

2023

INFORME MENSUAL DE ACTIVIDADES MARZO

BOGOTÁ, ABRIL 2023

CONTENIDO

1.	ANTE	CEDENTES Y GENERALIDADES	10
2.	GESTI	ÓN FINANCIERA	11
2.1	ASIC	SNACIÓN PRESUPUESTAL	11
2.2	COS	STO MENSUAL TRATAMIENTO PTAR SALITRE	11
3.	GESTI	ÓN DE OPERACIÓN	12
3.1		A DE AGUA	
	3.1.1	Comportamiento Canal Salitre y Elevación de Agua Cruda	
	3.1.2	Cribado	15
	3.1.3	Grasas Materiales Flotantes y Arenas.	16
	3.1.4	Dosificación de Productos	
	3.1.5 3.1.6	Decantación PrimariaCalidad de Agua Tratada	
	3.1.7	Sólidos Suspendidos Totales	
	3.1.8	Demanda Biológica de Oxígeno	
	3.1.9	Grasas y aceites	
	3.1.10	pH	
	3.1.11	Temperatura Tratamiento de Agua - Fase I	
3.2		A DE LODOS	
0.2	3.2.1	Mesas Espesadoras	
	3.2.2	Digestión	
	3.2.3	Centrifugas	
3.3	TRA	TAMIENTO DEL BIOGÁS - MOTOGENERACIÓN	29
4.	GESTI	ÓN DE MANTENIMIENTO ELECTROMECÁNICO	31
4.1	PLA	NEACIÓN Y PROGRAMACIÓN	31
4.2	1AM	NTENIMIENTO PREVENTIVO	32
4.3	1AM	NTENIMIENTO CORRECTIVO	32
4.4	DISF	ONIBILIDAD DE EQUIPOS	32
4.5	COS	STOS	34
4.6	GES	TIÓN DE ENERGÍA	34
4.7	HEC	HOS RELEVANTES EN EL MES DE MARZO:	36
5 .	GESTI	ÓN AMBIENTAL Y SOCIAL	47
5.1		N DE MANEJO FORESTAL Y PAISAJÍSTICO	
	5.1.1	Actividades de Mantenimiento y Establecimiento	49
5.2	OPT	IMIZACIÓN DEL USO DEL AGUA	
5.3		NTROL DEL TRANSPORTE DE BIOSÓLIDOS	
5.4		n de uso benéfico de los lodos	
5.5		NTROL DEL MANEJO DE RESIDUOS	
5.6		NTROL DE RUIDOS	
5.7		ntrol de emisiones	

5.8	CC	NTROL DE OLORES	68
5.9	PLA	n de gestión social	69
	5.9.1	Componente de Comunicación e Información	69
	5.9.2	Componente de Participación Comunitaria	
	5.9.3	Componente de Educación Ambiental	
	5.9.4	Componente de Relaciones Interinstitucionales	
	5.9.5	Componente de Investigación Social	
	5.9.6	Componente Generación de Empleo	
6.	GEST	IÓN DE CALIDAD	90
6.1	INT	RODUCCIÓN	90
6.2	ATE	NCIÓN CLIENTE EXTERNO	90
6.3	PLA	N DE TRABAJO SGC	90
6.4	AUI	DITORÍA INTERNA Y PLANES DE MEJORAMIENTO	92
6.5	GE:	STIÓN DE RIESGOS	92
6.6	IND	ICADORES	92
6.7	PRO	DDUCTO NO CONFORME	92
7.	SISTE	MA DE GESTIÓN DE SEGURIDAD Y SALUD EN EL TRABAJO	95
7.1	Ме	dicina Preventiva y del Trabajo	95
	7.1.1	Condiciones de salud:	
	7.1.2	Actividades de promoción y prevención:	
	7.1.3	Manejo integral de sustancias químicas:	
	7.1.4	Programa de fumigación:	
	7.1.5	Sistemas de vigilancia epidemiológica:	100
7.2	Ind	cador de Accidentalidad y Ausentismo	101
	7.2.1	Ausentismo Laboral.	101
7.3	Sec	juridad e Higiene Industrial	101
	7.3.1	Inducción en SST	102
	7.3.2	Programa de capacitación SST	102
	7.3.3	Inspecciones de seguridad	
	7.3.4	Tareas de Alto Riesgo Autorizadas	106

