SECCION C.2	PARAMETR	ROS DE DISEÑO									
Tubo y nucleo Diametro (in)	78										
CLASE	3-130					Cable de pre	sfuerzo				
Recubrim.	3					ds	0,162	_	diametro del alami	hrón	
Pw	130	Presion de trab	aio PSI	Nomin	al	fsg	175.500		ensión de enrollar		
Di	78,74	diametro intern	•	NOITHI	aı	fsu	234.000				cación para el cable PSI
	,					Es	28.000.000			dad de diseño del ca	•
Dy	82,7	diametro cilindr									ble PSI
hc	5,75	espesor nucleo				fsy	198.900		imite de fluencia	del cable PSI	
Pt	45,8 450.0		te PSI (40% Pw)			λs	0,01				
Pft	156,0		atica PSI (1.2*Pw)			Esg	0,0062678				
We	10.036	Carga muerta II				Esy	0,0071035	0/1			
Wt	0		t (vivas, impacto, e	etc)							
Wf	2.110	Peso del fluido	lb/ft								
mortero						cilindro					
hm	0,912	2 espesor (in)				ty	0,0598	g	gauge 16 espesor	de la lámina (in)	
hm	1,00	espesor especi	ficación (in)			fyy	27.000	e	esfuerzo de fluenc	ia del acero del cilino	dro
λm	0,0870)				fy y	36.000	e	esfuerzo del cilindi	ro a la rotura (fyy=75	%fy*y)
R	42.745	5 radio al centroio	de de la pared del f	tubo (in)		Ey	30.000.000	n	nodulo d elasticida	ad del cilindro	
	,			,		hci				o de la lamina al inter	ior (in)
secciones trans	versales cilind	lro v concreto				dy		,95 ii			()
Ay		3 in2/ft				λγ		339 ii			
Ac	,	2 in2/ft				,	0,0				
710	00,202	L 1112/11									
Concreto						mortero					
f 'c	5.500	PSI				f 'm	4.500	F	PSI		
Ec	3.840.887	modulo de elas	ticidad del concrete	o PSI		Em	3.429.842	n	nodulo de elasticio	dad del mortero PSI	
n	7,29	9				m	0,892	298 a	antes de ablandan	niento	
n'	7,81	1				f ' tm	4	170 p	osi		
f't	519	9 PSI				£t'm	1,37E-	-04 iı	n / in		
£ť	1,35E-04	4 in/in				€k'm	1,10E-	-03 iı	n / in		
£k'	1,49E-03	3 in/in									
	,										
condiciones am		burneded relativ									
RH	70%	humedad relativ									
t1	270 dias	tiempo en patio									
t2	90 dias	tiempo enterrac	io sin agua								
coeficientes de	momento v co	rtante									
Carga de tierra (A			Peso del tubo (A	Apovo 15	s° Olander)	Peso del fluido	o (Apoyo 90° Olai	nder)		
C _{m1e}	0,1247		C _{m1p}),2157	C _{m1f}			,		
C _{m2e}	0,0885		C _{m2p}		,1016	C _{m2f}	0,08				
C _{n1e}	0,325		C _{n1p}	, (),1029	C _{n1f}	-0,27				
C _{n2e}	0,5386		C _{n2p}	. (),3026	C _{n2f}	-0,06				
Onze	0,0000		Опер)	7,0020	Onzi	0,00	, , ,			
SECCION C.3.	AREAS DE	REFUERZO									
						C.3.3. As req	uerido basado e	n la	presión de rotur	a	
C.3.1. As max	0,707	7 in2 / ft	espacio libre 0.1	188" (AW	/WA C301/64)						
						Pw		130	•	Presion de trabajo	
C.3.2. As min	0,165	5 in2 / ft	espacio max 1.5	5" (AWW	A C301)	Pt		46	•	Presion trasciente	
						Pb	3	300	psi	Presion de rotura (pa	ara estimación de As)
* do aquardo al a	ritorio dol otand	ard do 1064				Λ =	0.5	:2F	in2/ft	Estimado do couerd	a a C 3 3 hacada an D
* de acuerdo al c	nterio dei stand	aru de 1904				As		525			a C.3.3. basado en Pw
						As	0,5	525	in2/ft	As/tubo	12,057

585

CHECK AWWA304+Pt

SECCION C.4. CALCULO DE ESTADOS DE ESFUERZO

C.4.1. Razones de modulo

ni	8,23	nr	7,02
ni'	8,83	nr'	7,47

C.4.2. Fluencia lenta (Creep), retracción de fraguado y relajación del cable para RH=70%, tenemos

φ1 1,76 φ2 1,79

a. Razón volumen superficie

hco	3,77 espesor del nucleo de la lamina al exterior (in)
γ (hci) γ (hco+hm) γ (hm)	0,934 0,724 1,106
/()	1,100

b. factor de fluencia lenta (Creep) c. factor de retracción

фсі	1,643		γ' (hci)	0,953
φcom	1,296		γ' (hco+hm)	0,677
φm	1,979		γ' (hm)	1,064
ф	1,293			
para RH=70%, to	enemos			
s1	1,84E-04	sci	1,75E-04	
s2	2,99E-04	scom	2,02E-04	
		sm	3,18E-04	
		9	1 73F-04	

d. relajación del alambrón

R 0,0841

C.4.3. Presfuerzo inicial

f ic 1167 PSI f iy 10309 PSI f is -165.896 PSI

C.4.4. Presfuerzo final

1	90259,26429	f cr	856 PSI
2	6,27E+03	8cr	2,23E-04
3	7747,814557	f yr	21.448 PSI
denominador	89,03256424	f sr	-140.699 PSI

C.4.5. Presion de descompresion

Po (psi) 133,47 Basado en As residual

SECCION C.5. MINIMA AREA DE PREESFUERZO AREA BASADA EN LA MÁXIMA PRESION

la mínima area de preesfuerz odebe cumplir las combinaciones de carga W1 y WT1.

Criterio	Combinación de carga	Criterio satisfecho
Pw ≤ Po	W1	CUMPLE
Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

Pk' 191,3 psi min (Pk' , 1.4 Po) 186,9 psi

SECCION C.6. ESFUERZOS DEL PRETENSADO PARA EL AREA DE DISEÑO FINAL

Recalculando los estados de esfuerzos con una area As que cumpla todos los criterios de diseño se tiene:

f cr	856 PSI	
Ecr f vr	2,23E-04 in/in 21,448 PSI	
f yr Eyr	7,15E-04 in/in	
f sr	-140.699 PSI	
8sr	-5,02E-03 in/in	
Esr Po	-5,02E-03 in/in 133,47 PSI	
	,	
Po	133,47 PSI	
Po No	133,47 PSI 66.225 lb / ft	

eje neutro para esfuerzo cortante

e₀ 2,962 in

	Estado	Proposito	Criterio	Combinación de carga	Criterio satisfecho
S	Límite de Servicio en la circunferencia total del tubo	Prevenir decompresión del nucleo	Pw≤Po	W1	CUMPLE
		Prevenir fisuras en el recubrimiento	Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

SECCION C.2	PARAMETE	ROS DE DISEÑO									
Tubo y nucleo Diametro (in)	78										
CLASE	4-130					Cable de pre	sfuerzo				
Recubrim.	4					ds	0,162		diametro del ala	amhrón	
Pw	130	Presion de trab	aio PSI	Nomi	nal	fsg	175.500		tensión de enro		
Di	78,74	diametro intern	•	NOITH	iai	fsu	234.000				cación para el cable PSI
	,					Es	28.000.000	2		ticidad de diseño del ca	•
Dy	82,7	diametro cilindr						J			ble PSI
hc	5,75	espesor nucleo				fsy	198.900	~ 4 4 4		cia del cable PSI	
Pt	75,8		te PSI (40% Pw)			λs	,	0141			
Pft	156,0		atica PSI (1.2*Pw)			Esg	0,00626				
We	12.710	Carga muerta II				Esy	0,00710	35/1			
Wt	0		t (vivas, impacto, e	etc)							
Wf	2.110	Peso del fluido	lb/ft								
mortero						cilindro					
hm	0,912	2 espesor (in)				ty	0,0598		gauge 16 espes	sor de la lámina (in)	
hm	1,00	O espesor especi	ficación (in)			fyy	27.000		esfuerzo de flue	encia del acero del cilino	dro
λm	0,0870	0				fy y	36.000		esfuerzo del cili	ndro a la rotura (fyy=75	%fy*y)
R	42.745	5 radio al centroio	de de la pared del f	tubo (in)	Ey	30.000.000)	modulo d elastic	cidad del cilindro	
	,				,	hci				cleo de la lamina al inter	ior (in)
secciones trans	versales cilind	iro v concreto				dy		1,95			()
Ay		8 in2/ft				λγ		,339			
Ac	,	2 in2/ft				~,	·	,,,,,,,			
710	00,202	L 1112/11									
Concreto						mortero					
f 'c	5.500	PSI				f 'm	4.500		PSI		
Ec	3.840.887	modulo de elas	ticidad del concrete	o PSI		Em	3.429.842	2	modulo de elast	ticidad del mortero PSI	
n	7,29	9				m	0,89	9298	antes de ablanc	damiento	
n'	7,8	1				f ' tm		470	psi		
f't	519	9 PSI				£t'm	1,37	E-04	in / in		
£ť'	1,35E-04	4 in/in				£k'm	1,10	E-03	in / in		
εk'	1,49E-03	3 in/in									
	,										
condiciones am		humodad ralativ	10								
RH	70%	humedad relativ									
t1	270 dias	tiempo en patio									
t2	90 dias	tiempo enterrac	io sin agua								
coeficientes de	momento v co	rtante									
Carga de tierra (A			Peso del tubo (A	Apovo 1	5° Olander)	Peso del fluid	o (Apoyo 90° O	lande	er)		
C _{m1e}	0,1247		C _{m1p}		0,2157	C _{m1f}		1208			
C _{m2e}	0,088		C _{m2p}		0,1016	C _{m2f}		0878			
C _{n1e}	0,325		C _{n1p}	,	0,1029	C _{n1f}		2703			
C _{n2e}	0,5386		C _{n2p}	,	0,3026	C _{n2f}		0617			
Olize	0,000		Опер	,	0,0020	JIIZI	0,				
SECCION C.3.	AREAS DE	REFUERZO				0004					
		- : 0 / 6				C.3.3. As req	uerido basado	en I	a presión de rot	tura	
C.3.1. As max	0,707	7 in2 / ft	espacio libre 0.1	188" (A\	vvvA C301/64)						
						Pw		130	•	Presion de trabajo	
C.3.2. As min	0,16	5 in2 / ft	espacio max 1.5	5" (AWV	VA C301)	Pt		76	•	Presion trasciente	
						Pb		360	psi	Presion de rotura (pa	ara estimación de As)
* do aguardo al a	ritorio dal atand	lard do 1064				Λ =		650	in2/ft	Estimado do acuardo	a a C 3 3 hacada an D
* de acuerdo al c	nteno dei stand	iaiu ue 1904				As),652			a C.3.3. basado en Pw
						As	U),652	in2/ft	As/tubo	14,974

