^2 Velocity through gate(s) = 0.19 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 13.6 cms Gate loss = 0 mDownstream water level = 2548.83Upstream water level = 2548.83**Box 1 Weir** Weir invert (top of weir) = 2549Weir length = 3.05 m Weir height = 3.5 mWeir 'C' coefficient = 1.813Flow over weir = 0.85 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 13.6 cms Head over weir = 0.29 m**Enter Pipe BOX 1** Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 110.9 mFlow = 3.4 cmsFriction method = Manning's Equation Friction factor = 0.013

Total fitting K value = 1.7

Pipe area = 6.25 m^2

2549.29

```
Pipe hydraulic radius = 0.625
Age factor = 1
Solids factor = 1
Velocity = 0.54 m/s
Units on-line = 4
Total flow, all units = 13.6 cms
Friction loss = 0.01 m
Fitting loss = 0.03 m
Total loss = 0.04 m
0
```

General Box Gate

2549.32

Opening type = rectangular gate Opening diameter/width = 6000 mm Gate height = 3000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 3.4 cms Total area of opening(s) = 18 m² Velocity through gate(s) = 0.19 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 13.6 cms Gate loss = 0 m Downstream water level = 2549.32 Upstream water level = 2549.32

General box 1 Weir

Weir invert (top of weir) = 2549.76Weir length = 6.1 m Weir height = 3 m Weir 'C' coefficient = 1.843Flow over weir = 3.4 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 13.6 cms Head over weir = 0.45 m

R Mix to Clarifiers Pipe

Pipe shape = Rectangular Height = 3500 mm Width = 3000 mm Length = 150.43 m Flow = 6.8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 2550.21

Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1 Solids factor = 1 Velocity = 0.65 m/sUnits on-line = 2 Total flow, all units = 13.6 cmsFriction loss = 0.01 mFitting loss = 0.03 mTotal loss = 0.05 m0

RM Exit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 13.6 cmsDownstream channel invert = 2549Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 40.34 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.264 mUnits on-line = 1Total flow, all units = 13.6 cms Depth downstream = 1.26 mBend loss = 0 mDepth upstream = 1.26 mVelocity = 0.34 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547 Number of gates = 4 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 50.27 m^2 Velocity through gate(s) = 0.07 m/sFlow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 13.6 cmsGate loss = 0 mDownstream water level = 2550.26Upstream water level = 2550.26 2550.26

RM

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 9 mChannel width/diameter = 8 mFlow = 3.4 cmsDownstream channel invert = 2545Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 42.11 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.264 mUnits on-line = 4Total flow, all units = 13.6 cms Depth downstream = 5.26 mBend loss = 0 mDepth upstream = 5.26 m Velocity = 0.08 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2550 Number of gates = 4 Flow through gate(s) = 3.4 cmsTotal area of opening(s) = 2.98 m^2 Velocity through gate(s) = 1.14 m/sFlow behavior = weir control Units on-line = 4Total flow, all units = 13.6 cmsGate loss = 0.57 mDownstream water level = 2550.26Upstream water level = 2550.57

RM Enter Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 m Channel width/diameter = 32 m Flow = 13.6 cms Downstream channel invert = 2548Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 82.4 m² 2550.57

Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.264 m Units on-line = 1 Total flow, all units = 13.6 cms Depth downstream = 2.57 m Bend loss = 0 m Depth upstream = 2.58 m Velocity = 0.17 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 6.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.56 m/sUnits on-line = 2Total flow, all units = 13.6 cms Friction loss = 0 mFitting loss = 0.03 m Total loss = 0.03 m0

Junction Tank Grit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 4 m Channel width/diameter = 45.2 m Flow = 6.8 cms Downstream channel invert = 2549Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 72.8 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.132 m Units on-line = 2Total flow, all units = 13.6 cms Depth downstream = 1.61 m 2550.61

Bend loss = 0 m Depth upstream = 1.61 m Velocity = 0.09 m/s

Grit Weir

2551.26

Weir invert (top of weir) = 2551.11Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 1.36 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 13.6 cmsHead over weir = 0.15 m

Grit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 40.5 mChannel width/diameter = 6 mFlow = 0.97 cmsDownstream channel invert = 2548.59Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 16.03 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.139 m Units on-line = 14Total flow, all units = 13.6 cms Depth downstream = 2.67 mBend loss = 0 mDepth upstream = 2.67 mVelocity = 0.06 m/s

Screening Exit Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 2.72 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.68 m/s Flow behavior = orifice, downstream control Units on-line = 5 Total flow, all units = 13.6 cms 2551.26

Gate loss = 0.06 m
Downstream water level $= 2551.26$
Upstream water level $= 2551.32$

Screen Channel 1 - 2

2551.33

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 5 mChannel width/diameter = 2.5 mFlow = 2.72 cmsDownstream channel invert = 2549.28Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 5.11 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.495 mUnits on-line = 5Total flow, all units = 13.6 cms Depth downstream = 2.04 mBend loss = 0 mDepth upstream = 2.05 mVelocity = 0.53 m/s

Fine Screen

Rack invert = 2550.3Rack width = 2.5 mChannel width = 2.5 mFlow through rack = 2.72 cms Bar width = 6 mmBar spacing = 6 mmPercent blocked = 0%Net rack open area = 1.28 m^2 Downstream depth = 1.03 mVelocity in channel = 1.06 m/sVelocity through bars = 2.12 m/sUnits on-line = 5Total flow, all units = 13.6 cms Rack head loss = 0.25 m

Screen Channel 2 -3

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.5 mFlow = 2.72 cmsDownstream channel invert = 2550.9 2551.57
Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 1.7 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.495 mUnits on-line = 5Total flow, all units = 13.6 cmsDepth downstream = 0.67 mBend loss = 0 mDepth upstream = 0.69 mVelocity = 1.62 m/s

Medium Screen

2551.62

Rack invert = 2550 Rack width = 2.5 m Channel width = 2.5 m Flow through rack = 2.72 cms Bar width = 10 mm Bar spacing = 25 mm Percent blocked = 0% Net rack open area = 2.82 m² Downstream depth = 1.59 m Velocity in channel = 0.69 m/s Velocity through bars = 0.97 m/s Units on-line = 5 Total flow, all units = 13.6 cms Rack head loss = 0.03 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 mChannel width/diameter = 2.5 mFlow = 2.72 cmsDownstream channel invert = 2550.9Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 1.81 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.495 mUnits on-line = 5Total flow, all units = 13.6 cms Depth downstream = 0.72 mBend loss = 0 mDepth upstream = 0.73 m

2551.69

Screening Enter Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 2.72 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.68 m/s Flow behavior = orifice, downstream control Units on-line = 5 Total flow, all units = 13.6 cms Gate loss = 0.06 m Downstream water level = 2551.63 Upstream water level = 2551.69

Screening Distribution Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 mFlow = 6.8 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 163.16 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.139 m Units on-line = 2Total flow, all units = 13.6 cms Depth downstream = 3.89 mBend loss = 0 mDepth upstream = 3.9 mVelocity = 0.04 m/s

Initial Pipe

Pipe shape = Rectangular Height = 3500 mm Width = 4000 mm Length = 28 m Flow = 6.8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.7 2551.7

Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1Solids factor = 1Velocity = 0.49 m/sUnits on-line = 2Total flow, all units = 13.6 cmsFriction loss = 0 mFitting loss = 0.02 mTotal loss = 0.02 m0

Initial Gate

2551.74

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 6.8 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.34 m/s Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 13.6 cms Gate loss = 0.02 m Downstream water level = 2551.72 Upstream water level = 2551.74

Inicial Junction Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 13 mChannel width/diameter = 25 mFlow = 13.6 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 143.4 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.312 m Units on-line = 1Total flow, all units = 13.6 cms Depth downstream = 5.74 mBend loss = 0 mDepth upstream = 5.74 mVelocity = 0.09 m/s

HP CANOAS 17 03 2014 L2 2540-23 Q16.vhf

Hydraulic Profile

Current flow conditions

Manning's 'n' = 0.013Channel length = 8 m

Flow = 16 cms

Channel width/diameter = 154.5 m

Channel slope = 0.0001 m/m

Area of flow = 366.11 m^2 Flow profile = Mild Normal depth = 0.31 mCritical depth = 0.103 m

Downstream channel invert = 2538.67

Channel side slope = not applicable

Forward Flow	Return I Flow	Return II Flow	Return III Flow
16 cms	9.18 cms		

Section Description Water Surface Elevation Starting water surface elevation 2540.97 **Exit Pipe** 2541.04 Pipe shape = Rectangular Height = 3000 mmWidth = 4000 mmLength = 343 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 12 m^2 Pipe hydraulic radius = 0.857Age factor = 1Solids factor = 1Velocity = 0.67 m/sUnits on-line = 2Total flow, all units = 16 cms Friction loss = 0.03 m Fitting loss = 0.03 mTotal loss = 0.07 m0 **Chlorination Exit Tank** 2541.04 Channel shape = Rectangular