LISTA DE GRAFICAS

Gráfica 3.1-1 Niveles en el Canal Salitre y río Bogotá – marzo 2023 vs. Precipitac	ión
Gráfica 3.1-2 Caudal Promedio diario Agua Cruda marzo 2023	14
Gráfica 3.1-3 Carga Eliminada de Sólidos y DBO5 (Ton/día) marzo 2023	
Gráfica 3.1-4 Variación Concentraciones SST en Afluente y Efluente - marzo 202	23.20
Gráfica 3.1-5 Variación Concentraciones DBO5 en Afluente y Efluente marzo 20)23.
	21
Gráfica 3.2-1 Caudal WAS (m3/día) /Concentración SST (mg/l) / Consumo	
Polímero (Kg/día) marzo 2023.	24
Gráfica 3.2-2 Producción de Biogás marzo 2023	
Gráfica 3.2-3 Sequedad de Biosólido marzo 2023	
Gráfica 3.3-1 Consumo Diario de Biogás - Gas natural marzo 2023	30
Gráfica 4.6-1 Consumo de ACPM en los generadores y calderas 2023	35
Gráfica 4.6-2 Consumo de la energía eléctrica comprada en KWH desde enerc	o de
2020	35
Gráfica 4.6-3 consumo de energía eléctrica de la Planta desde diciembre de 2	
O / C	36
Gráfica 5.2-1 Consumo de agua potable por áreas de la PTAR Fase I marzo de	
2023	60
Gráfica 5.2-2 Consumo de agua potable de la PTAR Fase I periodo (mar/2022)	
mar/2023)	
Gráfica 5.2-3 Consumo de agua potable de la PTAR Salitre Fase II	
Gráfica 5.6-1 Comparación de emisión de ruido horario diurno con la Resolucio	
2006	66
Gráfica 5.6-2 Comparación de emisión de ruido horario nocturno con la	
Resolución 2006	
Gráfica 5.9-1 Visitantes link PTAR el Salitre	
Gráfica 6.5-1 reportes de autocontroles de riesgo	92

LISTA DE CUADROS

Cuadro 3.1-1 Caudales de entrada y salida de la PTAR Salitre registrados marzo	
2023	14
Cuadro 3.1-2 Cantidad de residuos retirados en trampa de rocas, cribado fino y	
grueso	16
Cuadro 3.1-3 Cantidad de residuos retirados en sobrenadantes, grasas, arenas y	
basura interna	17
Cuadro 3.1-4 Licor de mezcla de Reactores Biológicos marzo 2023	
Cuadro 3.1-5 Carga removida y concentraciones para SST y DBO5 reportadas	
marzo 2023	18
Cuadro 3.1-6 Relación de fechas y resultados asociados a valores de	. •
concentración de SST Que superan los 30 mg/L	19
Cuadro 3.1-7 Relación de fechas y resultados asociados a valores de	.,
concentración de DBO₅ Que superan los 30 mg/L	20
Cuadro 3.1-8 Concentración del parámetro Grasas y Aceites para el mes de	20
marzo 2023	ე <u>1</u>
Cuadro 3.1-9 Estado de las telescopicas de Clarificadores Secundarios	
Cuadro 3.2-1 Datos línea de lodos marzo 2023	
Cuadro 3.2-2 Datos generacion biogas y % remoción MV en los digestores	
	33
Cuadro 4.4-2 Equipos Fuera de Servicio o con Operación Restringida PTAR fase I	
Cuadro 5.1-1 Barreras forestales y ambientales de la PTAR El Salitre	47
Cuadro 5.1-2 Distribución de número de árboles por cada una de las barreras	
ambientales de la PTAR El Salitre	
Cuadro 5.1-3 Cantidad de árboles fertilizados por barrera ambiental	
Cuadro 5.1-4 Cantidad de árboles plateados por zona	
Cuadro 5.1-5 Poda de ramas altas por barrera	51
Cuadro 5.1-6 Área de corte de césped por barrera	51
Cuadro 5.1-7 Cantidad de árboles fumigados por zona	52
Cuadro 5.1-8 Área de mantenimiento de jardinería	
Cuadro 5.1-9 Control de especies invasoras por área	
Cuadro 5.1-10 Control de Acacias de 11 a 20 m de altura	
Cuadro 5.1-11 Control de Acacias de 21 a 30 m de altura	
Cuadro 5.2-1 Cantidades Consumo de agua potable marzo 2023 en la Fase I	
Cuadro 5.5-1 Residuos donados a la Asociación Pedro León Trabuchi	
Cuadro 5.6-1 Resultados del monitoreo diurno	
Cuadro 5.6-2 Resultados del monitoreo nocturno	
Cuadro 5.7-1 Resultados de monitoreo de Emisiones / junio de 2022	
Cuadro 5.9-1 Consolidado plegables generales y técnicos enviados mes de marz	, ,
de 2023	
Cuadro 5.9-2 Comunicaciones correo: ptar.salitre@acueducto.com.co	
	/ U
Cuadro 5.9-3 Total de población informada en las diferentes actividades de	71
divulgación mes de marzo de 2023	
Cuadro 5.9-4 Jornadas informativas y pedagógicas de PTAR al barrio efectuadas	
en el mes de marzo de 2023	
Cuadro 5.9-5 Visitas guiadas/recorridos pedagógicos realizados con instituciones	
educativas PTAR El Salitre Ampliada y optimizada marzo de 2023	
Cuadro 5.9-6 Estado de vinculación laboral PTAR El Salitre fase I mes de marzo de	
2023	89