726

CHECK AWWA304+Pt

SECCION C.4. CALCULO DE ESTADOS DE ESFUERZO

C.4.1. Razones de modulo

ni	8,23	nr	7,02
ni'	8.83	nr'	7.47

C.4.2. Fluencia lenta (Creep), retracción de fraguado y relajación del cable para RH=70%, tenemos

φ1 1,76φ2 1,79

a. Razón volumen superficie

hco	3,77 espesor del nucleo de la lamina al exterior (in)
γ(hci)	0,934
γ(hco+hm)	0,724
γ(hm)	1,106

b. factor de fluencia lenta (Creep) c. factor de retracción

фсі	1,643		γ' (hci)	0,953
	,		,	,
фcom	1,296		γ' (hco+hm)	0,677
φm	1,979		γ' (hm)	1,064
ф	1,293			
para RH=70%, te	enemos			
s1	1,84E-04	sci	1,75E-04	
s2	2,99E-04	scom	2,02E-04	
		sm	3,18E-04	
		s	1 73F-04	

d. relajación del alambrón

R 0,0776

C.4.3. Presfuerzo inicial

f ic	1431 PSI
f iy	12635 PSI
f is	-163 729 PSI

C.4.4. Presfuerzo final

1	111904,439	f cr	1056 PSI
2	6,88E+03	8cr	2,75E-04
3	8877,165407	f yr	25.220 PSI
denominador	91,07715843	f sr	-138.315 PSI

C.4.5. Presion de descompresion

Po (psi) 166,42 Basado en As residual

SECCION C.5. MINIMA AREA DE PREESFUERZO AREA BASADA EN LA MÁXIMA PRESION

la mínima area de preesfuerz odebe cumplir las combinaciones de carga W1 y WT1.

Criterio	Combinación de carga	Criterio satisfecho
Pw ≤ Po	W1	CUMPLE
Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

Pk' 224,9 psi min (Pk' , 1.4 Po) 224,9 psi

SECCION C.6. ESFUERZOS DEL PRETENSADO PARA EL AREA DE DISEÑO FINAL

Recalculando los estados de esfuerzos con una area As que cumpla todos los criterios de diseño se tiene:

f cr	1056	PSI
Ecr	2,75E-04	in/in
f yr	25.220	PSI
εyr	8,41E-04	in/in
fsr	-138.315	PSI
8sr	-4,94E-03	in/in
Po	166,42	PSI
No	82.577	
No Pk'	82.577 224,9	lb / ft
	0=.0	lb / ft psi

eje neutro para esfuerzo cortante

e₀ 2,996 in

SECCION C.7. SERVICIO EN LA CIRCUNFERENCIA TOTAL DEL TUBO

Estado	Proposito	Criterio	Combinación de carga	Criterio satisfecho
Límite de Servicio en la	Prevenir decompresión del nucleo	Pw≤Po	W1	CUMPLE
circunferencia total del tubo	Prevenir fisuras en el recubrimiento	Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

peso del tubo

SECCION C.2	PARAMETR	OS DE DISEÑO							
Tubo y nucleo Diametro (in)	78								
CLASE	5-130					Cable de pres	fuerzo		
Recubrim.	5	1				ds	0,192	diam	netro del alambrón
Pw	130	Presion de traba	ain PSI	Nomi	nal	fsg	175.500		ón de enrollamiento PSI
Di	78,74	diametro interno	•	NOIIII	iai	fsu	234.000		erzo mínimo de tensión de especificación para el cable PSI
	,					Es	28.000.000		ulo de elasticidad de diseño del cable PSI
Dy	82,7	diametro cilindro							
hc	5,75	espesor nucleo				fsy	198.900		te de fluencia del cable PSI
Pt	118,2		e PSI (40% Pw)			λs	0,01		
Pft	156,0		tica PSI (1.2*Pw)			Esg	0,0062678		
We	15.105	Carga muerta lb				Esy	0,0071035	/1	
Wt	0		(vivas, impacto, e	etc)					
Wf	2.110	Peso del fluido I	b/ft						
mortero						cilindro			
hm	0,942	espesor (in)				ty	0,0598	gaug	ge 16 espesor de la lámina (in)
hm	1,00	espesor especif	icación (in)			fyy	27.000	esfu	erzo de fluencia del acero del cilindro
λm	0,0870)				fy y	36.000	esfu	erzo del cilindro a la rotura (fyy=75%fy*y)
R	42.745	radio al centroid	le de la pared del	tubo (ir)	Ey	30.000.000	mod	ulo d elasticidad del cilindro
	, -				,	hci			esor del nucleo de la lamina al interior (in)
secciones trans	versales cilind	ro v concreto				dy		95 in	()
Ay		in2/ft				λγ	,	39 in	
Ac	68,282					,	0,0		
710	00,202	. 1112/11							
Concreto						mortero			
f 'c	5.500	PSI				f 'm	4.500	PSI	
Ec	3.840.887	modulo de elast	icidad del concret	o PSI		Em	3.429.842	mod	ulo de elasticidad del mortero PSI
n	7,29)				m	0,892	98 ante	s de ablandamiento
n'	7,81					f ' tm	4	70 psi	
f't	519	PSI				£t'm	1,37E-	04 in / iı	1
£ť	1,35E-04	in/in				Ek'm	1,10E-	03 in/iı	1
£k'	1,49E-03	3 in/in							
	,								
condiciones am		humodad ralativ	10						
RH	70%	humedad relativ							
t1	270 dias	tiempo en patios							
t2	90 dias	tiempo enterrad	o sın agua						
coeficientes de	momento v cor	rtante							
Carga de tierra (A			Peso del tubo (A	Apovo 1	5° Olander)	Peso del fluido	(Apoyo 90° Olar	nder)	
C _{m1e}	0,1247		C _{m1c}		0,2157	C_{m1f}	0,12		
C _{m2e}	0,0885		C _{m2p}		0,1016	C _{m2f}	0,08		
C _{n1e}	0,3255		C _{n1p}	,	0,1029	C_{n1f}	-0,27		
C _{n2e}	0,5386		C _{n2p}	,	0,3026	C _{n2f}	-0,06		
			Olizp	,	0,0020	J ₁₁₂₁	0,00		
SECCION C.3.	AREAS DE I	REFUERZO				000 4			aller da nationa
004.4	0011	: 0 / f		100" (4)	AUA/A (0004/04)	C.J.J. AS requ	uerido basado e	n ia pre	sion de rotura
C.3.1. As max	0,914	in2 / ft	espacio libre 0.1	188. (V	/vvvA C301/64)	_			
						Pw		30 ps	•
C.3.2. As min	0,232	? in2 / ft	espacio max 1.5	5" (AW\	VA C301)	Pt		18 ps	
						Pb	4	44 ps	Presion de rotura (para estimación de As)
* de acuerdo al c	ritario dal stand	ard de 1964				As	0,8	32 in2	2/ft Estimado de acuerdo a C.3.3. basado en Pw
ue acueruo ai C	INCITO UCI SIAITU	aiu uc 1304							
						As	0,8	32 in2	2/ft As/tubo 19,108

total espiras

660

CHECK AWWA304+Pt

SECCION C.4. CALCULO DE ESTADOS DE ESFUERZO

C.4.1. Razones de modulo

ni	8,23	nr	7,02
ni'	8.83	nr'	7.47

C.4.2. Fluencia lenta (Creep), retracción de fraguado y relajación del cable para RH=70%, tenemos

φ1 1,76φ2 1,79

a. Razón volumen superficie

hco	3,77 espesor del nucleo de la lamina al exterior (in)
γ (hci) γ (hco+hm) γ (hm)	0,934 0,724 1.106
1()	1,100

b. factor de fluencia lenta (Creep) c. factor de retracción

фсі	1,643		γ' (hci)	0,953
φcom	1,296		γ' (hco+hm)	0,677
φm	1,979		γ' (hm)	1,064
ф	1,293			
para RH=70%, to	enemos			
s1	1,84E-04	sci	1,75E-04	
s2	2,99E-04	scom	2,02E-04	
		sm	3,18E-04	
		S	1.73E-04	

d. relajación del alambrón

R 0,0684

C.4.3. Presfuerzo inicial

f ic	1792 PS
f iy	15831 PS
f is	-160 752 PS

C.4.4. Presfuerzo final

1	142467,1256	f cr	1327 PSI
2	7,75E+03	8cr	3,46E-04
3	9980,716143	f yr	30.366 PSI
denominador	93,97500847	f sr	-135.124 PSI

C.4.5. Presion de descompresion

Po (psi) 212,62 Basado en As residual

SECCION C.5. MINIMA AREA DE PREESFUERZO AREA BASADA EN LA MÁXIMA PRESION

la mínima area de preesfuerz odebe cumplir las combinaciones de carga W1 y WT1.