Units on-line = 1Total flow, all units = 16 cms Depth downstream = 2.37 mBend loss = 0 mDepth upstream = 2.37 mVelocity = 0.04 m/s**Chlorination Tank Weir** Weir invert (top of weir) = 2541.68Weir length = 23 mWeir height = 5.1 mWeir 'C' coefficient = 1.794Flow over weir = 4 cmsWeir submergence = unsubmerged Units on-line = 4Total flow, all units = 16 cms Head over weir = 0.21 m **Chlorination Tank** Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 356.5 mChannel width/diameter = 8 mFlow = 4 cmsDownstream channel invert = 2539Channel slope = 0.0001 m/mChannel side slope = not applicable Area of flow = 22.99 m^2 Flow profile = Mild Normal depth = 0.84 mCritical depth = 0.295 m Units on-line = 4Total flow, all units = 16 cms Depth downstream = 2.89 mBend loss = 0 mDepth upstream = 2.86 mVelocity = 0.17 m/s**Chlorination Tank - Enter Gate** Opening type = rectangular gate

Opening type = rectangular gate Opening diameter/width = 8000 mmGate height = 4000 mmInvert = 2540Number of gates = 1 Flow through gate(s) = 4 cmsTotal area of opening(s) = 32 m^2 Velocity through gate(s) = 0.12 m/s 2541.89

2541.89

Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0 m Downstream water level = 2541.89Upstream water level = 2541.89

Chlorination Enter Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 16 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 266.32 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.146 m Units on-line = 1Total flow, all units = 16 cms Depth downstream = 2.89 mBend loss = 0 mDepth upstream = 2.9 mVelocity = 0.06 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 522 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on-line = 2Total flow, all units = 16 cms Friction loss = 0.07 mFitting loss = 0.04 mTotal loss = 0.11 m0

2541.9

Secondary Clarifier Exit Pipe 2542.06 Pipe shape = Circular Diameter = 1500 mmLength = 117 mFlow = 1 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on-line = 16Total flow, all units = 16 cms Friction loss = 0.02 mFitting loss = 0.03 m Total loss = 0.05 m**2** Clarifier Orifice 2542.11 Opening type = circular orifice $\frac{1}{2}$ Opening diameter/width = 1500 mmOpening height = not applicable Invert = 2540Number of openings = 1Flow through opening(s) = 1 cmsTotal area of opening(s) = 1.77 m^2 Velocity through opening(s) = 0.57 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 16 cms Orifice loss = 0.05 mDownstream water level = 2542.06Upstream water level = 2542.11Launder Channel 2 C 2542.59 Launder invert = 2542Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.5 cms Critical depth = 0.22 mUnits on-line = 32

Total flow, all units = 16 cmsDownstream depth = 0.22 mUpstream depth = 0.22 m

4

Weir 2 Clarifier Invert of V notch = 2542.95 Angle of V notch = 90 degrees Number of notches = 911 Total flow over weir = 1 cms Weir submergence = unsubmerged Units on-line = 16 Total flow, all units = 16 cms Head over weir = 0.06 m	2543.01
2 Clarifier Enter Pipe Pipe shape = Circular Diameter = 1500 mm Length = 48.8 m Flow = 1.57 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375 Age factor = 1 Solids factor = 1 Velocity = 0.89 m/s Units on-line = 16 Total flow, all units = 25.2 cms Friction loss = 0.02 m Fitting loss = 0.08 m	2543.09
Gate Clarifier Distribution Box Opening type = rectangular gate Opening diameter/width = 1500 mm Gate height = 4000 mm Invert = 2541 Number of gates = 1 Flow through gate(s) = 1.57 cms Total area of opening(s) = 6 m ² Velocity through gate(s) = 0.26 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 25.2 cms Gate loss = 0.01 m Downstream water level = 2543.09 Upstream water level = 2543.1	2543.1

Box 2 Weir

Weir invert (top of weir) = 2543.28Weir length = 3.05 m Weir height = 5.04 mWeir 'C' coefficient = 1.807Flow over weir = 1.57 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 25.2 cms Head over weir = 0.43 m **Enter Pipe BOX 2** Pipe shape = Rectangular Height = 2500 mmWidth = 3000 mmLength = 120.4 mFlow = 6.3 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 7.5 m^2 Pipe hydraulic radius = 0.682Age factor = 1Solids factor = 1Velocity = 0.84 m/sUnits on-line = 4Total flow. all units = 25.2 cms Friction loss = 0.02 mFitting loss = 0.05 mTotal loss = 0.08 m0

General Box 2 Gate

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 Flow through gate(s) = 4 cms Total area of opening(s) = 21 m² Velocity through gate(s) = 0.19 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0 m Downstream water level = 2543.79 Upstream water level = 2543.79 2543.79

Water Surface Elevation

General box 2 Weir	2544.72
Weir invert (top of weir) = 2544.13	
Weir length = 7.62 m	
Weir height = 4 m	
Weir 'C' coefficient = 1.828	
Flow over weir = 6.3 cms	
Weir submergence = unsubmerged	
Units on-line $= 4$	
Total flow, all units = 25.2 cms	
Head over weir = 0.59 m	
Aeration Exit pipe	2544.93
Pipe shape = Rectangular	
Height = 3500 mm	
Width = 6000 mm	
Length = 971 m	
Flow = 20.59 cms	
Friction method = Manning's Equation	
Friction factor = 0.013	
Total fitting K value = 1.5	
Pipe area = 21 m^2	
Pipe hydraulic radius = 1.105	
Age factor = 1	
Solids factor $= 1$	
Velocity = 0.98 m/s	
Units on-line $= 1$	
Total flow, all units = 20.6 cms	
Friction loss = 0.14 m	
Fitting loss = 0.07 m	
Total loss = 0.21 m	
0	
Aeration Exit Channel	2544.93
Channel shape = Rectangular	
Manning's 'n' = 0.013	
Channel length = 309.5 m	
Channel width/diameter = 4 m	
Flow = 4.2 cms	
Downstream channel invert = 2540	
Channel slope = 0.002 m/m	
Channel side slope = not applicable	
Area of flow = 18.48 m^2	
Flow profile = Mild	
Normal depth = 0.54 m	
Critical depth = 0.483 m	
Units on-line $= 6$	
Total flow, all units = 25.2 cms	

Depth downstream = 4.93 mBend loss = 0 m Depth upstream = 4.31 mVelocity = 0.21 m/s**AB Tank Weir** Weir invert (top of weir) = 2545.64Weir length = 32.6 mWeir height = 6.5 mWeir height = 6.5 mWeir 'C' coefficient = 1.782Flow over weir = 1.05 cmsWeir submergence = unsubmerged Units on-line = 24Total flow, all units = 25.2 cmsHead over weir = 0.07 m

Aeration Basin

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 686 mChannel width/diameter = 11 mFlow = 1.05 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 73.8 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.098 mUnits on-line = 24Total flow, all units = 25.2 cms Depth downstream = 6.71 mBend loss = 0 mDepth upstream = 6.71 mVelocity = 0.01 m/s

Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mmGate height = 4000 mmInvert = 2543Number of gates = 1 Flow through gate(s) = 1.05 cmsTotal area of opening(s) = 12 m^2 Velocity through gate(s) = 0.09 m/sFlow behavior = orifice, downstream control Units on-line = 24

2545.71

2545.71

Total flow, all units = 25.2 cmsGate loss = 0 m Downstream water level = 2545.71Upstream water level = 2545.71

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mmLength = 77 mFlow = 1.05 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 0.93 m/sUnits on-line = 24Total flow, all units = 25.2 cms Friction loss = 0.06 mFitting loss = 0.07 mTotal loss = 0.12 mTotal loss = 0.17 m0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.05 cms Total area of opening(s) = 6.5 m^2 Velocity through gate(s) = 0.16 m/sFlow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 25.2 cms Gate loss = 0 m Downstream water level = 2545.83 Upstream water level = 2545.83

AB Distribution Box Weir

Weir invert (top of weir) = 2546.09 Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815 2545.83

2545.83

Flow over weir = 1.05 cms Weir submergence = unsubmerged Units on-line = 24Total flow, all units = 25.2 cms Head over weir = 0.33 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mmWidth = 3500 mmLength = 375 mFlow = 5.33 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 0.61 m/sUnits on-line = 3Total flow, all units = 16 cms Friction loss = 0.04 mFitting loss = 0.03 m Total loss = 0.07 m0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 5.33 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 0.53 m/s Flow behavior = orifice, downstream control Units on-line = 3 Total flow, all units = 16 cms Gate loss = 0.04 m Downstream water level = 2546.49 Upstream water level = 2546.53