Cuadro 7.3-1 actividades de trabajos de alto riesgo	106
Cuadro 7.3-2 actividades de trabajo en espacios confinados	
Cuadro 7.3-3 trabajos con energías peligrosas: riesgo eléctrico	107

LISTA DE IMAGENES

Imagen 5.1-1	Localización d	de las barreras	ambientales er	n la PTAR Salitre	48
Imagen 5.3-1	Localización P	redios El Corzo	y La Magdaler	na	62

LISTA DE FOTOGRAFIAS

Fotografía 1. Mantenimiento extractor tipo hongo 091XV170C	36
Fotografía 2. Bomba Purga Flotantes Secundarios 108P004A	37
Fotografía 3. Mantenimiento Bomba Vaciado Deshidratación 095P201C	37
Fotografía 4. Mantenimiento MasterPact Iado B CCM9	38
Fotografía 5. Mantenimiento agitador sumergible 060A002B	38
Fotografía 6. Mantenimiento reja de gruesos 051DGL001C	
Fotografía 7. Mantenimiento preventivo compresores KAESER	
Fotografía 8. Mantenimiento línea de agua potable	
Fotografía 9. Mantenimiento bomba de desplazamiento positivo 077P001B	
Fotografía 10. Mantenimiento puente desarenador 54,3	
Fotografía 11. Mantenimiento tomador de muestra de agua cruda	
Fotografía 12. Mantenimiento Caudalímetro Electromagnético 091FIT201A	
Fotografía 13. Mantenimiento válvula de 3 vías de anillo de calefacción	
motogenerador y calderas 071MRV001A/E y 002A/E	43
Fotografía 14. Mantenimiento modulo PROFIBUS 090JPA001 / 4	44
Fotografía 15. Mantenimiento instrumentos 051DGL012B/C y 051DGL011J	
Fotografía 16. Mantenimiento válvula de 3 vías de anillo de calefacción	10
motogenerador y calderas 071MRV001A/E y 002A/E	45
Fotografía 17. Mantenimiento tarjeta controladora del sensor de flujo 065FIT302	
065 FIT302B	-
Fotografía 18. Registro fotográfico actividades de mantenimiento y	10
	54
Fotografía 19. Registro fotográfico patio de secado predio el Corzo y proceso	
mezcla predio la Magdalena marzo 2023	
Fotografía 20 Jornada informativa PTAR al barrio, Universidad Nacional de	
Colombia – UN, localidad de Teusaquillo Marzo 22 de 2023	72
Fotografía 21 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fas	
con profesionales sociales de obra. Empresa de Acueducto y	,
Alcantarillado de Bogotá EAAB, zona 3 Marzo 24 de 2023	73
Fotografía 22 Reunión virtual Comité de Seguimiento de Obra – SEGO, localido	
de Suba Marzo 23 de 2023	
Fotografía 23 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fas	
con estudiantes del Liceo La Nueva Estancia de Suba Marzo 17 de	,С 11
2023	74
Fotografía 24 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fas	
con estudiantes Servicio Nacional de Aprendizaje SENA Marzo 23 d	
0000	75
Fotografía 25 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fas	
con estudiantes Servicio Nacional de Aprendizaje SENA Marzo 29 d	
0000	75
Fotografía 26 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fas	
con estudiantes Universidad Sergio Arboleda Marzo 30 de 2023	
Fotografía 27 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fas	
con estudiantes Servicio Nacional de Aprendizaje SENA Marzo 31 d	
0000	е 76
Fotografía 28 Taller pedagógico con estudiantes de grado sexto de bachillera	
Colegio Gimnasio Moderno Summerhill, barrio Mortiño - localidad c	ロファ
Engativá Marzo 02 de 2023	//