Criterio	Combinación de carga	Criterio satisfecho
Pw ≤ Po	W1	CUMPLE
Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

Pk' 272,0 psi min (Pk' , 1.4 Po) 272,0 psi

SECCION C.6. ESFUERZOS DEL PRETENSADO PARA EL AREA DE DISEÑO FINAL

Recalculando los estados de esfuerzos con una area As que cumpla todos los criterios de diseño se tiene:

f cr	1327 PSI	
€cr f yr	3,46E-04 in/in 30.366 PSI	
Eyr f sr	1,01E-03 in/in -135.124 PSI	
Esr Po	-4,83E-03 in/in 212.62 PSI	
No	105.504 lb / ft	
Pk'	272,0 psi	
Nk'	404.070 11.16	
INK	134.978 lb/ft	

eje neutro para esfuerzo cortante

e₀ 3,044 in

Estado	Proposito	Criterio	Combinación de carga	Criterio satisfecho
Límite de Servicio en la	Prevenir decompresión del nucleo	Pw≤Po	W1	CUMPLE
circunferencia total del tubo	Prevenir fisuras en el recubrimiento	Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

SECCION C.2	PARAMETE	ROS DE DISEÑO									
Tubo y nucleo Diametro (in)	78										
CLASE	3-140					Cable de pre	sfuerzo				
Recubrim.	3					ds			diametro del ala	amhrón	
Pw	140	Presion de trab	aio PSI	Nomin	al	fsg	175.500		tensión de enro		
Di	78,74	diametro intern	•	NOITHI	aı	fsu	234.000				icación para el cable PSI
	,					Es	28.000.00	^		ticidad de diseño del ca	•
Dy	82,7	diametro cilindr						U			ble PSI
hc	5,75	espesor nucleo				fsy	198.900			ia del cable PSI	
Pt	46,8		te PSI (40% Pw)			λs	,	0141			
Pft	168,0		atica PSI (1.2*Pw)			Esg	0,00626				
We	10.036	Carga muerta It				Esy	0,00710	35/1			
Wt	0		t (vivas, impacto, e	etc)							
Wf	2.110	Peso del fluido	lb/ft								
mortero						cilindro					
hm	0,912	2 espesor (in)				ty	0,0598		gauge 16 espes	sor de la lámina (in)	
hm	1,00	espesor especi	ficación (in)			fyy	27.000		esfuerzo de flue	encia del acero del cilino	dro
λm	0,0870)				fy y	36.000		esfuerzo del cili	ndro a la rotura (fyy=75	%fy*y)
R	42,745	5 radio al centroio	de de la pared del f	tubo (in)		Ey	30.000.00	0	modulo d elastic	cidad del cilindro	
			•	,		hci		1.92	espesor del nuo	cleo de la lamina al inter	ior (in)
secciones trans	versales cilind	Iro v concreto				dy		1,95			
Ay		3 in2/ft				λγ	(0,339			
Ac	,	2 in2/ft				,		-,			
	00,20										
Concreto						mortero					
f 'c	5.500	PSI				f 'm	4.500		PSI		
Ec	3.840.887	modulo de elas	ticidad del concrete	o PSI		Em	3.429.842	2	modulo de elas	ticidad del mortero PSI	
n	7,29	9				m	0,8	9298	antes de ablanc	lamiento	
n'	7,8	1				f ' tm		470) psi		
f't	519	9 PSI				£t'm	1,37	'E-04	· in / in		
£ť'	1,35E-04	4 in/in				£k'm	1,10	E-03	in / in		
Ek'	1,49E-03	3 in/in									
condiciones am	hiontalos										
RH	70%	humedad relativ	1 0								
t1	270 dias	tiempo en patio									
		•									
t2	90 dias	tiempo enterrac	io sin agua								
coeficientes de	momento y co	rtante									
Carga de tierra (A	Apoyo 90° Olan	der)	Peso del tubo (A	Apoyo 15	s° Olander)	Peso del fluid	o (Apoyo 90° O	lande	er)		
C _{m1e}	0,1247	7	C_{m1p}		,2157	C_{m1f}	0,	1208			
C_{m2e}	0,088	5	C _{m2p}	, (),1016	C_{m2f}	0,	0878	}		
C _{n1e}	0,325	5	C _{n1p}	. (,1029	C_{n1f}	-0.	2703			
C _{n2e}	0,5386		C _{n2p}	, (,3026	C _{n2f}		0617			
SECCION C.3.	AREAS DE	REFUERZO				C 2 2 A 2 rom	uarida basada	on I	a proción do ro	huro	
C 2 1 As ma:	0.70	7 in 2 / ft	ocnacio libro 0 4	100" / 114	NNA C204/64)	C.S.S. AS req	ueriuo pasado	en I	a presión de ro	ıuıa	
C.3.1. As max	0,70	7 in2 / ft	espacio libre 0.1	100 (AV)	WA C301/64)	Pw		140	, noi	Drooion de trabe:-	
C 2 2 A =!	0.40	: : : 0 / ft	4 5	-11 / ^ \ ^ ^ ^	A C204)			140	•	Presion de trabajo	
C.3.2. As min	0,168	5 in2 / ft	espacio max 1.5	o" (AVVVV	A C301)	Pt		47	•	Presion trasciente	
						Pb		318	s psi	Presion de rotura (pa	ara estimación de As)
* de acuerdo al c	riterio del stand	ard de 1964				As	(0,563	in2/ft	Estimado de acuerdo	o a C.3.3. basado en Pw
30 4040140 41 0		40 1001				As		0,563		As/tubo	12,930
						Λ3		,,,,,,,,	1112/11	Asitubo	12,000

627

CHECK AWWA304+Pt

SECCION C.4. CALCULO DE ESTADOS DE ESFUERZO

C.4.1. Razones de modulo

ni	8,23	nr	7,02
ni'	8.83	nr'	7.47

C.4.2. Fluencia lenta (Creep), retracción de fraguado y relajación del cable para RH=70%, tenemos

φ1 1,76φ2 1,79

a. Razón volumen superficie

hco	3,77 espesor del nucleo de la lamina al exterior (in)
γ (hci) γ (hco+hm)	0,934 0,724
γ (hm)	1,106

b. factor de fluencia lenta (Creep) c. factor de retracción

фсі	1,643		γ' (hci)	0,953
φcom	1,296		γ' (hco+hm)	0,677
φm	1,979		γ ' (hm)	1,064
ф	1,293			
para RH=70%, te	enemos			
s1	1,84E-04	sci	1,75E-04	
s2	2,99E-04	scom	2,02E-04	
		sm	3,18E-04	
		s	1.73E-04	

d. relajación del alambrón

R 0,0821

C.4.3. Presfuerzo inicial

f ic 1247 PSI f iy 11011 PSI f is -165.241 PSI

C.4.4. Presfuerzo final

1	96743,04034	f cr	917 PSI
2	6,45E+03	8cr	2,39E-04
3	8116,154116	f yr	22.589 PSI
denominador	89,64433258	f sr	-139.973 PSI

C.4.5. Presion de descompresion

Po (psi) 143,36 Basado en As residual

SECCION C.5. MINIMA AREA DE PREESFUERZO AREA BASADA EN LA MÁXIMA PRESION

la mínima area de preesfuerz odebe cumplir las combinaciones de carga W1 y WT1.

Criterio	Combinación de carga	Criterio satisfecho
Pw ≤ Po	W1	CUMPLE
Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

Pk' 201,3 psi min (Pk' , 1.4 Po) 200,7 psi

SECCION C.6. ESFUERZOS DEL PRETENSADO PARA EL AREA DE DISEÑO FINAL

Recalculando los estados de esfuerzos con una area As que cumpla todos los criterios de diseño se tiene:

f cr	917 PSI	
8cr	2,39E-04 in/in	
f yr	22.589 PSI	
Eyr	7,53E-04 in/in	
f sr	-139.973 PSI	
8sr	-5,00E-03 in/in	
Po	143,36 PSI	
No	71.135 lb / ft	
Pk'	201,3 psi	
Nk'	99.909 lb/ft	
Wp	1.885 lb/ft	peso del tubo

eje neutro para esfuerzo cortante

e₀ 2,973 in

Estado	Proposito	Criterio	Combinación de carga	Criterio satisfecho
Límite de Servicio en la	Prevenir decompresión del nucleo	Pw≤Po	W1	CUMPLE
circunferencia total del tubo	Prevenir fisuras en el recubrimiento	Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