General Aeration Box Weir

Weir invert (top of weir) = 2547 Weir length = 7.62 m Weir height = 3 m 2546.49

2546.53

Weir 'C' coefficient = 1.846Flow over weir = 5.33 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 16 cms Head over weir = 0.52 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 652 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.65 m/sUnits on-line = 2Total flow, all units = 16 cms Friction loss = 0.06 mFitting loss = 0.04 mTotal loss = 0.1 m0

Clarifier Exit Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 105.4 mFlow = 1 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on-line = 16Total flow, all units = 16 cms Friction loss = 0.02 mFitting loss = 0.03 m Total loss = 0.05 m

2547.62

Water Surface Elevation

Clarifier Orifice 2547.72 Opening type = circular orifice $\frac{1}{2}$ Opening diameter/width = 1500 mmOpening height = not applicable Invert = 2546Number of openings = 1Flow through opening(s) = 1 cmsTotal area of opening(s) = 1.77 m^2 Velocity through opening(s) = 0.57 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 16 cms Orifice loss = 0.05 mDownstream water level = 2547.67Upstream water level = 2547.72**Clarifier Launder** Launder invert = 2548Launder length = 81.7 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.5 cms Critical depth = 0.22 mUnits on-line = 32Total flow, all units = 16 cms Downstream depth = 0.22 m Upstream depth = 0.22 m Weir Clarifier Invert of V notch = 2548.75Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 1 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 16 cms Head over weir = 0.06 m **Clarifier Enter Pipe** Pipe shape = Circular Diameter = 1500 mmLength = 45 mFlow = 1 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2

2548.55

2548.81

Pipe area = 6.25 m^2

Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on-line = 16Total flow, all units = 16 cms Friction loss = 0.01 mFitting loss = 0.02 mTotal loss = 0.03 m**Distribution Box Gate** 2548.85 Opening type = rectangular gate Opening diameter/width = 1500 mmGate height = 3000 mmInvert = 2545Number of gates = 1Flow through gate(s) = 1 cmsTotal area of opening(s) = 4.5 m^2 Velocity through gate(s) = 0.22 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 16 cms Gate loss = 0.01 mDownstream water level = 2548.84Upstream water level = 2548.85**Box 1 Weir** 2549.32 Weir invert (top of weir) = 2549Weir length = 3.05 m Weir height = 3.5 mWeir 'C' coefficient = 1.813Flow over weir = 1 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 16 cms Head over weir = 0.32 m **Enter Pipe BOX 1** 2549.37 Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 110.9 mFlow = 4 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7

Water Surface Elevation

<u>Section Description</u> Pipe hydraulic radius = 0.625 Age factor = 1 Solida factor = 1

Age factor = 1 Solids factor = 1 Velocity = 0.64 m/sUnits on-line = 4 Total flow, all units = 16 cmsFriction loss = 0.01 mFitting loss = 0.04 mTotal loss = 0.05 m0

General Box Gate

Opening type = rectangular gate Opening diameter/width = 6000 mm Gate height = 3000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 4 cms Total area of opening(s) = 18 m² Velocity through gate(s) = 0.22 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0.01 m Downstream water level = 2549.37 Upstream water level = 2549.38

General box 1 Weir

Weir invert (top of weir) = 2549.76Weir length = 6.1 m Weir height = 3 m Weir 'C' coefficient = 1.843Flow over weir = 4 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 16 cms Head over weir = 0.5 m

R Mix to Clarifiers Pipe

Pipe shape = Rectangular Height = 3500 mm Width = 3000 mm Length = 150.43 m Flow = 8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5

2550.26

2549.38

Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on-line = 2Total flow, all units = 16 cmsFriction loss = 0.02 mFitting loss = 0.04 mTotal loss = 0.06 m0

RM Exit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 16 cmsDownstream channel invert = 2549Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 42.58 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.295 m Units on-line = 1Total flow, all units = 16 cms Depth downstream = 1.33 m Bend loss = 0 mDepth upstream = 1.33 m Velocity = 0.38 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547 Number of gates = 4 Flow through gate(s) = 4 cms Total area of opening(s) = 50.27 m² Velocity through gate(s) = 0.08 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 16 cms Gate loss = 0 m Downstream water level = 2550.33 Upstream water level = 2550.33 2550.33

RM

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 9 mChannel width/diameter = 8 mFlow = 4 cmsDownstream channel invert = 2545Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 42.67 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.295 mUnits on-line = 4Total flow, all units = 16 cms Depth downstream = 5.33 m Bend loss = 0 mDepth upstream = 5.34 mVelocity = 0.09 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2550 Number of gates = 4 Flow through gate(s) = 4 cms Total area of opening(s) = 3.38 m^2 Velocity through gate(s) = 1.18 m/sFlow behavior = weir control Units on-line = 4 Total flow, all units = 16 cmsGate loss = 0.63 mDownstream water level = 2550.33Upstream water level = 2550.63

RM Enter Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 m Channel width/diameter = 32 m Flow = 16 cms Downstream channel invert = 2548Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 84.1 m² 2550.63

Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.295 m Units on-line = 1 Total flow, all units = 16 cms Depth downstream = 2.63 m Bend loss = 0 m Depth upstream = 2.63 m Velocity = 0.19 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.65 m/sUnits on-line = 2Total flow, all units = 16 cms Friction loss = 0 mFitting loss = 0.04 mTotal loss = 0.04 m0

Junction Tank Grit Channel Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 4 mChannel width/diameter = 45.2 mFlow = 8 cmsDownstream channel invert = 2549Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 75.5 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.148 mUnits on-line = 2Total flow, all units = 16 cms Depth downstream = 1.67 m

2550.67

2550.67

17

Bend loss = 0 m Depth upstream = 1.67 m Velocity = 0.11 m/s

Grit Weir

2551.28

Weir invert (top of weir) = 2551.11Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 1.6 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 16 cmsHead over weir = 0.17 m

Grit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 40.5 mChannel width/diameter = 6 mFlow = 1.14 cmsDownstream channel invert = 2548.59Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 16.13 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.155 mUnits on-line = 14Total flow, all units = 16 cms Depth downstream = 2.69 mBend loss = 0 mDepth upstream = 2.69 mVelocity = 0.07 m/s

Screening Exit Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 2.67 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.67 m/s Flow behavior = orifice, downstream control Units on-line = 6 Total flow, all units = 16 cms 2551.28

Gate loss = 0.06 m
Downstream water level $= 2551.28$
Upstream water level $= 2551.34$

Screen Channel 1 - 2

2551.34

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 5 mChannel width/diameter = 2.5 mFlow = 2.67 cmsDownstream channel invert = 2549.28Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 5.15 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.488 mUnits on-line = 6Total flow, all units = 16 cms Depth downstream = 2.06 mBend loss = 0 mDepth upstream = 2.06 mVelocity = 0.52 m/s

Fine Screen

Rack invert = 2550.3Rack width = 2.5 mChannel width = 2.5 mFlow through rack = 2.67 cms Bar width = 6 mmBar spacing = 6 mmPercent blocked = 0%Net rack open area = 1.3 m^2 Downstream depth = 1.04 mVelocity in channel = 1.02 m/sVelocity through bars = 2.05 m/sUnits on-line = 6Total flow, all units = 16 cms Rack head loss = 0.23 m

Screen Channel 2 -3

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.5 mFlow = 2.67 cmsDownstream channel invert = 2550.9 2551.57

Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 1.69 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.488 mUnits on-line = 6Total flow, all units = 16 cmsDepth downstream = 0.67 mBend loss = 0 mDepth upstream = 0.69 mVelocity = 1.59 m/s

Medium Screen

2551.62

Rack invert = 2550 Rack width = 2.5 m Channel width = 2.5 m Flow through rack = 2.67 cms Bar width = 10 mm Bar spacing = 25 mm Percent blocked = 0% Net rack open area = 2.81 m² Downstream depth = 1.59 m Velocity in channel = 0.67 m/s Velocity through bars = 0.95 m/s Units on-line = 6 Total flow, all units = 16 cms Rack head loss = 0.03 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 mChannel width/diameter = 2.5 mFlow = 2.67 cmsDownstream channel invert = 2550.9Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 1.81 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.488 mUnits on-line = 6Total flow, all units = 16 cms Depth downstream = 0.72 mBend loss = 0 mDepth upstream = 0.73 m

2551.69

Screening Enter Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 2.67 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.67 m/s Flow behavior = orifice, downstream control Units on-line = 6 Total flow, all units = 16 cms Gate loss = 0.06 m Downstream water level = 2551.63 Upstream water level = 2551.69

Screening Distribution Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 mFlow = 8 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 162.95 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.155 mUnits on-line = 2Total flow, all units = 16 cms Depth downstream = 3.89 mBend loss = 0 mDepth upstream = 3.89 mVelocity = 0.05 m/s

Initial Pipe

Pipe shape = Rectangular Height = 3500 mm Width = 4000 mm Length = 28 m Flow = 8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.7 2551.69

Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1Solids factor = 1Velocity = 0.57 m/sUnits on-line = 2Total flow, all units = 16 cmsFriction loss = 0 mFitting loss = 0.03 mTotal loss = 0.03 m0