Fotografía 29 Taller pedagógico con estudiantes de grado 7B de bachillerato, Colegio Gimnasio Moderno Summerhill, barrio Mortiño - localidad de
Engativá Marzo 02 de 202377
Fotografía 30 Taller pedagógico con estudiantes de grado 8B de bachillerato, Colegio Gimnasio Moderno Summerhill, barrio Mortiño - localidad de
Engativá Marzo 02 de 2023
Fotografía 31 Taller pedagógico con estudiantes de grado Transición, Colegio
Abraham Lincoln - localidad de Suba Marzo 07 de 202378
Fotografía 32 Taller pedagógico con estudiantes de grado Transición, Colegio Abraham Lincoln - localidad de Suba Marzo 07 de 202378
Fotografía 33 Taller pedagógico con estudiantes de grado Transición, Colegio
Abraham Lincoln - localidad de Suba Marzo 07 de 202378
Fotografía 34 Taller pedagógico con estudiantes de grado Kínder, Colegio
Abraham Lincoln - localidad de Suba Marzo 07 de 202379 Fotografía 35 Taller pedagógico con estudiantes de grado Transición, Colegio
Abraham Lincoln - localidad de Suba Marzo 09 de 202379
Fotografía 36 Taller pedagógico con estudiantes de grado kínder, Colegio
Abraham Lincoln - localidad de Suba Marzo 09 de 202379
Fotografía 37 Taller pedagógico con estudiantes de grado Transición, Colegio
Abraham Lincoln - localidad de Suba Marzo 09 de 202380
Fotografía 38 Taller pedagógico con estudiantes de grado Kínder 2º Colegio Abraham Lincoln- localidad de Suba Marzo 09 de 202380
Fotografía 39 Taller pedagógico con estudiantes de grados 1° y 2°de primaria,
Liceo Homérico - localidad de Suba Marzo 14 de 202380
Fotografía 40 Taller pedagógico con estudiantes de grado sexto de bachillerato,
Liceo Homérico - localidad de Suba Marzo 14 de 202381
Fotografía 41 Taller pedagógico con estudiantes de grado cuarto de primaria,
Liceo Homérico - localidad de Suba Marzo 14 de 202381
Fotografía 42 Taller pedagógico con estudiantes de grado octavo de bachillerato, Colegio Gimnasio Moderno Summerhill, barrio Mortiño - localidad de
Engativá Marzo 21 de 202381
Fotografía 43 Taller pedagógico con estudiantes de grado noveno de
bachillerato, Colegio Gimnasio Moderno Summerhill, barrio Mortiño -
localidad de Engativá Marzo 21 de 202382
Fotografía 44 Taller pedagógico con estudiantes de grado primero y segundo
deprimaria, Colegio San Facón, barrio Toberín - localidad de Usaquén
Marzo 23 de 2023
primaria, Colegio San Facón, barrio Toberín - localidad de Usaquén
Marzo 23 de 202382
Fotografía 46 Taller pedagógico con estudiantes de grado cuarto de primaria,
Liceo Homérico, barrio Costa Azul - localidad de Suba Marzo 28 de
2023
Fotografía 47 Taller pedagógico con estudiantes de grado séptimo de
bachillerato, Liceo Homérico - localidad de Suba Marzo 28 de 202383 Fotografía 48 Taller pedagógico con estudiantes de grado quinto de primaria,
Liceo Homérico - localidad de Suba Marzo 29 de 202383
Fotografía 49 Taller pedagógico con estudiantes de grado once de bachillerato,
Liceo Homérico - localidad de Suba Marzo 29 de 202384