SECCION C.2	PARAMETR	OS DE DISEÑO							
Tubo y nucleo Diametro (in)	78								
CLASE	3-150					Cable de pres	fuerzo		
Recubrim.	3					ds ds	0,192	diametro d	el alambrón
Pw	150	Presion de traba	aio PSI	Nomina	ı	fsg	175.500		enrollamiento PSI
Di	78,74	diametro interno	•	Nomina		fsu	234.000		nínimo de tensión de especificación para el cable PSI
Dy	82,7	diametro cilindro				Es	28.000.000		elasticidad de diseño del cable PSI
•	5,75					fsv	198.900		luencia del cable PSI
hc	,	espesor nucleo				,			luericia dei cable PSI
Pt	47,5		e PSI (40% Pw)			λs	0,016		
Pft	180,0		tica PSI (1.2*Pw)			Esg	0,0062678		
We	10.036	Carga muerta lb				Esy	0,0071035	/1	
Wt	0		t (vivas, impacto, e	etc)					
Wf	2.110	Peso del fluido l	lb/ft						
mortero						cilindro			
hm	0,942	espesor (in)				ty	0,0598	gauge 16 e	espesor de la lámina (in)
hm	1,00	espesor especif	ficación (in)			fyy	27.000	esfuerzo de	e fluencia del acero del cilindro
λm	0,0870)				fy y	36.000	esfuerzo de	el cilindro a la rotura (fyy=75%fy*y)
R	42,745	radio al centroid	de de la pared del f	tubo (in)		Ey	30.000.000	modulo d e	elasticidad del cilindro
	,		•	()		hci	1.9	92 espesor de	el nucleo de la lamina al interior (in)
secciones trans	versales cilind	ro v concreto				dy		95 in	, , ,
Ау		in2/ft				λγ	,	39 in	
Ac	68,282					,	5,5		
710	00,202								
Concreto						mortero			
f 'c	5.500	PSI				f 'm	4.500	PSI	
Ec	3.840.887	modulo de elast	ticidad del concreto	o PSI		Em	3.429.842	modulo de	elasticidad del mortero PSI
n	7,29	1				m	0,8929	98 antes de al	blandamiento
n'	7,81					f ' tm	4	70 psi	
f't	519	PSI				£t'm	1,37E-0	04 in / in	
£ť'	1,35E-04	· in/in				Ek'm	1,10E-0	03 in / in	
£k'	1,49E-03	in/in							
condiciones am	,								
RH	70%	humedad relativ	10						
t1	270 dias								
		tiempo en patios							
t2	90 dias	tiempo enterrad	io sin agua						
coeficientes de	momento y cor	rtante							
Carga de tierra (A			Peso del tubo (A	Apovo 15	Olander)	Peso del fluido	(Apoyo 90° Olar	ider)	
C_{m1e}	0,1247		C_{m1p}		2157	C_{m1f}	0,120		
C _{m2e}	0,0885		C _{m2p}		1016	C_{m2f}	0,087		
C _{n1e}	0,3255		C _{n1p}	0	1029	C_{n1f}	-0,270		
C _{n2e}	0,5386		C _{n2p}	. 0	3026	C _{n2f}	-0,06		
			Olizp	,	,0020	31121	0,00		
SECCION C.3.	AREAS DE I	REFUERZO				C 2 2 Ac ross	iorido bosado ar	. la proción d	lo roturo
C 2 4 A 2 m = :	0.044	:-0 /#	aanaaia lihu- 0.4	00" (818"	NA C204/64)	C.S.S. AS requ	uerido basado er	i ia presion d	ie iviuia
C.3.1. As max	0,914	· in2 / ft	espacio libre 0.1	oo (AW	WA USU 1/64)	r	41	50 mg!	Dragian de trabaja
0.00 4	0.000	:-0 /#		-11 / 4 \ 4 \ 7 \ 4 \ 7		Pw		50 psi	Presion de trabajo
C.3.2. As min	0,232	! in2 / ft	espacio max 1.5	(AWWA	a C301)	Pt		48 psi	Presion trasciente
						Pb	33	35 psi	Presion de rotura (para estimación de As)
* de acuerdo al c	riterio del standa	ard de 1964				As	0,60	00 in2/ft	Estimado de acuerdo a C.3.3. basado en Pw
30 4040140 41 0	doi otaliat					As	0,60		As/tubo 13,780
						Λ3	0,00	JO 1112/11	A3/1000 13,700

476

CHECK AWWA304+Pt

SECCION C.4. CALCULO DE ESTADOS DE ESFUERZO

C.4.1. Razones de modulo

ni	8,23	nr	7,02
ni'	8,83	nr'	7,47

C.4.2. Fluencia lenta (Creep), retracción de fraguado y relajación del cable para RH=70%, tenemos

φ1 1,76 φ2 1,79

a. Razón volumen superficie

hco	3,77 esp	esor del nucleo de la lamina al exterior (in)
γ(hci)	0,934	
γ(hco+hm)	0,724	
γ(hm)	1,106	

b. factor de fluencia lenta (Creep) c. factor de retracción

фсі	1,643		γ' (hci)	0,953
φcom	1,296		γ' (hco+hm)	0,677
φm	1,979		γ' (hm)	1,064
ф	1,293			
para RH=70%, to	enemos			
s1	1,84E-04	sci	1,75E-04	
s2	2,99E-04	scom	2,02E-04	
		sm	3,18E-04	
		S	1 73F-04	

d. relajación del alambrón

R 0,0802

C.4.3. Presfuerzo inicial

f ic 1324 PSI f iy 11690 PSI f is -164.609 PSI

C.4.4. Presfuerzo final

1	103050,1958	f cr	975 PSI
2	6,63E+03	8cr	2,54E-04
3	8449,83738	f yr	23.690 PSI
denominador	90,24000175	f sr	-139.277 PSI

C.4.5. Presion de descompresion

Po (psi) 152,96 Basado en As residual

SECCION C.5. MINIMA AREA DE PREESFUERZO AREA BASADA EN LA MÁXIMA PRESION

la mínima area de preesfuerz odebe cumplir las combinaciones de carga W1 y WT1.

Criterio	Combinación de carga	Criterio satisfecho
Pw ≤ Po	W1	CUMPLE
Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

Pk' 211,1 psi min (Pk' , 1.4 Po) 211,1 psi

SECCION C.6. ESFUERZOS DEL PRETENSADO PARA EL AREA DE DISEÑO FINAL

Recalculando los estados de esfuerzos con una area As que cumpla todos los criterios de diseño se tiene:

f cr	975	PSI
Ecr f vr	2,54E-04 23.690	
f yr		
Eyr	7,90E-04	
f sr	-139.277	PSI
8sr	-4,97E-03	in/in
Esr Po	-4,97E-03 152,96	
	,	PSI
Ро	152,96	PSI lb / ft
Po No	152,96 75.901	PSI lb / ft psi

eje neutro para esfuerzo cortante

e₀ 2,983 in

SECCION C.7. SERVICIO EN LA CIRCUNFERENCIA TOTAL DEL TUBO

	Estado	Proposito	Criterio	Combinación de carga	Criterio satisfecho
S	Límite de Servicio en la	Prevenir decompresión del nucleo	Pw≤Po	W1	CUMPLE
	rcunferencia otal del tubo	Prevenir fisuras en el recubrimiento	Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

peso del tubo

SECCION C.2	PARAMETE	ROS DE DISEÑO									
Tubo y nucleo											
Diametro (in)	78										
CLASE	4-150					Cable de p	resfu	erzo			
Recubrim.	4					-	ds		diametro del alai	mbrón	
Pw	150	Presion de traba	ajo PSI	Nominal		fs	sg	175.500	tensión de enroll	amiento PSI	
Di	78,74	diametro interno	in			fs	su	234.000	esfuerzo mínimo	de tensión de especifi	cación para el cable PSI
Dy	82,7	diametro cilindro	o in			E	Ēs	28.000.000	modulo de elasti	cidad de diseño del ca	ble PSI
hc	5,75	espesor nucleo	in			fs	sy	198.900	Limite de fluenci	a del cable PSI	
Pt	85,5	Presion trasiente	e PSI (40% Pw)			ĵ	λs	0,0167			
Pft	180,0	Prueba hidrosta	tica PSI (1.2*Pw)			83	sg	0,006267857			
We	12.710	Carga muerta Ib	/ft			23	sy	0,007103571			
Wt	0	Sobrecarga lb/ft	(vivas, impacto, e	tc)							
Wf	2.110	Peso del fluido I	b/ft								
mortero						cilindro					
hm	0.943	2 espesor (in)					ty	0,0598	gauge 16 espesi	or de la lámina (in)	
hm		0 espesor especifi	icación (in)				yy			ncia del acero del cilino	dro.
λm	0.0870		iodolori (iii)				y y	36.000		idro a la rotura (fyy=75	
R	-,		e de la pared del t	ubo (in)			Ēy	30.000.000	modulo d elastic		,, ,,
	12,7 10	o radio di controla	o do la paroa doi t	abo (iii)			-) ICİ			eo de la lamina al inter	ior (in)
secciones trans	versales cilind	Iro v concreto					dy	1,95			,
Ау		8 in2/ft					λy	0,339			
Ac	,	2 in2/ft					,	-,			
Concreto						morte					
f 'c	5.500	PSI				f'		4.500	PSI		
Ec	3.840.887		icidad del concreto	DOI			m	3.429.842		cidad del mortero PSI	
n	7,29		icidad dei concrett	FSI			m		antes de ablanda		
n'	7,23 7,8					f't		470		arriiento	
f't		9 PSI				Et'		1,37E-04	•		
£ť	1,35E-04					Ek'		1,10E-03			
Ek'	1,49E-03					0		1,102 00			
condiciones am	70%	humedad relativ	_								
t1	70% 270 dias	tiempo en patios									
t2	90 dias	•									
lΖ	90 dias	tiempo enterrado	o sin agua								
coeficientes de											
Carga de tierra (A			Peso del tubo (A					Apoyo 90° Olande			
C _{m1e}	0,1247		C _{m1p}		157	C _n		0,1208			
C _{m2e}	0,088		C _{m2p}		016	C _n		0,0878			
C _{n1e}	0,325		C _{n1p}		029		n1f	-0,2703			
C_{n2e}	0,5386	0	C_{n2p}	0,3	026	C _i	n2f	-0,0617			
SECCION C.3.	AREAS DE	REFUERZO									
						C.3.3. As re	eque	rido basado en la	a presión de roti	ıra	
C.3.1. As max	0,914	4 in2 / ft	espacio libre 0.1	88" (AWW	/A C301/64)		_				
		0 : 0 / 6			2004)		w	150	•	Presion de trabajo	
C.3.2. As min	0,232	2 in2 / ft	espacio max 1.5	" (AWWA	C301)		Pt	86	•	Presion trasciente	
						F	Pb	411	psi	Presion de rotura (pa	ara estimación de As)
* de acuerdo al ci	riterio del stand	lard de 1964				A	As	0,761	in2/ft	Estimado de acuerdo	o a C.3.3. basado en Pw
							As	0,761		As/tubo	17,477
								-,		total espiras	604
										•	