Initial Gate

2551.74

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 8 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.4 m/s Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 16 cms Gate loss = 0.02 m Downstream water level = 2551.72 Upstream water level = 2551.74

Inicial Junction Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 13 mChannel width/diameter = 25 mFlow = 16 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 143.54 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.347 m Units on-line = 1Total flow, all units = 16 cms Depth downstream = 5.74 mBend loss = 0 mDepth upstream = 5.74 mVelocity = 0.11 m/s

HP CANOAS 17 03 2014 L2 2540-23 Q21.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
21.6 cms	9.18 cms		

Section Description

Water Surface Elevation

Secondary Clarifier Exit Pipe 2542.24 Pipe shape = Circular Diameter = 1500 mmLength = 117 mFlow = 1.35 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on-line = 16Total flow, all units = 21.6 cms Friction loss = 0.04 mFitting loss = 0.05 mTotal loss = 0.09 m**2** Clarifier Orifice 2542.32 Opening type = circular orifice Opening diameter/width = 1500 mmOpening height = not applicable Invert = 2540Number of openings = 1Flow through opening(s) = 1.35 cms Total area of opening(s) = 1.77 m^2 Velocity through opening(s) = 0.76 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 21.6 cms Orifice loss = 0.08 mDownstream water level = 2542.24Upstream water level = 2542.32

Launder Channel 2 C

Launder invert = 2542Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.68 cmsCritical depth = 0.27 mUnits on-line = 32Total flow, all units = 21.6 cmsDownstream depth = 0.32 mUpstream depth = 0.27 m

Weir 2 Clarifier

Invert of V notch = 2542.95Angle of V notch = 90 degrees Number of notches = 911Total flow over weir = 1.35 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 21.6 cms Head over weir = 0.06 m

2 Clarifier Enter Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 48.8 mFlow = 1.92 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.09 m/sUnits on-line = 16Total flow, all units = 30.8 cms Friction loss = 0.04 mFitting loss = 0.09 mTotal loss = 0.13 m

Gate Clarifier Distribution Box

Opening type = rectangular gate Opening diameter/width = 1500 mmGate height = 4000 mmInvert = 2541Number of gates = 1Flow through gate(s) = 1.92 cms 2543.01

2543.14

Total area of opening(s) = 6 m^2 Velocity through gate(s) = 0.32 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 30.8 cmsGate loss = 0.01 mDownstream water level = 2543.14Upstream water level = 2543.15

Box 2 Weir

2543.78

Weir Weir invert (top of weir) = 2543.28Weir length = 3.05 m Weir height = 5.04 m Weir 'C' coefficient = 1.807Flow over weir = 1.92 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 30.8 cms Head over weir = 0.5 m

Enter Pipe BOX 2

Pipe shape = Rectangular Height = 2500 mmWidth = 3000 mmLength = 120.4 mFlow = 7.7 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 7.5 m^2 Pipe hydraulic radius = 0.682Age factor = 1Solids factor = 1Velocity = 1.03 m/sUnits on-line = 4Total flow, all units = 30.8 cms Friction loss = 0.04 mFitting loss = 0.08 mTotal loss = 0.12 m0

General Box 2 Gate

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 2543.89

Flow through gate(s) = 5.4 cms Total area of opening(s) = 21 m² Velocity through gate(s) = 0.26 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 21.6 cms Gate loss = 0.01 m Downstream water level = 2543.89 Upstream water level = 2543.9

General box 2 Weir

Weir invert (top of weir) = 2544.13Weir length = 7.62 m Weir height = 4 m Weir 'C' coefficient = 1.828Flow over weir = 7.7 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 30.8 cms Head over weir = 0.67 m

Aeration Exit pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 6000 mmLength = 971 mFlow = 26.19 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 21 m^2 Pipe hydraulic radius = 1.105Age factor = 1Solids factor = 1Velocity = 1.25 m/sUnits on-line = 1Total flow, all units = 26.2 cms Friction loss = 0.22 mFitting loss = 0.12 mTotal loss = 0.34 m0

Aeration Exit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 309.5 m Channel width/diameter = 4 m 2544.8

2545.15

Flow = 5.13 cms Downstream channel invert = 2540 Channel slope = 0.002 m/mChannel side slope = not applicable Area of flow = 19.36 m² Flow profile = Mild Normal depth = 0.62 mCritical depth = 0.552 mUnits on-line = 6 Total flow, all units = 30.8 cmsDepth downstream = 5.15 mBend loss = 0 mDepth upstream = 4.53 mVelocity = 0.25 m/s

AB Tank Weir

2545.72

Weir invert (top of weir) = 2545.64Weir length = 32.6 m Weir height = 6.5 m Weir 'C' coefficient = 1.782Flow over weir = 1.28 cms Weir submergence = unsubmerged Units on-line = 24Total flow, all units = 30.7 cms Head over weir = 0.08 m

Aeration Basin

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 686 mChannel width/diameter = 11 mFlow = 1.28 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 73.91 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.112 mUnits on-line = 24Total flow, all units = 30.8 cms Depth downstream = 6.72 mBend loss = 0 mDepth upstream = 6.72 mVelocity = 0.02 m/s

2545.72

Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mmGate height = 4000 mmInvert = 2543Number of gates = 1 Flow through gate(s) = 1.28 cmsTotal area of opening(s) = 12 m^2 Velocity through gate(s) = 0.11 m/sFlow behavior = orifice, downstream control Units on-line = 24Total flow, all units = 30.8 cmsGate loss = 0 mDownstream water level = 2545.72Upstream water level = 2545.72

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mmLength = 77 mFlow = 1.28 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on-line = 24Total flow, all units = 30.8 cms Friction loss = 0.08 mFitting loss = 0.1 mTotal loss = 0.18 mTotal loss = 0.17 m0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.28 cms Total area of opening(s) = 6.5 m^2 Velocity through gate(s) = 0.2 m/sFlow behavior = orifice, downstream control Units on-line = 24 2545.9

Total flow, all units = 30.8 cmsGate loss = 0.01 mDownstream water level = 2545.9Upstream water level = 2545.91

AB Distribution Box Weir

Weir invert (top of weir) = 2546.09Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815Flow over weir = 1.28 cms Weir submergence = unsubmerged Units on-line = 24Total flow, all units = 30.7 cms Head over weir = 0.38 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mmWidth = 3500 mmLength = 375 mFlow = 7.2 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 0.82 m/sUnits on-line = 3Total flow, all units = 21.6 cms Friction loss = 0.07 mFitting loss = 0.06 mTotal loss = 0.13 m0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 7.2 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 0.72 m/s Flow behavior = orifice, downstream control 2546.47

2546.59

Water Surface Elevation

Section Description

Units on-line = 3 Total flow, all units = 21.6 cms Gate loss = 0.07 m Downstream water level = 2546.59Upstream water level = 2546.66

General Aeration Box Weir

Weir invert (top of weir) = 2547Weir length = 7.62 m Weir height = 3 m Weir 'C' coefficient = 1.846Flow over weir = 7.2 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 21.6 cms Head over weir = 0.64 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 652 mFlow = 10.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.88 m/sUnits on-line = 2Total flow, all units = 21.6 cms Friction loss = 0.1 mFitting loss = 0.07 mTotal loss = 0.17 m0

Clarifier Exit Pipe

Pipe shape = Circular Diameter = 1500 mm Length = 105.4 m Flow = 1.35 cms Friction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m² 2547.64

2547.81

Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on-line = 16Total flow, all units = 21.6 cms Friction loss = 0.04 mFitting loss = 0.05 mTotal loss = 0.09 m**Clarifier Orifice** Opening type = circular orifice Opening diameter/width = 1500 mmOpening height = not applicable Invert = 2546Number of openings = 1Flow through opening(s) = 1.35 cms Total area of opening(s) = 1.77 m^2 Velocity through opening(s) = 0.76 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 21.6 cms Orifice loss = 0.08 mDownstream water level = 2547.9

2547.98

2548.6

Clarifier Launder

Launder invert = 2548Launder length = 81.7 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 0.68 cmsCritical depth = 0.27 mUnits on-line = 32Total flow, all units = 21.6 cmsDownstream depth = 0.27 mUpstream depth = 0.27 m

Upstream water level = 2547.98

Weir Clarifier

Invert of V notch = 2548.75Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 1.35 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 21.6 cms Head over weir = 0.07 m

Clarifier Enter Pipe

2548.88

Pipe shape = Circular Diameter = 1500 mmLength = 45 mFlow = 1.35 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 0.76 m/sUnits on-line = 16Total flow, all units = 21.6 cms Friction loss = 0.02 mFitting loss = 0.04 mTotal loss = 0.06 m

Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1500 mm Gate height = 3000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 1.35 cms Total area of opening(s) = 4.5 m² Velocity through gate(s) = 0.3 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 21.6 cms Gate loss = 0.01 m Downstream water level = 2548.88 Upstream water level = 2548.89