Fotografía 50 Taller pedagógico Aula ambiental de la PTAR El Salitre con	
estudiantes de grado 1101 Liceo Nueva Estancia de Suba Marzo 17 2023	de 85
Fotografía 51 Taller pedagógico Aula ambiental de la PTAR El Salitre con	
estudiantes de grado 1102 Liceo La Nueva Estancia de Suba Marzo de 2023	17 85
Fotografía 52 Taller pedagógico Aula ambiental de la PTAR El Salitre con	
estudiantes de grado Liceo Nueva Estancia de Suba Marzo 24 de 20	023 85
Fotografía 53 Taller pedagógico Aula ambiental de la PTAR El Salitre con	
estudiantes de grado primero de primaria Gimnasio Moderno	
Summerhill Marzo 30 de 2023	86
Fotografía 54 Taller pedagógico Aula ambiental de la PTAR El Salitre con	
estudiantes de grado 702 Liceo Nueva Estancia de Suba Marzo 31 c	de
2023	86
Fotografía 55 Reunión Comisión Ambiental Local – CAL de la localidad de Barrio Unidos Marzo 15 de 2023	os 87
Fotografía 56 Reunión con veeduría ciudadana Proyecto de Ampliación y	
Optimización PTAR El Salitre fase Il Marzo 30 de 2023	88
Fotografía 57. Control acceso casino	96
Fotografía 58. Control de gases y vapores	97
Fotografía 59. Labores de apoyo por parte de la empresa de aseo Eminser en la áreas de la PTAR El Salitre.	
Fotografía 60. Programa fumigación áreas PTAR el Salitre	
Fotografía 61. Actividades de entrega de dotación	
Fotografía 62. Actividades de capacitación SST	

LISTA DE ANEXOS

CAPITULO 3

Anexo Cap. 3_ 1 eficiencia de la planta10	19
Anexo Cap. 3_2 Lluvias Cuenca Salitre – marzo 202311	
Anexo Cap. 3_3 Niveles lámina de agua cotas a nivel del mar del Canal Salitre Vs	
Lluvias Canal Aferente11	
Anexo Cap. 3_4 Consumo polímero	
Anexo Cap. 3_5a balance consolidado de sólidos planta el salitre ampliada y	
optimizada – marzo 202311	
Anexo Cap 3_ 5b balance consolidado de sólidos planta el salitre ampliada	
optimizada – marzo 202311	-
Anexo Cap 3_ 5c balance consolidado de sólidos planta el salitre ampliada	У
optimizada – marzo 202311	6
Anexo Cap. 3_6 resumen deshidratación por centrifuga11	7
Anexo Cap. 3_7 Consumo Biogás11	8
Anexo Cap 3_8a Características fisicoquímicas del agua cruda y tratada11	9
Anexo Cap 3_8b Características fisicoquímicas del agua cruda y tratada12	.0
CAPITULO 4	
CAPITULO 4 Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I	
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I	2
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I	
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I	
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I	23
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I	23
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I	23
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I	23 24 25
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I	23 24 25 26
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I	23 24 25 26 27
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I	23 24 25 26 27 28
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I	23 24 25 26 27 28 29