CHECK AWWA304+Pt

SECCION C.4. CALCULO DE ESTADOS DE ESFUERZO

C.4.1. Razones de modulo

ni	8,23	nr	7,02
ni'	8,83	nr'	7,47

C.4.2. Fluencia lenta (Creep), retracción de fraguado y relajación del cable para RH=70%, tenemos

φ1 1,76 φ2 1,79

a. Razón volumen superficie

hco	3,77 espesor del nucleo de la lamina al exterior (in)
γ(hci)	0,934
γ(hco+hm)	0,724
γ(hm)	1,106

b. factor de fluencia lenta (Creep) c. factor de retracción

фсі	1,643		γ' (hci)	0,953
φcom	1,296		γ' (hco+hm)	0,677
φm	1,979		γ' (hm)	1,064
ф	1,293			
para RH=70%, to	enemos			
s1	1,84E-04	sci	1,75E-04	
s2	2,99E-04	scom	2,02E-04	
		sm	3,18E-04	
		s	1,73E-04	

d. relajación del alambrón

R 0,0720

C.4.3. Presfuerzo inicial

f ic	1651	PSI
f iy	14584	PSI
fis	-161 913	PSI

C.4.4. Presfuerzo final

1	130427,6326	f cr	1222 PSI
2	7,41E+03	8cr	3,18E-04
3	9615,044636	f yr	28.363 PSI
denominador	92,83196762	fsr	-136.357 PSI

C.4.5. Presion de descompresion

Po (psi) 194,46 Basado en As residual

SECCION C.5. MINIMA AREA DE PREESFUERZO AREA BASADA EN LA MÁXIMA PRESION

la mínima area de preesfuerz odebe cumplir las combinaciones de carga W1 y WT1.

Criterio	Combinación de carga	Criterio satisfecho
Pw ≤ Po	W1	CUMPLE
Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

Pk' 253,5 psi min (Pk' , 1.4 Po) 253,5 psi

SECCION C.6. ESFUERZOS DEL PRETENSADO PARA EL AREA DE DISEÑO FINAL

Recalculando los estados de esfuerzos con una area As que cumpla todos los criterios de diseño se tiene:

f cr	1222	PSI	
Ecr f yr	3,18E-04 28.363		
Eyr	9,45E-04		
f sr	-136.357	PSI	
Esr	-4,87E-03	in/in	
Po	194,46	PSI	
No	96.493	lb / ft	
Pk'	253,5	psi	
Nk'	125.782	lb/ft	
Wp	1.896	lb/ft pe	9

peso del tubo

eje neutro para esfuerzo cortante

e₀ 3,026 in

Estado	Proposito	Criterio	Combinación de carga	Criterio satisfecho
Límite de Servicio en la	Prevenir decompresión del nucleo	Pw≤Po	W1	CUMPLE
circunferencia total del tubo	Prevenir fisuras en el recubrimiento	Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

SECCION C.2	PARAMETR	OS DE DISEÑO									
Tubo y nucleo Diametro (in)	78										
CLASE	3-160					Cable de pre	sfuerzo				
Recubrim.	3	1				ds		2	diametro del ala	amhrón	
Pw	160	Presion de traba	aio DSI	Nomin	al	fsg	175.50		tensión de enro		
Di	78,74	diametro interno	•	NOITHI	aı	fsu	234.00				sanién nara al cabla DCI
										•	cación para el cable PSI
Dy	82,7	diametro cilindro				Es	28.000.			ticidad de diseño del ca	DIE PSI
hc	5,75	espesor nucleo				fsy	198.90			cia del cable PSI	
Pt	48,5		e PSI (40% Pw)			λs		0,0141			
Pft	192,0		tica PSI (1.2*Pw)			Esg		267857			
We	10.036	Carga muerta Ib				Esy	0,007	103571			
Wt	0		t (vivas, impacto, e	etc)							
Wf	2.110	Peso del fluido	lb/ft								
mortero						cilindro					
hm	0,912	2 espesor (in)				ty	0,059	8	gauge 16 espe	sor de la lámina (in)	
hm	1,00	espesor especif	ficación (in)			fyy	27.00	10	esfuerzo de flu	encia del acero del cilino	dro
λm	0,0870)				fy y	36.00	0	esfuerzo del cil	indro a la rotura (fyy=75	%fy*y)
R	42.745	5 radio al centroio	de de la pared del t	tubo (in)		Ey	30.000.	000	modulo d elasti	cidad del cilindro	
	,		•	,		hci		1.92	espesor del nu	cleo de la lamina al inter	ior (in)
secciones trans	versales cilind	lro v concreto				dy		1,95			
Ay		3 in2/ft				λγ		0,339			
Ac	,	2 in2/ft				,		-,			
Concreto		B 01				mortero		_	DOL		
f'c	5.500	PSI				f 'm	4.500		PSI		
Ec	3.840.887		ticidad del concreto	o PSI		Em	3.429.8			ticidad del mortero PSI	
n	7,29					m	(. ,	antes de ablan	damiento	
n'	7,81					f ' tm) psi		
f't		9 PSI				£t'm		,37E-04			
Eť'	1,35E-04					Ek'm	1,	,10E-03	3 in / in		
εk'	1,49E-03	3 in/in									
condiciones am	bientales										
RH	70%	humedad relativ	/a								
t1	270 dias	tiempo en patio	S								
t2	90 dias	tiempo enterrad									
		•	ŭ								
coeficientes de			D d-14.4- /A	\ · - 45	· · · · · · · · · · · · · · · · · · ·	D d-14d	- (4 009	0 0 1	>		
Carga de tierra (A			Peso del tubo (A			Peso del fluid					
C _{m1e}	0,1247		C _{m1p}),2157	C _{m1f}		0,1208			
C _{m2e}	0,0885		C _{m2p}	,),1016	C _{m2f}		0,0878			
C _{n1e}	0,3255		C _{n1p}	, (),1029	C _{n1f}		-0,2703			
C_{n2e}	0,5386	o e	C_{n2p}	, (),3026	C_{n2f}		-0,0617	•		
SECCION C.3.	AREAS DE	REFUERZO									
						C.3.3. As req	uerido basa	ido en l	la presión de ro	tura	
C.3.1. As max	0,707	7 in2 / ft	espacio libre 0.1	188" (AW	/WA C301/64)	_					
						Pw		160	•	Presion de trabajo	
C.3.2. As min	0,165	5 in2 / ft	espacio max 1.5	o" (AWW	A C301)	Pt		49	•	Presion trasciente	
						Pb		353	B psi	Presion de rotura (pa	ara estimación de As)
* de acuerdo al c	riterio del stand	ard de 1964				As		0,638	3 in2/ft	Estimado de acuerdo	o a C.3.3. basado en Pw
ac acueido di C	mono dei stand	aia ac 1304				As		0,638		As/tubo	
						AS		0,038) 1112/11	AS/tub0	14,652

total espiras

711

CHECK AWWA304+Pt

SECCION C.4. CALCULO DE ESTADOS DE ESFUERZO

C.4.1. Razones de modulo

ni	8,23	nr	7,02
ni'	8,83	nr'	7.47

C.4.2. Fluencia lenta (Creep), retracción de fraguado y relajación del cable para RH=70%, tenemos

φ1 1,76φ2 1,79

a. Razón volumen superficie

hco	3,77 espesor del nucleo de la lamina al exterior	(in)
γ (hci) γ (hco+hm)	0,934 0,724	
γ(hm)	1,106	

b. factor de fluencia lenta (Creep) c. factor de retracción

фсі	1,643		γ' (hci)	
φcom	1,296		γ' (hco+hm)	
φm	1,979		γ' (hm)	
ф	1,293			
para RH=70%, te	enemos			
s1	1,84E-04	sci	1,75E-04	
s2	2,99E-04	scom	2,02E-04	
		sm	3,18E-04	
		s	1 73F-04	

d. relajación del alambrón

R 0,0783

C.4.3. Presfuerzo inicial

f ic	1402 PSI
f iy	12382 PSI
fis	-163 965 PSI

C.4.4. Presfuerzo final

1	109521,7298	f cr	1034 PSI
2	6,81E+03	8cr	2,69E-04
3	8766,901281	f yr	24.810 PSI
denominador	90,85177009	f sr	-138.572 PSI

C.4.5. Presion de descompresion

Po (psi) 162,80 Basado en As residual

SECCION C.5. MINIMA AREA DE PREESFUERZO AREA BASADA EN LA MÁXIMA PRESION

la mínima area de preesfuerz odebe cumplir las combinaciones de carga W1 y WT1.