Box 1 Weir

Weir invert (top of weir) = 2549Weir length = 3.05 m Weir height = 3.5 m Weir 'C' coefficient = 1.813Flow over weir = 1.35 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 21.6 cms Head over weir = 0.39 m 2548.89

Enter Pipe BOX 1

2549.48

Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 110.9 mFlow = 5.4 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 6.25 m^2 Pipe hydraulic radius = 0.625Age factor = 1Solids factor = 1Velocity = 0.86 m/sUnits on-line = 4Total flow, all units = 21.6 cms Friction loss = 0.03 m Fitting loss = 0.06 mTotal loss = 0.09 m0

General Box Gate

Opening type = rectangular gate Opening diameter/width = 6000 mm Gate height = 3000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 5.4 cms Total area of opening(s) = 18 m² Velocity through gate(s) = 0.3 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 21.6 cms Gate loss = 0.01 m Downstream water level = 2549.48 Upstream water level = 2549.49

General box 1 Weir

Weir invert (top of weir) = 2549.76Weir length = 6.1 mWeir height = 3 mWeir 'C' coefficient = 1.843Flow over weir = 5.4 cmsWeir submergence = unsubmerged Units on-line = 4Total flow, all units = 21.6 cmsHead over weir = 0.61 m 2549.49
R Mix to Clarifiers Pipe

2550.49

Pipe shape = Rectangular Height = 3500 mmWidth = 3000 mmLength = 150.43 m Flow = 10.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 1.03 m/sUnits on-line = 2Total flow. all units = 21.6 cms Friction loss = 0.04 mFitting loss = 0.08 mTotal loss = 0.12 m0

RM Exit Channel

Channel shape = Rectangular Manning's n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 21.6 cmsDownstream channel invert = 2549Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 47.7 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.36 mUnits on-line = 1Total flow, all units = 21.6 cms Depth downstream = 1.49 mBend loss = 0 mDepth upstream = 1.49 mVelocity = 0.45 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547

13

Water Surface Elevation

Number of gates = 4Flow through gate(s) = 5.4 cms Total area of opening(s) = 50.27 m^2 Velocity through gate(s) = 0.11 m/sFlow behavior = orifice, downstream control Units on-line = 4Total flow, all units = 21.6 cms Gate loss = 0 mDownstream water level = 2550.49

Upstream water level = 2550.49

RM

Section Description

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 9 mChannel width/diameter = 8 mFlow = 5.4 cmsDownstream channel invert = 2545Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 43.95 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.36 mUnits on-line = 4Total flow, all units = 21.6 cms Depth downstream = 5.49 mBend loss = 0 mDepth upstream = 5.5 mVelocity = 0.12 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mmGate height = 2000 mmInvert = 2550Number of gates = 4Flow through gate(s) = 5.4 cms Total area of opening(s) = 4.22 m^2 Velocity through gate(s) = 1.28 m/sFlow behavior = weir control Units on-line = 4Total flow, all units = 21.6 cms Gate loss = 0.74 mDownstream water level = 2550.5Upstream water level = 2550.74

2550.5

RM Enter Channel Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 21.6 cmsDownstream channel invert = 2548Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 87.68 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.36 mUnits on-line = 1Total flow, all units = 21.6 cms Depth downstream = 2.74 mBend loss = 0 mDepth upstream = 2.74 mVelocity = 0.25 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 10.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 0.88 m/sUnits on-line = 2Total flow, all units = 21.6 cms Friction loss = 0.01 mFitting loss = 0.07 mTotal loss = 0.08 m0

Junction Tank Grit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 4 m Channel width/diameter = 45.2 m Flow = 10.8 cms 2550.74

2550.82

Downstream channel invert = 2549 Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 82.29 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.18 m Units on-line = 2 Total flow, all units = 21.6 cms Depth downstream = 1.82 m Bend loss = 0 m Depth upstream = 1.82 m Velocity = 0.13 m/s

Grit Weir

2551.32

Weir invert (top of weir) = 2551.11Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 2.16 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 21.6 cmsHead over weir = 0.21 m

Grit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 40.5 mChannel width/diameter = 6 mFlow = 1.54 cmsDownstream channel invert = 2548.59Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 16.36 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.189 mUnits on-line = 14Total flow, all units = 21.6 cms Depth downstream = 2.73 mBend loss = 0 mDepth upstream = 2.73 m Velocity = 0.09 m/s

Screening Exit Channel Gate

Opening type = rectangular gate

Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 3.09 cms Total area of opening(s) = 4 m² Velocity through gate(s) = 0.77 m/s Flow behavior = orifice, downstream control Units on-line = 7Total flow, all units = 21.6 cms Gate loss = 0.08 m Downstream water level = 2551.32Upstream water level = 2551.4

Screen Channel 1 - 2

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 5 mChannel width/diameter = 2.5 mFlow = 3.09 cmsDownstream channel invert = 2549.28Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 5.29 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.538 mUnits on-line = 7Total flow, all units = 21.6 cms Depth downstream = 2.12 mBend loss = 0 mDepth upstream = 2.12 mVelocity = 0.58 m/s

Fine Screen

Rack invert = 2550.3 Rack width = 2.5 m Channel width = 2.5 m Flow through rack = 3.09 cms Bar width = 6 mm Bar spacing = 6 mm Percent blocked = 0% Net rack open area = 1.37 m^2 Downstream depth = 1.1 mVelocity in channel = 1.12 m/sVelocity through bars = 2.25 m/sUnits on-line = 7 2551.4

Total flow, all units = 21.6 cms Rack head loss = 0.28 m

Screen Channel 2 -3

2551.69

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.5 mFlow = 3.09 cmsDownstream channel invert = 2550.9Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 1.95 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.538 m Units on-line = 7Total flow, all units = 21.6 cms Depth downstream = 0.78 mBend loss = 0 mDepth upstream = 0.79 mVelocity = 1.59 m/s

Medium Screen

Rack invert = 2550 Rack width = 2.5 m Channel width = 2.5 m Flow through rack = 3.09 cms Bar width = 10 mm Bar spacing = 25 mm Percent blocked = 0% Net rack open area = 2.99 m² Downstream depth = 1.69 m Velocity in channel = 0.73 m/s Velocity through bars = 1.03 m/s Units on-line = 7 Total flow, all units = 21.6 cms Rack head loss = 0.04 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 m Channel width/diameter = 2.5 m Flow = 3.09 cms Downstream channel invert = 2550.9Channel slope = 0 m/m 2551.73

Channel side slope = not applicable Area of flow = 2.08 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.538 m Units on-line = 7Total flow, all units = 21.6 cms Depth downstream = 0.83 m Bend loss = 0 mDepth upstream = 0.84 mVelocity = 1.49 m/s**Screening Enter Channel Gate** Opening type = rectangular gate Opening diameter/width = 2000 mmGate height = 2000 mmInvert = 2548Number of gates = 1Flow through gate(s) = 3.09 cms Total area of opening(s) = 4 m^2 Velocity through gate(s) = 0.77 m/sFlow behavior = orifice, downstream control Units on-line = 7Total flow, all units = 21.6 cms Gate loss = 0.08 mDownstream water level = 2551.74Upstream water level = 2551.82

Screening Distribution Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 mFlow = 10.8 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 168.27 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.19 mUnits on-line = 2Total flow, all units = 21.6 cms Depth downstream = 4.02 mBend loss = 0 mDepth upstream = 4.02 mVelocity = 0.06 m/s

2551.82

Initial Pipe

2551.87

Pipe shape = Rectangular Height = 3500 mmWidth = 4000 mmLength = 28 mFlow = 10.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1Solids factor = 1Velocity = 0.77 m/sUnits on-line = 2Total flow. all units = 21.6 cms Friction loss = 0 mFitting loss = 0.05 mTotal loss = 0.05 m0

Initial Gate

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 10.8 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.54 m/s Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 21.6 cms Gate loss = 0.04 m Downstream water level = 2551.87 Upstream water level = 2551.91

Inicial Junction Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 13 mChannel width/diameter = 25 mFlow = 21.6 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable 2551.91

Normal depth = 0.37 mCritical depth = 0.126 m

Area of flow = 147.73 m ² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.424 m Units on-line = 1 Total flow, all units = 21.6 cms Depth downstream = 5.91 m Bend loss = 0 m Depth upstream = 5.91 m Velocity = 0.15 m/s	
Starting water surface elevation	2541.14
Exit Pipe Pipe shape = Rectangular Height = 3000 mm Width = 4000 mm Length = 343 m Flow = 10.8 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 12 m^2 Pipe hydraulic radius = 0.857 Age factor = 1 Solids factor = 1 Velocity = 0.9 m/s Units on-line = 2 Total flow, all units = 21.6 cms Friction loss = 0.06 m Fitting loss = 0.12 m	2541.26
Chlorination Exit Tank Channel shape = Rectangular Manning's 'n' = 0.013 Channel length = 8 m Channel width/diameter = 154.5 m Flow = 21.6 cms Downstream channel invert = 2538.67 Channel slope = 0.0001 m/m Channel side slope = not applicable Area of flow = 400.09 m ² Flow profile = Mild	2541.26