1. ANTECEDENTES Y GENERALIDADES

Según el decreto 043 de 2004, donde se efectúan unas asignaciones en relación con la operación, mantenimiento y administración de la PTAR El Salitre, el Alcalde Mayor de Bogotá, delegó en su artículo segundo, la función de operar, mantener y administrar la Planta de Tratamiento de Aguas Residuales El Salitre (PTAR El Salitre), de acuerdo con las condiciones que sean necesarias y oportunas, en criterio del entonces DAMA (hoy SDA) y de la Empresa de Acueducto y Alcantarillado de Bogotá ESP, para el correcto funcionamiento del sistema de alcantarillado de la ciudad. Por lo anterior, se asignaron a la EAAB las funciones descritas en el decreto, y, se suscribieron durante el lapso del 1 de Julio de 2004, hasta el 31 de diciembre de 2007, tres convenios con la Secretaria Distrital de Ambiente, (antiguo DAMA) a saber: convenio 05/2004 liquidado; convenio 01/2006 liquidado y el convenio 022/2007 liquidado.

El 23 de diciembre de 2008, se expidió el Decreto 454 de la Alcaldía Mayor de Bogotá por el cual se modificó el Artículo 4 del Decreto 626 del 28 de diciembre de 2007, quedando modificado en lo referido a la adecuada operación, administración y mantenimiento de la PTAR El Salitre, se realizará con los recursos propios del presupuesto de la Empresa de Acueducto y Alcantarillado de Bogotá, E.S.P. Es así, como desde diciembre de 2009, la Empresa incorporó en las tarifas que pagan los suscriptores en Bogotá en el servicio de Alcantarillado, los costos de operación y mantenimiento de la PTAR Salitre previa aprobación de la CRA mediante resolución 484 de 2009.

El 5 de octubre de 2010 mediante Resolución 1079 el Gerente General de la Empresa de Acueducto y Alcantarillado de Bogotá en ejercicio de sus facultades legales y estatutarias en especial las conferidas en el literal a) del artículo 15, de los Estatutos de la Empresa, Resuelve: Asignar a la Gerencia Corporativa Sistema Maestro, el proyecto de Saneamiento del Río Bogotá, y, Asignar a la Dirección Red Troncal Alcantarillado de la Gerencia Corporativa de Sistema Maestro, la Planta de Tratamiento de Aguas Residuales PTAR- El Salitre.

2. GESTIÓN FINANCIERA

PRESUPUESTO

2.1 ASIGNACIÓN PRESUPUESTAL.

Los recursos asignados a la Planta el Salitre para el Funcionamiento, Operación y Mantenimiento se detallan en el siguiente cuadro de acuerdo a su ejecución con corte al mes de marzo de 2023.

Cuentas por pagar:

Etiquetas de fila	Presupuesto Vigente	Compromisos Acum	Liberaciones	PAC II Trimestre acum	Giros + Entradas	Saldo cxp	% Ejec Ptal
■ FUNCIONAMIENTO	14.415.967.355	13.920.121.703	495.845.652	7.080.215.099	7.080.215.099	6.839.906.604	49,11%
2020	5.567.782	767.782	4.800.000	0	0	767.782	0,00%
2021	538.803.561	47.757.959	491.045.602	0	0	47.757.959	0,00%
2022	13.871.596.012	13.871.595.962	50	7.080.215.099	7.080.215.099	6.791.380.863	51,04%
■ OPERACIÓN	7.208.990.421	7.208.570.946	419.475	748.084.217	748.084.217	6.460.486.729	10,38%
2021	780.588.717	780.169.373	419.344	0	0	780.169.373	0,00%
2022	6.428.401.704	6.428.401.573	131	748.084.217	748.084.217	5.680.317.356	11,64%
Total general	21.624.957.776	21.128.692.649	496.265.127	7.828.299.316	7.828.299.316	13.300.393.333	36,20%

Ejecución de la Vigencia:

Etiquetas de fila	Presupuesto Vigente	Compromisos Acum	Giros Acum	Entradas_sin_giro	Giros + Entradas	% Ejec Ptal
■ 25596	61.175.967.770	4.510.860.500	0	0	0	0,00%
FUNCIONAMIENTO	15.457.730.375	25.280.000	0	0	0	0,00%
OPERACIÓN	45.718.237.395	4.485.580.500	0	0	0	0,00%