Criterio	Combinación de carga	Criterio satisfecho	
Pw ≤ Po	W1	CUMPLE	
Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE	

Pk' 221,2 psi min (Pk' , 1.4 Po) 221,2 psi

SECCION C.6. ESFUERZOS DEL PRETENSADO PARA EL AREA DE DISEÑO FINAL

Recalculando los estados de esfuerzos con una area As que cumpla todos los criterios de diseño se tiene:

f cr	1034 PSI
8cr	2,69E-04 in/in
f yr	24.810 PSI
Eyr	8,27E-04 in/in
fsr	-138.572 PSI
Esr	-4,95E-03 in/in
Po	162,80 PSI
No	80.782 lb / ft
Pk'	221,2 psi
Nk'	109.752 lb/ft
αW	1.889 lb/ft

eje neutro para esfuerzo cortante

e ₀ 2,992 in

SECCION C.7. SERVICIO EN LA CIRCUNFERENCIA TOTAL DEL TUBO

Estado	Proposito	Criterio	Combinación de carga	Criterio satisfecho
Límite de Servicio en la	Prevenir decompresión del nucleo	Pw≤Po	W1	CUMPLE
circunferencia total del tubo	Prevenir fisuras en el recubrimiento	Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

peso del tubo

0,953 0,677 1,064

SECCION C.2	PARAMETE	ROS DE DISEÑO									
Tubo y nucleo											
Diametro (in)	78										
CLASE	4-160					Cable de	presfu	ierzo			
Recubrim.	4						ds	0,192	diametro del al	ambrón	
Pw	160	Presion de traba	ajo PSI	Nomir	al		fsg	175.500	tensión de enro	ollamiento PSI	
Di	78,74	diametro interno	o in				fsu	234.000	esfuerzo mínim	no de tensión de especit	icación para el cable PSI
Dy	82,7	diametro cilindro	o in				Es	28.000.000	modulo de elas	sticidad de diseño del ca	ible PSI
hc	5,75	espesor nucleo	in				fsy	198.900	Limite de fluene	cia del cable PSI	
Pt	81,9	Presion trasient	e PSI (40% Pw)				λs	0,0167			
Pft	192,0		tica PSI (1.2*Pw)				Esg	0,006267857			
We	12.710	Carga muerta Ib	o/ft				Esy	0,007103571			
Wt	0	Sobrecarga lb/fl	t (vivas, impacto, e	etc)							
Wf	2.110	Peso del fluido	lb/ft	-							
mortero						cilindro					
hm	0.04	2 espesor (in)				Cililiaio	ty	0,0598	gauge 16 espe	sor de la lámina (in)	
hm		2 espesor (III) 0 espesor especif	icación (in)				-	27.000		encia del acero del cilin	dro
λm	0.0870		icación (III)				fyy	36.000		indro a la rotura (fyy=75	
R	-,		la da la narad dal f	tubo (in			fy y Ey	30.000.000		iridio a la foldra (fyy=7) icidad del cilindro	5 /61y y)
K	42,743	o radio ai cerilioic	le de la pared del t	tubo (III)		⊏y hci				rior (in)
acceiones trans	vorceles silind	lea v aanarata					dy	1,92		cleo de la lamina al inte	nor (III)
secciones trans		8 in2/ft					•	0,339			
Ay Ac	,	2 in2/ft					λy	0,339	111		
AC	00,202	2 1112/11									
Concreto						mort	ero				
f 'c	5.500	PSI					f 'm	4.500	PSI		
Ec	3.840.887	modulo de elast	ticidad del concreto	o PSI			Em	3.429.842	modulo de elas	ticidad del mortero PSI	
n	7,29						m	,	antes de ablan	damiento	
n'	7,8						' tm	470	•		
f't		9 PSI					et'm	1,37E-04			
£ť'	1,35E-04					3	k'm	1,10E-03	in / in		
Ek'	1,49E-03	3 in/in									
condiciones am	bientales										
RH	70%	humedad relativ	⁄a								
t1	270 dias	tiempo en patio	S								
t2	90 dias	tiempo enterrad	o sin agua								
acaficientes de l	mamanta v sa	rtanta	-								
coeficientes de l Carga de tierra (A			Peso del tubo (A	Novo 1	5° Olandar)	Poso dol	fluido (Apoyo 90° Olando	or)		
Carga de tierra (A	0,1247		C _{m1p}		0,2157		C _{m1f}	0,1208			
C_{m2e}	0,088		C _{m2p}		0,1016		C _{m2f}	0.0878			
C _{n1e}	0,325		C_{n1p}		0,1029		C_{n1f}	-0,2703			
C _{n2e}	0,5386		C _{n2p}		0,3026		C _{n2f}	-0,0617			
			-112p	,	0,0020		-1121	0,0011			
SECCION C.3.	AREAS DE	REFUERZO									
						C.3.3. As	reque	rido basado en l	a presión de ro	tura	
C.3.1. As max	0,914	4 in2 / ft	espacio libre 0.1	88" (A\	VWA C301/64)						
							Pw	160	•	Presion de trabajo	
C.3.2. As min	0,232	2 in2 / ft	espacio max 1.5	5" (AWV	/A C301)		Pt	82	•	Presion trasciente	
							Pb	420	psi	Presion de rotura (p	ara estimación de As)
* de acuerdo al ci	riterio del stand	lard de 1964					As	0,780	in2/ft	Estimado de acuerd	o a C.3.3. basado en Pw
							As	0,780		As/tubo	17,913
							-	2,. 00	- -	total espiras	619
										•	

CHECK AWWA304+Pt

SECCION C.4. CALCULO DE ESTADOS DE ESFUERZO

C.4.1. Razones de modulo

ni	8,23	nr	7,02
ni'	8.83	nr'	7,47

C.4.2. Fluencia lenta (Creep), retracción de fraguado y relajación del cable para RH=70%, tenemos

φ1 1,76 φ2 1,79

a. Razón volumen superficie

nco	3,77 espesor dei nucleo de la lamina al exterior (
γ(hci) γ(hco+hm)	0,934 0,724
γ(hm)	1,106

b. factor de fluencia lenta (Creep) c. factor de retracción

фсі	1,643		γ' (hci)	0,953
φcom	1,296		γ' (hco+hm)	0,677
φm	1,979		γ' (hm)	1,064
ф	1,293			
para RH=70%, to	enemos			
s1	1,84E-04	sci	1,75E-04	
s2	2,99E-04	scom	2,02E-04	
		sm	3,18E-04	
		9	1 73F-04	

d. relajación del alambrón

R 0,0710

C.4.3. Presfuerzo inicial

f ic	1689 F	SI
f iy	14920 F	SI
f is	-161 601 F	201

C.4.4. Presfuerzo final

1	133651,4583	f cr	1250 PSI
2	7,50E+03	8cr	3,25E-04
3	9721,788172	f yr	28.903 PSI
denominador	93,13785179	f sr	-136.024 PSI

C.4.5. Presion de descompresion

Po (psi) 199,33 Basado en As residual

SECCION C.5. MINIMA AREA DE PREESFUERZO AREA BASADA EN LA MÁXIMA PRESION

la mínima area de preesfuerz odebe cumplir las combinaciones de carga W1 y WT1.

Criterio	Combinación de carga	Criterio satisfecho
Pw ≤ Po	W1	CUMPLE
Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

Pk' 258,5 psi min (Pk' , 1.4 Po) 258,5 psi

SECCION C.6. ESFUERZOS DEL PRETENSADO PARA EL AREA DE DISEÑO FINAL

Recalculando los estados de esfuerzos con una area As que cumpla todos los criterios de diseño se tiene:

f cr	1250 PSI
8cr	3,25E-04 in/in
f yr	28.903 PSI
Eyr	9,63E-04 in/in
fsr	-136.024 PSI
8sr	-4,86E-03 in/in
Po	199,33 PSI
No	98.908 lb / ft
Pk'	258,5 psi
Nk'	128.247 lb/ft
Wp	1.897 lb/ft

1.897 lb/ft peso del tubo

eje neutro para esfuerzo cortante

e₀ 3,030 in

Estado	Proposito	Criterio	Combinación de carga	Criterio satisfecho
Límite de Servicio en la	Prevenir decompresión del nucleo	Pw≤Po	W1	CUMPLE
circunferencia total del tubo	Prevenir fisuras en el recubrimiento	Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