Water Surface Elevation

Section Description

Units on-line = 1 Total flow, all units = 21.6 cms Depth downstream = 2.59 m Bend loss = 0 m Depth upstream = 2.59 m Velocity = 0.05 m/s

Chlorination Tank Weir

Weir invert (top of weir) = 2541.68Weir length = 23 m Weir height = 5.1 m Weir 'C' coefficient = 1.794Flow over weir = 5.4 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 21.6 cms Head over weir = 0.26 m

Chlorination Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 356.5 mChannel width/diameter = 8 mFlow = 5.4 cmsDownstream channel invert = 2539Channel slope = 0.0001 m/mChannel side slope = not applicable Area of flow = 23.36 m^2 Flow profile = Mild Normal depth = 1.02 mCritical depth = 0.36 mUnits on-line = 4Total flow, all units = 21.6 cms Depth downstream = 2.94 mBend loss = 0 mDepth upstream = 2.9 mVelocity = 0.23 m/s

Chlorination Tank - Enter Gate

Opening type = rectangular gate Opening diameter/width = 8000 mm Gate height = 4000 mm Invert = 2540 Number of gates = 1 Flow through gate(s) = 5.4 cms Total area of opening(s) = 32 m² Velocity through gate(s) = 0.17 m/s 2541.94

2541.94

Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 21.6 cms Gate loss = 0 m Downstream water level = 2541.94Upstream water level = 2541.94

Chlorination Enter Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 21.6 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 270.9 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.178 mUnits on-line = 1Total flow, all units = 21.6 cms Depth downstream = 2.94 mBend loss = 0 mDepth upstream = 2.95 mVelocity = 0.08 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 522 mFlow = 10.8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 1.03 m/sUnits on-line = 2Total flow, all units = 21.6 cms Friction loss = 0.12 mFitting loss = 0.08 mTotal loss = 0.2 m0

2541.95

HP CANOAS 17 03 2014 L2 2540-23 Q32.vhf

Hydraulic Profile

Current flow conditions

Forward Flow	Return I Flow	Return II Flow	Return III Flow
32 cms	9.18 cms		

Section Description	Water Surface Elevation
Starting water surface elevation	2541.41
Exit Pipe	2541.67
Pipe shape = Rectangular	
Height = 3000 mm	
Width = 4000 mm	
Length = 343 m	
Flow = 16 cms	
Friction method = Manning's Equation	
Friction factor $= 0.013$	
Total fitting K value = 1.5	
Pipe area = 12 m^2	
Pipe hydraulic radius = 0.857	
Age factor $= 1$	
Solids factor $= 1$	
Velocity = 1.33 m/s	
Units on-line $= 2$	
Total flow, all units $= 32$ cms	
Friction loss = 0.13 m	
Fitting loss = 0.14 m	
Total loss = 0.26 m	
0	
Chlorination Exit Tank	2541.67

Chlorination Exit Tank Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 m Channel width/diameter = 154.5 m Flow = 32 cms Downstream channel invert = 2538.67Channel slope = 0.0001 m/m Channel side slope = not applicable Area of flow = 463.42 m² Flow profile = Mild Normal depth = 0.46 m Critical depth = 0.164 m

Units on-line = 1Total flow, all units = 32 cms Depth downstream = 3 mBend loss = 0 mDepth upstream = 3 mVelocity = 0.07 m/s**Chlorination Tank Weir** Weir invert (top of weir) = 2541.68Weir length = 23 mWeir height = 5.1 mWeir 'C' coefficient = 1.794Flow over weir = 8 cmsWeir submergence = unsubmerged Units on-line = 4Total flow, all units = 32 cmsHead over weir = 0.33 m **Chlorination Tank** Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 356.5 mChannel width/diameter = 8 mFlow = 8 cmsDownstream channel invert = 2539Channel slope = 0.0001 m/mChannel side slope = not applicable Area of flow = 23.99 m^2 Flow profile = Mild Normal depth = 1.32 mCritical depth = 0.467 mUnits on-line = 4Total flow, all units = 32 cms Depth downstream = 3.01 mBend loss = 0.01 mDepth upstream = 2.99 mVelocity = 0.33 m/s**Chlorination Tank - Enter Gate** Opening type = rectangular gate Opening diameter/width = 8000 mmGate height = 4000 mmInvert = 2540

Number of gates = 1 Flow through gate(s) = 8 cms Total area of opening(s) = 32 m^2 Velocity through gate(s) = 0.25 m/s 2542.01

2542.02

Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0.01 m Downstream water level = 2542.02Upstream water level = 2542.03

Chlorination Enter Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 92 mFlow = 32 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 278.92 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.231 mUnits on-line = 1Total flow, all units = 32 cmsDepth downstream = 3.03 mBend loss = 0 mDepth upstream = 3.03 mVelocity = 0.11 m/s

Secondary Clarifier - Chlorination Pipe

Pipe shape = Rectangular Height = 3000 mmWidth = 3500 mmLength = 522 mFlow = 16 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 1.52 m/sUnits on-line = 2Total flow, all units = 32 cms Friction loss = 0.27 mFitting loss = 0.18 mTotal loss = 0.45 m0

2542.03

Secondary Clarifier Exit Pipe

Pipe shape = Circular Diameter = 1500 mmLength = 117 mFlow = 2 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.63Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on-line = 16Total flow, all units = 32 cms Friction loss = 0.09 mFitting loss = 0.11 mTotal loss = 0.2 m

2 Clarifier Orifice

Opening type = circular orifice Opening diameter/width = 1500 mm Opening height = not applicable Invert = 2540 Number of openings = 1 Flow through opening(s) = 2 cms Total area of opening(s) = 1.77 m² Velocity through opening(s) = 1.13 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 32 cms Orifice loss = 0.18 m Downstream water level = 2542.68 Upstream water level = 2542.86

Launder Channel 2 C

Launder invert = 2542Launder length = 91 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 1 cmsCritical depth = 0.36 mUnits on-line = 32Total flow, all units = 32 cmsDownstream depth = 0.86 mUpstream depth = 0.57 m 2542.68

2542.86

Weir 2 Clarifier Invert of V notch = 2542.95 Angle of V notch = 90 degrees Number of notches = 911 Total flow over weir = 2 cms Weir submergence = unsubmerged Units on-line = 16 Total flow, all units = 32 cms Head over weir = 0.08 m	2543.03
2 Clarifier Enter Pipe Pipe shape = Circular Diameter = 1500 mm Length = 48.8 m Flow = 2.57 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 Pipe area = 1.767 m ² Pipe hydraulic radius = 0.375 Age factor = 1 Solids factor = 1 Velocity = 1.46 m/s Units on-line = 16 Total flow, all units = 41.2 cms Friction loss = 0.06 m Fitting loss = 0.16 m Total loss = 0.23 m	2543.25
Gate Clarifier Distribution Box Opening type = rectangular gate Opening diameter/width = 1500 mm Gate height = 4000 mm Invert = 2541 Number of gates = 1 Flow through gate(s) = 2.57 cms Total area of opening(s) = 6 m ² Velocity through gate(s) = 0.43 m/s Flow behavior = orifice, downstream control Units on-line = 16 Total flow, all units = 41.2 cms Gate loss = 0.02 m Downstream water level = 2543.25 Upstream water level = 2543.27	2543.27

Box 2 Weir

Weir invert (top of weir) = 2543.28Weir length = 3.05 m Weir height = 5.04 mWeir 'C' coefficient = 1.807Flow over weir = 2.57 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 41.2 cms Head over weir = 0.6 m**Enter Pipe BOX 2** Pipe shape = Rectangular Height = 2500 mmWidth = 3000 mmLength = 120.4 mFlow = 10.3 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 7.5 m^2 Pipe hydraulic radius = 0.682Age factor = 1Solids factor = 1Velocity = 1.37 m/sUnits on-line = 4Total flow, all units = 41.2 cms Friction loss = 0.06 mFitting loss = 0.14 m

General Box 2 Gate

0

Total loss = 0.21 m

Opening type = rectangular gate Opening diameter/width = 7000 mm Gate height = 3000 mm Invert = 2542 Number of gates = 1 Flow through gate(s) = 8 cms Total area of opening(s) = 21 m² Velocity through gate(s) = 0.38 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0.02 m Downstream water level = 2544.09 Upstream water level = 2544.11 2544.09