SECCION C.2	PARAMETR	OS DE DISEÑO									
Tubo y nucleo Diametro (in)	78										
CLASE	3-170					Cable de pre	sfuerzo				
Recubrim.	3					ds			diametro del ala	amhrón	
Pw	170	Presion de trab	aio PSI	Nomina	al	fsg	175.500		tensión de enro		
Di	78,74	diametro intern	•	NOMM	aı	fsu	234.000				cación para el cable PSI
	,					Es	28.000.00	^		ticidad de diseño del ca	•
Dy	82,7	diametro cilindr						U			DIE PSI
hc	5,75	espesor nucleo				fsy	198.900	0407	Limite de fluenc	ia dei cable PSI	
Pt	49,2		te PSI (40% Pw)			λs	,	0167			
Pft	204,0		atica PSI (1.2*Pw)			Esg	0,00626				
We	10.036	Carga muerta II				Esy	0,00710	35/1			
Wt	0		t (vivas, impacto, e	etc)							
Wf	2.110	Peso del fluido	lb/ft								
mortero						cilindro					
hm	0,942	2 espesor (in)				ty	0,0598		gauge 16 espes	sor de la lámina (in)	
hm	1,00	espesor especi	ficación (in)			fyy	27.000		esfuerzo de flue	encia del acero del cilino	iro
λm	0,0870					fy y	36.000		esfuerzo del cili	ndro a la rotura (fyy=75	%fy*y)
R	42,745	radio al centroio	de de la pared del f	tubo (in)		Ey	30.000.00	0	modulo d elastic	cidad del cilindro	
			•	()		hci		1.92	espesor del nuo	cleo de la lamina al inter	ior (in)
secciones trans	versales cilind	lro v concreto				dy		1,95			- ()
Ау		3 in2/ft				λγ	(0,339			
Ac	,	2 in2/ft				~,	·	,,,,,,			
	00,202	- 1112/10									
Concreto						mortero					
f 'c	5.500	PSI				f 'm	4.500		PSI		
Ec	3.840.887	modulo de elas	ticidad del concrete	o PSI		Em	3.429.842	2	modulo de elast	ticidad del mortero PSI	
n	7,29	9				m	0,8	9298	antes de ablanc	lamiento	
n'	7,81	1				f ' tm		470	psi		
f't	519	9 PSI				£t'm	1,37	'E-04	in / in		
£ť'	1,35E-04	1 in/in				£k'm	1,10	E-03	in / in		
Ek'	1,49E-03	3 in/in									
condiciones am	hiontalos										
RH	70%	humedad relativ	v/0								
t1	270 dias										
		tiempo en patio									
t2	90 dias	tiempo enterrac	io sin agua								
coeficientes de	momento y co	rtante									
Carga de tierra (A			Peso del tubo (A	Apoyo 15	° Olander)	Peso del fluid	o (Apoyo 90° C	lande	er)		
C _{m1e} `	0,1247	7	C _{m1p}	, (),2157 [°]	C_{m1f}		1208			
C _{m2e}	0,0885	5	C _{m2p}		,1016	C_{m2f}		0878			
C _{n1e}	0,3255	5	C _{n1p}	, (,1029	C _{n1f}	-0.	2703			
C _{n2e}	0,5386		C _{n2p}	, (,3026	C _{n2f}		0617			
			ТПДР	,	,,0020	-1121	σ,				
SECCION C.3.	AREAS DE	REFUERZO									
004.		4 : 0 / 5				C.3.3. As req	uerido basado	en I	a presión de rot	ura	
C.3.1. As max	0,914	1 in2 / ft	espacio libre 0.1	188" (AW	vvA C301/64)	_		4			
						Pw		170		Presion de trabajo	
C.3.2. As min	0,232	2 in2 / ft	espacio max 1.5	5" (AWW	A C301)	Pt		49	•	Presion trasciente	
						Pb		370	psi	Presion de rotura (pa	ara estimación de As)
* de acuerdo al c	ritario dal stand	ard de 1964				As		0,675	in2/ft	Estimado de acuerdo	a C.3.3. basado en Pw
ue acueruo ai C	inciio uti stallu	aiu uc 1304									
						As	(0,675	in2/ft	As/tubo	15,502

535

CHECK AWWA304+Pt

SECCION C.4. CALCULO DE ESTADOS DE ESFUERZO

C.4.1. Razones de modulo

ni	8,23	nr	7,02
ni'	8.83	nr'	7.47

C.4.2. Fluencia lenta (Creep), retracción de fraguado y relajación del cable para RH=70%, tenemos

φ1 1,76 φ2 1,79

a. Razón volumen superficie

hco	3,77	espesor del nucleo de la lamina al exterior (in)
γ(hci)	0,934	
γ(hco+hm)	0,724	
γ(hm)	1,106	

b. factor de fluencia lenta (Creep) c. factor de retracción

фсі	1,643		γ' (hci)	0,953
φcom	1,296		γ' (hco+hm)	0,677
φm	1,979		γ ' (hm)	1,064
ф	1,293			
para RH=70%, te	enemos			
s1	1,84E-04	sci	1,75E-04	
s2	2,99E-04	scom	2,02E-04	
		sm	3,18E-04	
		s	1 73F-04	

d. relajación del alambrón

R 0,0764

C.4.3. Presfuerzo inicial

f ic	1478 PSI
f iy	13050 PSI
f is	-163 342 PSI

C.4.4. Presfuerzo final

1	115817,1033	f cr	1091 PSI
2	6,99E+03	8cr	2,84E-04
3	9050,658247	f yr	25.890 PSI
denominador	91,44743927	f sr	-137.895 PSI

C.4.5. Presion de descompresion

Po (psi) 172,35 Basado en As residual

SECCION C.5. MINIMA AREA DE PREESFUERZO AREA BASADA EN LA MÁXIMA PRESION

la mínima area de preesfuerz odebe cumplir las combinaciones de carga W1 y WT1.

Criterio	Combinación de carga	Criterio satisfecho
Pw ≤ Po	W1	CUMPLE
Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

Pk' 230,9 psi min (Pk' , 1.4 Po) 230,9 psi

SECCION C.6. ESFUERZOS DEL PRETENSADO PARA EL AREA DE DISEÑO FINAL

Recalculando los estados de esfuerzos con una area As que cumpla todos los criterios de diseño se tiene:

f cr	1091 PSI	
€cr f yr	2,84E-04 in/in 25.890 PSI	
Eyr	8,63E-04 in/in	
f sr Esr	-137.895 PSI -4,92E-03 in/in	
Po No	172,35 PSI 85,522 lb / ft	
Pk'	230,9 psi	
Nk'	114.588 lb/ft	

eje neutro para esfuerzo cortante

e₀ 3,003 in

	Estado	Proposito	Criterio	Combinación de carga	Criterio satisfecho
S	Límite de ervicio en la	Prevenir decompresión del nucleo	Pw≤Po	W1	CUMPLE
	rcunferencia otal del tubo	Prevenir fisuras en el recubrimiento	Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

SECCION C.2	PARAMETE	ROS DE DISEÑO									
Tubo y nucleo Diametro (in)	78										
CLASE	3-180					Cable de	nresti	IETZO			
Recubrim.	3					Oubic de	ds	0,192	diametro del al	amhrón	
Pw	180	Presion de traba	ain PSI	Nomir	al		fsg	175.500	tensión de enre		
Di	78,74	diametro interno		NOIIII	ıaı		fsu	234.000			ficación para el cable PSI
	,						Es	28.000.000		sticidad de diseño del c	•
Dy	82,7	diametro cilindr									able PSI
hc	5,75	espesor nucleo					fsy	198.900		cia del cable PSI	
Pt	57,5		e PSI (40% Pw)				λs	0,0167			
Pft	216,0		tica PSI (1.2*Pw)				Esg	0,006267857			
We	10.036	Carga muerta It					Esy	0,007103571			
Wt	0		t (vivas, impacto, e	etc)							
Wf	2.110	Peso del fluido	lb/ft								
mortero						cilindro					
hm	0,942	2 espesor (in)					ty	0,0598	gauge 16 espe	sor de la lámina (in)	
hm	1,00	espesor especif	ficación (in)				fyy	27.000	esfuerzo de flu	encia del acero del cilir	ndro
λm	0,0870)					fy y	36.000	esfuerzo del ci	lindro a la rotura (fyy=7	5%fy*y)
R	42.74	5 radio al centroio	de de la pared del f	tubo (in)		Ey	30.000.000	modulo d elast	icidad del cilindro	
	,						hci			cleo de la lamina al inte	erior (in)
secciones trans	versales cilino	lro v concreto					dy	1,95			(,
Ay		3 in2/ft					λy	0,339			
Ac	,	2 in2/ft					/ v y	0,000			
710	00,20	L 1112/11									
Concreto						mor	tero				
f 'c	5.500	PSI					f 'm	4.500	PSI		
Ec	3.840.887	modulo de elas	ticidad del concrete	o PSI			Em	3.429.842	modulo de elas	sticidad del mortero PS	
n	7,29	9					m	0,89298	antes de ablan	damiento	
n'	7,8	1				f	f'tm	470	psi		
f't	519	9 PSI					£t'm	1,37E-04			
£ť	1,35E-04	4 in/in					Ek'm	1,10E-03	in / in		
£k'	1,49E-0							,			
	,										
condiciones am		h									
RH	70%	humedad relativ									
t1	270 dias	tiempo en patio									
t2	90 dias	tiempo enterrad	lo sin agua								
coeficientes de	momento v co	rtante									
Carga de tierra (A			Peso del tubo (A	Anovo 1	5° Olander)	Peso del	fluido (Apoyo 90° Oland	er)		
C _{m1e}	0,124		C _{m1p}		0,2157	1 000 001	C _{m1f}	0,1208			
C _{m2e}	0,088		C _{m2p}		0,1016		C _{m2f}	0,0878			
C_{n1e}	0,325		C_{n1p})	0,1029		C_{n1f}	-0,2703			
C _{n2e}	0,525		O _{n1p})	0,3026		C_{n2f}	-0,2703			
O _{n2e}	0,556	J	C_{n2p})	0,3020		On2f	-0,0017			
SECCION C.3.	AREAS DE	REFUERZO									
			,			C.3.3. As	reque	rido basado en l	a presión de ro	otura	
C.3.1. As max	0,914	4 in2 / ft	espacio libre 0.1	188" (AV	vvvA C301/64)		_				
							Pw	180	•	Presion de trabajo	
C.3.2. As min	0,232	2 in2 / ft	espacio max 1.5	5" (AWV	/A C301)		Pt	58	•	Presion trasciente	
							Pb	403	psi	Presion de rotura (para estimación de As)
* do aquardo al a	ritorio dal atazz	ard do 1064					۸۵	0.744	in2/ft	Estimada da assist	to a C 2 2 baseds on Dec
* de acuerdo al c	nteno dei stand	aru de 1904					As	0,744			do a C.3.3. basado en Pw
							As	0,744	in2/ft	As/tubo	17,087

590

CHECK AWWA304+Pt

SECCION C.4. CALCULO DE ESTADOS DE ESFUERZO

C.4.1. Razones de modulo

ni	8,23	nr	7,02
ni'	8.83	nr'	7.47

C.4.2. Fluencia lenta (Creep), retracción de fraguado y relajación del cable para RH=70%, tenemos