Water Surface Elevation

General box 2 Weir	2544.95
Weir invert (top of weir) = 2544.13	
Weir length = 7.62 m	
Weir height = 4 m	
Weir 'C' coefficient = 1.828	
Flow over weir = 10.3 cms	
Weir submergence = unsubmerged	
Units on-line = 4	
Total flow, all units = 41.2 cms	
Head over weir = 0.82 m	
Aeration Exit pipe	2545.62
Pipe shape = Rectangular	
Height = 3500 mm	
Width = 6000 mm	
Length = 971 m	
Flow = 36.59 cms	
Friction method = Manning's Equation	
Friction factor = 0.013	
Total fitting K value = 1.5	
Pipe area = 21 m^2	
Pipe hydraulic radius $= 1.105$	
Age factor $= 1$	
Solids factor $= 1$	
Velocity = 1.74 m/s	
Units on-line $= 1$	
Total flow, all units $= 36.6$ cms	
Friction loss = 0.44 m	
Fitting loss = 0.23 m	
Total loss = 0.67 m	
0	
Aeration Exit Channel	2545.62
Channel shape = Rectangular	
Manning's 'n' = 0.013	
Channel length = 309.5 m	
Channel width/diameter = 4 m	
Flow = 6.86 cms	
Downstream channel invert = 2540	
Channel slope = 0.002 m/m	
Channel side slope = not applicable	
Area of flow = 21.25 m^2	
Flow profile = Mild	
Normal depth = 0.75 m	
Critical depth = 0.67 m	
Units on-line $= 6$	
Total flow, all units = 41.2 cms	

Depth downstream = 5.62 m	
Bend loss = 0 m	
Depth upstream = 5 m	
Velocity = 0.31 m/s	
AB Tank Weir	

Weir invert (top of weir) = 2545.64Weir length = 32.6 m Weir height = 6.5 m Weir 'C' coefficient = 1.782Flow over weir = 1.71 cms Weir submergence = unsubmerged Units on-line = 24Total flow, all units = 41.1 cms Head over weir = 0.1 m

Aeration Basin

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 686 mChannel width/diameter = 11 mFlow = 1.71 cmsDownstream channel invert = 2539Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 74.09 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.136 m Units on-line = 24Total flow, all units = 41.1 cms Depth downstream = 6.74 mBend loss = 0 mDepth upstream = 6.74 mVelocity = 0.02 m/s

Aeration Enter Gate

Opening type = rectangular gate Opening diameter/width = 3000 mmGate height = 4000 mmInvert = 2543Number of gates = 1 Flow through gate(s) = 1.71 cmsTotal area of opening(s) = 12 m^2 Velocity through gate(s) = 0.14 m/sFlow behavior = orifice, downstream control Units on-line = 24

2545.74

2545.74

Total flow, all units = 41.2 cms Gate loss = 0 m Downstream water level = 2545.74Upstream water level = 2545.74

AB Distribution Pipe

Pipe shape = Circular Diameter = 1200 mmLength = 77 mFlow = 1.71 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.131 m^2 Pipe hydraulic radius = 0.3Age factor = 1Solids factor = 1Velocity = 1.52 m/sUnits on-line = 24Total flow, all units = 41.1 cms Friction loss = 0.15 mFitting loss = 0.18 mTotal loss = 0.32 mTotal loss = 0.17 m0

AB Distribution Box Gate

Opening type = rectangular gate Opening diameter/width = 1300 mm Gate height = 5000 mm Invert = 2543 Number of gates = 1 Flow through gate(s) = 1.71 cms Total area of opening(s) = 6.5 m² Velocity through gate(s) = 0.26 m/s Flow behavior = orifice, downstream control Units on-line = 24 Total flow, all units = 41.2 cms Gate loss = 0.01 m Downstream water level = 2546.06 Upstream water level = 2546.07

AB Distribution Box Weir

Weir invert (top of weir) = 2546.09 Weir length = 3.05 m Weir height = 3 m Weir 'C' coefficient = 1.815 2546.06

2546.07

Flow over weir = 1.71 cmsWeir submergence = unsubmerged Units on-line = 24Total flow, all units = 41.1 cmsHead over weir = 0.46 m

Aeration Enter Pipe

Pipe shape = Rectangular Height = 2500 mmWidth = 3500 mmLength = 375 mFlow = 10.67 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 8.75 m^2 Pipe hydraulic radius = 0.729Age factor = 1Solids factor = 1Velocity = 1.22 m/sUnits on-line = 3Total flow, all units = 32 cms Friction loss = 0.14 mFitting loss = 0.14 mTotal loss = 0.28 m0

General aeration box Weir Gate

Opening type = rectangular gate Opening diameter/width = 2500 mm Gate height = 4000 mm Invert = 2545 Number of gates = 1 Flow through gate(s) = 10.67 cms Total area of opening(s) = 10 m² Velocity through gate(s) = 1.07 m/s Flow behavior = orifice, downstream control Units on-line = 3 Total flow, all units = 32 cms Gate loss = 0.15 m Downstream water level = 2546.83 Upstream water level = 2546.98

General Aeration Box Weir

Weir invert (top of weir) = 2547 Weir length = 7.62 m Weir height = 3 m 2546.83

2546.98

Weir 'C' coefficient = 1.846Flow over weir = 10.67 cms Weir submergence = unsubmerged Units on-line = 3Total flow, all units = 32 cms Head over weir = 0.83 m

Clarifier Junction Exit Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 652 mFlow = 16 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 1.31 m/sUnits on-line = 2Total flow, all units = 32 cms Friction loss = 0.22 m Fitting loss = 0.16 mTotal loss = 0.38 m0

Clarifier Exit Pipe

Pipe shape = CircularDiameter = 1500 mmLength = 105.4 mFlow = 2 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 1.767 m^2 Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on-line = 16Total flow, all units = 32 cms Friction loss = 0.08 mFitting loss = 0.12 mTotal loss = 0.2 m

2548.21

Water Surface Elevation

Clarifier Orifice 2548.59 Opening type = circular orifice $\frac{1}{2}$ Opening diameter/width = 1500 mmOpening height = not applicable Invert = 2546Number of openings = 1Flow through opening(s) = 2 cmsTotal area of opening(s) = 1.77 m^2 Velocity through opening(s) = 1.13 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 32 cms Orifice loss = 0.18 mDownstream water level = 2548.41Upstream water level = 2548.59**Clarifier Launder** 2548.73 Launder invert = 2548Launder length = 81.7 mLaunder width = 1.5 mLaunder slope = 0.004 m/mFlow through launder = 1 cms Critical depth = 0.36 mUnits on-line = 32Total flow, all units = 32 cmsDownstream depth = 0.59 mUpstream depth = 0.4 mWeir Clarifier 2548.83 Invert of V notch = 2548.75Angle of V notch = 90 degrees Number of notches = 864Total flow over weir = 2 cms Weir submergence = unsubmerged Units on-line = 16Total flow, all units = 32 cms Head over weir = 0.08 m **Clarifier Enter Pipe** 2548.96 Pipe shape = Circular Diameter = 1500 mmLength = 45 mFlow = 2 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.5Pipe area = 1.767 m^2

Pipe area = 6.25 m^2

Pipe hydraulic radius = 0.375Age factor = 1Solids factor = 1Velocity = 1.13 m/sUnits on-line = 16Total flow, all units = 32 cms Friction loss = 0.04 mFitting loss = 0.1 mTotal loss = 0.13 m**Distribution Box Gate** 2548.99 Opening type = rectangular gate Opening diameter/width = 1500 mmGate height = 3000 mmInvert = 2545Number of gates = 1Flow through gate(s) = 2 cmsTotal area of opening(s) = 4.5 m^2 Velocity through gate(s) = 0.44 m/sFlow behavior = orifice, downstream control Units on-line = 16Total flow, all units = 32 cms Gate loss = 0.03 mDownstream water level = 2548.96Upstream water level = 2548.99**Box 1 Weir** 2549.51 Weir invert (top of weir) = 2549Weir length = 3.05 m Weir height = 3.5 mWeir 'C' coefficient = 1.813Flow over weir = 2 cmsWeir submergence = unsubmerged Units on-line = 16Total flow, all units = 32 cms Head over weir = 0.51 m**Enter Pipe BOX 1** 2549.71 Pipe shape = Rectangular Height = 2500 mmWidth = 2500 mmLength = 110.9 mFlow = 8 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.7

Water Surface Elevation

Pipe hydraulic radius = 0.625Age factor = 1 Solids factor = 1 Velocity = 1.28 m/s Units on-line = 4 Total flow, all units = 32 cms Friction loss = 0.06 m Fitting loss = 0.14 m Total loss = 0.2 m 0

General Box Gate

Section Description

Opening type = rectangular gate Opening diameter/width = 6000 mm Gate height = 3000 mm Invert = 2544 Number of gates = 1 Flow through gate(s) = 8 cms Total area of opening(s) = 18 m² Velocity through gate(s) = 0.44 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0.03 m Downstream water level = 2549.71 Upstream water level = 2549.74

General box 1 Weir

Weir invert (top of weir) = 2549.76Weir length = 6.1 m Weir height = 3 m Weir 'C' coefficient = 1.843Flow over weir = 8 cms Weir submergence = unsubmerged Units on-line = 4Total flow, all units = 32 cms Head over weir = 0.8 m

R Mix to Clarifiers Pipe

Pipe shape = Rectangular Height = 3500 mm Width = 3000 mm Length = 150.43 m Flow = 16 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.5 2550.56

2550.81

Pipe area = 10.5 m^2 Pipe hydraulic radius = 0.808Age factor = 1Solids factor = 1Velocity = 1.52 m/sUnits on-line = 2Total flow, all units = 32 cmsFriction loss = 0.08 mFitting loss = 0.18 mTotal loss = 0.26 m0

RM Exit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 mChannel width/diameter = 32 mFlow = 32 cmsDownstream channel invert = 2549Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 57.94 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.467 mUnits on-line = 1Total flow, all units = 32 cms Depth downstream = 1.81 mBend loss = 0 mDepth upstream = 1.81 mVelocity = 0.55 m/s

RM Exit Gate

Opening type = circular gate Opening diameter/width = 4000 mm Gate height = 4000 mm Invert = 2547 Number of gates = 4 Flow through gate(s) = 8 cms Total area of opening(s) = 50.27 m² Velocity through gate(s) = 0.16 m/s Flow behavior = orifice, downstream control Units on-line = 4 Total flow, all units = 32 cms Gate loss = 0 m Downstream water level = 2550.81 Upstream water level = 2550.82 2550.81

RM

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 9 mChannel width/diameter = 8 mFlow = 8 cmsDownstream channel invert = 2545Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 46.53 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.467 mUnits on-line = 4Total flow, all units = 32 cms Depth downstream = 5.82 mBend loss = 0 mDepth upstream = 5.82 mVelocity = 0.17 m/s

RM Enter Gate

Opening type = circular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2550 Number of gates = 4 Flow through gate(s) = 8 cms Total area of opening(s) = 5.62 m^2 Velocity through gate(s) = 1.42 m/sFlow behavior = weir control Units on-line = 4 Total flow, all units = 32 cmsGate loss = 0.92 mDownstream water level = 2550.82Upstream water level = 2550.92

RM Enter Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 8 m Channel width/diameter = 32 m Flow = 32 cms Downstream channel invert = 2548Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 93.34 m² 2550.92

Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.467 mUnits on-line = 1 Total flow, all units = 32 cmsDepth downstream = 2.92 mBend loss = 0 mDepth upstream = 2.92 mVelocity = 0.34 m/s

Grit Channel to RM Pipe

Pipe shape = Rectangular Height = 3500 mmWidth = 3500 mmLength = 43.77 mFlow = 16 cmsFriction method = Manning's Equation Friction factor = 0.013Total fitting K value = 1.8Pipe area = 12.25 m^2 Pipe hydraulic radius = 0.875Age factor = 1Solids factor = 1Velocity = 1.31 m/sUnits on-line = 2Total flow, all units = 32 cmsFriction loss = 0.02 mFitting loss = 0.16 mTotal loss = 0.17 m

0

Junction Tank Grit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 4 m Channel width/diameter = 45.2 m Flow = 16 cms Downstream channel invert = 2549Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 94.49 m² Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.234 m Units on-line = 2Total flow, all units = 32 cms Depth downstream = 2.09 m 2551.09

Bend loss = 0 m Depth upstream = 2.09 m Velocity = 0.17 m/s

Grit Weir

2551.38

Weir Weir invert (top of weir) = 2551.11Weir length = 12 mWeir height = 0.43 mWeir 'C' coefficient = 1.931Flow over weir = 3.2 cmsWeir submergence = unsubmerged Units on-line = 10Total flow, all units = 32 cmsHead over weir = 0.27 m

Grit Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 40.5 mChannel width/diameter = 6 mFlow = 2.29 cmsDownstream channel invert = 2548.59Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 16.73 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.246 m Units on-line = 14Total flow, all units = 32 cms Depth downstream = 2.79 mBend loss = 0 mDepth upstream = 2.79 mVelocity = 0.14 m/s

Screening Exit Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 3.2 cmsTotal area of opening(s) = 4 m^2 Velocity through gate(s) = 0.8 m/sFlow behavior = orifice, downstream control Units on-line = 10Total flow, all units = 32 cms 2551.38

Gate loss = 0.08 m
Downstream water level $= 2551.38$
Upstream water level $= 2551.46$

Screen Channel 1 - 2

2551.47

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 5 mChannel width/diameter = 2.5 mFlow = 3.2 cmsDownstream channel invert = 2549.28Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 5.46 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.551 mUnits on-line = 10Total flow, all units = 32 cms Depth downstream = 2.18 mBend loss = 0 mDepth upstream = 2.19 mVelocity = 0.59 m/s

Fine Screen

Rack invert = 2550.3Rack width = 2.5 mChannel width = 2.5 mFlow through rack = 3.2 cms Bar width = 6 mmBar spacing = 6 mmPercent blocked = 0%Net rack open area = 1.46 m^2 Downstream depth = 1.17 mVelocity in channel = 1.1 m/sVelocity through bars = 2.2 m/sUnits on-line = 10Total flow, all units = 32 cms Rack head loss = 0.26 m

Screen Channel 2 -3

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 6 mChannel width/diameter = 2.5 mFlow = 3.2 cmsDownstream channel invert = 2550.9 2551.73

Channel slope = 0 m/m Channel side slope = not applicable Area of flow = 2.09 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.551 mUnits on-line = 10Total flow, all units = 32 cmsDepth downstream = 0.83 mBend loss = 0 mDepth upstream = 0.84 mVelocity = 1.54 m/s

Medium Screen

2551.78

Rack invert = 2550 Rack width = 2.5 m Channel width = 2.5 m Flow through rack = 3.2 cms Bar width = 10 mm Bar spacing = 25 mm Percent blocked = 0%Net rack open area = 3.09 m^2 Downstream depth = 1.74 mVelocity in channel = 0.74 m/sVelocity through bars = 1.04 m/sUnits on-line = 10Total flow, all units = 32 cmsRack head loss = 0.04 m

Screen Channel 3 - 4

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 7 mChannel width/diameter = 2.5 mFlow = 3.2 cmsDownstream channel invert = 2550.9Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 2.21 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.551 mUnits on-line = 10Total flow, all units = 32 cms Depth downstream = 0.88 mBend loss = 0 mDepth upstream = 0.89 m

2551.87

Velocity =	1.46	m/s
------------	------	-----

Screening Enter Channel Gate

Opening type = rectangular gate Opening diameter/width = 2000 mm Gate height = 2000 mm Invert = 2548 Number of gates = 1 Flow through gate(s) = 3.2 cmsTotal area of opening(s) = 4 m^2 Velocity through gate(s) = 0.8 m/sFlow behavior = orifice, downstream control Units on-line = 10Total flow, all units = 32 cmsGate loss = 0.08 mDownstream water level = 2551.79Upstream water level = 2551.87

Screening Distribution Channel

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 14.55 m Channel width/diameter = 41.9 mFlow = 16 cmsDownstream channel invert = 2547.8Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 170.69 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.246 mUnits on-line = 2Total flow, all units = 32 cms Depth downstream = 4.07 mBend loss = 0 mDepth upstream = 4.08 mVelocity = 0.09 m/s

Initial Pipe

Pipe shape = Rectangular Height = 3500 mm Width = 4000 mm Length = 28 m Flow = 16 cms Friction method = Manning's Equation Friction factor = 0.013 Total fitting K value = 1.7 2551.88

2552

Water Surface Elevation

Section Description

Pipe area = 14 m^2 Pipe hydraulic radius = 0.933Age factor = 1 Solids factor = 1 Velocity = 1.14 m/sUnits on-line = 2 Total flow, all units = 32 cmsFriction loss = 0.01 mFitting loss = 0.11 mTotal loss = 0.12 m0

Initial Gate

2552.08

Opening type = rectangular gate Opening diameter/width = 4000 mm Gate height = 5000 mm Invert = 2547 Number of gates = 1 Flow through gate(s) = 16 cms Total area of opening(s) = 20 m² Velocity through gate(s) = 0.8 m/s Flow behavior = orifice, downstream control Units on-line = 2 Total flow, all units = 32 cms Gate loss = 0.08 m Downstream water level = 2552 Upstream water level = 2552.08

Inicial Junction Tank

Channel shape = Rectangular Manning's 'n' = 0.013Channel length = 13 mChannel width/diameter = 25 mFlow = 32 cmsDownstream channel invert = 2546Channel slope = 0 m/mChannel side slope = not applicable Area of flow = 152.14 m^2 Flow profile = Horizontal Normal depth = Infinite Critical depth = 0.551 mUnits on-line = 1Total flow, all units = 32 cms Depth downstream = 6.08 mBend loss = 0 mDepth upstream = 6.09 mVelocity = 0.21 m/s