φ1 1,76φ2 1,79

a. Razón volumen superficie

hco	3,77 espesor del nucleo de la lamina al exterior	(in)
γ (hci) γ (hco+hm)	0,934 0,724	
γ(hm)	1,106	

b. factor de fluencia lenta (Creep) c. factor de retracción

фсі	1,643		γ' (hci)	0,953
φcom	1,296		γ' (hco+hm)	0,677
φm	1,979		γ' (hm)	1,064
ф	1,293			
para RH=70%, to	enemos			
s1	1,84E-04	sci	1,75E-04	
s2	2,99E-04	scom	2,02E-04	
		sm	3,18E-04	
		S	1 73F-04	

d. relajación del alambrón

R 0,0729

C.4.3. Presfuerzo inicial

f ic	1617 PS
f iy	14283 PS
f is	-162 193 PS

C.4.4. Presfuerzo final

1	127541,9136	f cr	1196 PSI
2	7,33E+03	8cr	3,11E-04
3	9514,031876	f yr	27.879 PSI
denominador	92,55828178	f sr	-136.658 PSI

C.4.5. Presion de descompresion

Po (psi) 190,10 Basado en As residual

SECCION C.5. MINIMA AREA DE PREESFUERZO AREA BASADA EN LA MÁXIMA PRESION

la mínima area de preesfuerz odebe cumplir las combinaciones de carga W1 y WT1.

Criterio	Combinación de carga	Criterio satisfecho	
Pw ≤ Po	W1	CUMPLE	
Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE	

Pk' 249,0 psi min (Pk' , 1.4 Po) 249,0 psi

SECCION C.6. ESFUERZOS DEL PRETENSADO PARA EL AREA DE DISEÑO FINAL

Recalculando los estados de esfuerzos con una area As que cumpla todos los criterios de diseño se tiene:

f cr	1196	PSI
8cr	3,11E-04	
f yr	27.879	PSI
εyr	9,29E-04	in/in
f sr	-136.658	PSI
8sr	-4,88E-03	in/in
Po	190,10	PSI
No	94.329	lb / ft
Pk'	249,0	psi
Nk'	123.574	lb/ft
Wp	1.895	lb/ft peso del tubo

'

eje neutro para esfuerzo cortante

e₀ 3,021 in

Estado	Proposito	Criterio	Combinación de carga	Criterio satisfecho
Límite de Servicio en la	Prevenir decompresión del nucleo	Pw≤Po	W1	CUMPLE
circunferencia total del tubo	Prevenir fisuras en el recubrimiento	Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

SECCION C.2	PARAMETR	OS DE DISEÑO									
Tubo y nucleo Diametro (in)	78										
CLASE	4-180					Cable de pre	sfuerz	zo			
Recubrim.	4					ds		0,192	diametro del a	ambrón	
Pw	180	Presion de trab	aio PSI	Nomin	al	fsg		175.500	tensión de enr		
Di	78,74	diametro intern	•	140111111	и	fsu		234.000			icación para el cable PSI
Dy	82,7	diametro cilindr				Es		28.000.000		sticidad de diseño del ca	•
•	5,75					fsv		198.900		cia del cable PSI	ible F3I
hc	,	espesor nucleo				,				cia dei cable PSI	
Pt	85,0		te PSI (40% Pw)			λs		0,0167			
Pft	216,0		atica PSI (1.2*Pw)			Esg		0,006267857			
We	12.710	Carga muerta II				Esy	'	0,007103571			
Wt	0		t (vivas, impacto, e	etc)							
Wf	2.110	Peso del fluido	lb/ft								
mortero						cilindro					
hm	0,942	2 espesor (in)				ty	,	0,0598	gauge 16 espe	sor de la lámina (in)	
hm	1,00	espesor especi	ficación (in)			fyy	,	27.000	esfuerzo de flu	encia del acero del cilin	dro
λm	0,0870					fy y	,	36.000	esfuerzo del ci	lindro a la rotura (fyy=75	5%fy*y)
R	42,745	radio al centroio	de de la pared del f	tubo (in)		Ey		80.000.000	modulo d elast	icidad del cilindro	
	,			,		hci				cleo de la lamina al inte	rior (in)
secciones trans	versales cilind	lro v concreto				dy		1,95			
Ay		3 in2/ft				λγ		0,339			
Ac	,	2 in2/ft				709		0,000			
Ac	00,202	L 1112/11									
Concreto						mortero	•				
f 'c	5.500	PSI				f 'm	1	4.500	PSI		
Ec	3.840.887	modulo de elas	ticidad del concrete	o PSI		Em	1 3	3.429.842	modulo de elas	sticidad del mortero PSI	
n	7,29	9				m	1	0,89298	antes de ablan	damiento	
n'	7,81	1				f ' tm	ı	470	psi		
f't	,	9 PSI				£t'm		1,37E-04			
εt'	1,35E-04					£k'm		1,10E-03			
εk'	1,49E-03							.,			
	,										
condiciones am											
RH	70%	humedad relativ	<i>v</i> a								
t1	270 dias	tiempo en patio	S								
t2	90 dias	tiempo enterrac	lo sin agua								
coeficientes de i	momonto v co	rtanto									
Carga de tierra (A			Peso del tubo (A	\ novo 15	° Olandar)	Dogo dol fluid	ام (۸م	oyo 90° Oland	or\		
Carga de tierra (A	0,1247		C _{m1p}),2157	C _{m11}		0,1208			
C_{m2e}	0,0885),1016	C_{m2i}		0,1200			
			C _{m2p}	,	*						
C _{n1e}	0,3255		C _{n1p}	, (),1029	C _{n1i}		-0,2703			
C_{n2e}	0,5386	Ö	C_{n2p}	, (),3026	C_{n21}	f	-0,0617			
SECCION C.3.	AREAS DE	REFUERZO									
						C.3.3. As rec	uerid	o basado en l	a presión de ro	otura	
C.3.1. As max	0,914	1 in2 / ft	espacio libre 0.1	188" (AW	WA C301/64)						
						Pw	1	180) psi	Presion de trabajo	
C.3.2. As min	0,232	2 in2 / ft	espacio max 1.5	5" (AWW	A C301)	Pt	t	85	j psi	Presion trasciente	
	, -			`	,	Pb)	458	•		ara estimación de As)
									•		•
* de acuerdo al ci	riterio del stand	ard de 1964				As		0,861			o a C.3.3. basado en Pw
						As	i	0,861	in2/ft	As/tubo	19,774
										and the second s	

683

CHECK AWWA304+Pt

SECCION C.4. CALCULO DE ESTADOS DE ESFUERZO

C.4.1. Razones de modulo

ni	8,23	nr	7,02
ni'	8.83	nr'	7,47

C.4.2. Fluencia lenta (Creep), retracción de fraguado y relajación del cable para RH=70%, tenemos

φ1 1,76 φ2 1,79

a. Razón volumen superficie

hco	3,77 espesor del nucleo de la lamina al exterior (in)
$\gamma(\text{hci})$	0,934
$\gamma(\text{hco+hm})$	0,724
$\gamma(\text{hm})$	1,106

b. factor de fluencia lenta (Creep) c. factor de retracción

фсі	1,643		γ' (hci)
φcom	1,296		γ' (hco+hm)
φm	1,979		γ' (hm)
ф	1,293		
para RH=70%, ter	nemos		
s1	1,84E-04	sci	1,75E-04
s2	2,99E-04	scom	2,02E-04
		sm	3,18E-04
		s	1,73E-04

d. relajación del alambrón

R 0,0669

C.4.3. Presfuerzo inicial

f ic	1849 PS	SI
f iy	16335 PS	31
f is	-160 282 PS	:I

C.4.4. Presfuerzo final

1	147378,873	f cr	1370 PSI
2	7,89E+03	8cr	3,57E-04
3	10103,98731	f yr	31.175 PSI
denominador	94,44188431	f sr	-134.629 PSI

C.4.5. Presion de descompresion

Po (psi) 220,02 Basado en As residual

SECCION C.5. MINIMA AREA DE PREESFUERZO AREA BASADA EN LA MÁXIMA PRESION

la mínima area de preesfuerz odebe cumplir las combinaciones de carga W1 y WT1.

Criterio	Combinación de carga	Criterio satisfecho	
Pw ≤ Po	W1	CUMPLE	
Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE	

Pk' 279,6 psi min (Pk' , 1.4 Po) 279,6 psi

SECCION C.6. ESFUERZOS DEL PRETENSADO PARA EL AREA DE DISEÑO FINAL

Recalculando los estados de esfuerzos con una area As que cumpla todos los criterios de diseño se tiene:

f cr	1370 PSI	
Ecr f vr	3,57E-04 in/in 31,175 PSI	
f yr		
Eyr	1,04E-03 in/in	
f sr	-134.629 PSI	
Esr	-4,81E-03 in/in	
001	1,012 00 117111	
Po	220,02 PSI	
	,	
Po	220,02 PSI	
Po No	220,02 PSI 109.173 lb/ft	

eje neutro para esfuerzo cortante

e₀ 3,051 in

SECCION C.7. SERVICIO EN LA CIRCUNFERENCIA TOTAL DEL TUBO

	Estado	Proposito	Criterio	Combinación de carga	Criterio satisfecho
S	Límite de Servicio en la	Prevenir decompresión del nucleo	Pw≤Po	W1	CUMPLE
	rcunferencia otal del tubo	Prevenir fisuras en el recubrimiento	Pw + Pt ≤ min (Pk' , 1.4 Po)	WT1	CUMPLE

peso del tubo

0,953 0,677 1,064