2.2 COSTO MENSUAL TRATAMIENTO PTAR SALITRE.

Los costos de ejecución con corte a marzo de 2023 en la PTAR Salitre ascienden a la suma de \$ 4.766.881.568.00

3. GESTIÓN DE OPERACIÓN

Introducción

El fallo en segunda instancia a la sentencia del río Bogotá emitida por el Consejo de Estado en marzo de 2014, se ordenó la realización de diferentes acciones que garanticen la aplicación efectiva de los derechos colectivos a un ambiente sano, la salubridad pública y la eficiente prestación de los servicios públicos domiciliarios a todos los habitantes de la cuenca del río Bogotá; por lo cual se adelantó la adecuación de la PTAR SALITRE aumentando su capacidad a 7m3/s en procura de mejorar el tratamiento de los vertimientos generados en la zona norte de la ciudad.

Bajo este enfoque y de acuerdo a la planificación de cambios que viene realizando la EAAB desde el año 2019 y la medida cautelar proferida por la Magistrada Nelly Villamizar por el incidente 070, mediante auto del 1 de septiembre de 2021, proferido por su Despacho y en calidad de Magistrada del Tribunal Administrativo de Cundinamarca – Sección Cuarta, dentro del expediente 2001- 479, se ORDENÓ "(...) a la EMPRESA DE ACUEDUCTO Y ALCANTARILLADO DE BOGOTÁ que permita el ingreso de los lodos de la fase 2 de operación de tratamiento secundario de la PTAR SALITRE (...)", en el predio "LA MAGDALENA", cuya operación está a cargo de la empresa.

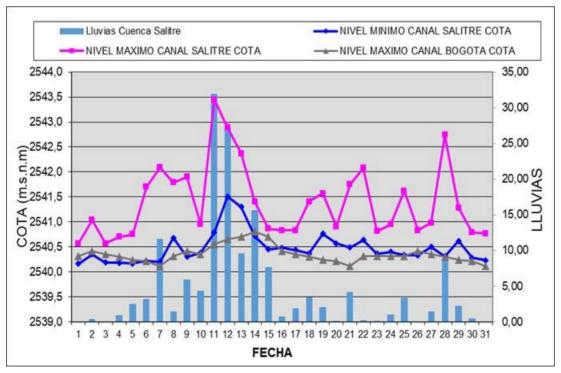
Así mismo, mediante auto del 15 de diciembre de 2021, el Despacho de la Magistrada Nelly Yolanda Villamizar, tiene por cumplida la orden por parte del Consorcio Interventor IVK, en lo que refiere a la expedición del certificado de aceptación de terminación del Hito 1. Así mismo, da por desacatada por parte de la representante legal de la "EMPRESA DE ACUEDUCTO Y ALCANTARILLADO doctora CRISTINA ARANGO OLAYA la medida cautelar decretada los días 10 y 13 de septiembre de 2021 mediante la cual se le ordenó procede a iniciar la operación de la PTAR SALITRE con la asistencia del CONSORCIO EXPANSIÓN PTAR SALITRE, no solo en relación con el inicio de la operación de la planta, sino con la medida cautelar de 1º de septiembre de 2021 en lo que refiere a la disposición de los biosólidos de la Fase II PTAR SALITRE en el Predio La Magdalena de conformidad con las razones expuestas en esta providencia.

La EAAB-ESP acatando las órdenes judiciales, entre ellos los autos proferidos por la honorable Magistrada del Tribunal Administrativo de Cundinamarca, en el marco de la Sentencia del saneamiento del Río Bogotá, inicia de manera inmediata, las actividades de Operación de la Planta de Tratamiento de Aguas Residuales El Salitre Ampliada y Optimizada.

Ahora bien, a partir del 16 de diciembre de 2021, la EAAB en compañía del CEPS, asumen un proceso de operación asistida durante un año. En el siguiente informe se detalla lo encontrado a lo largo del mes de marzo 2023.

A continuación, se presenta un informe detallado de la operación en la PTAR El Salitre Fase 2 para el mes de marzo 2023, en el cual se relacionan los aspectos más relevantes involucrados en el proceso de tratamiento de las aguas residuales.

3.1 LINEA DE AGUA

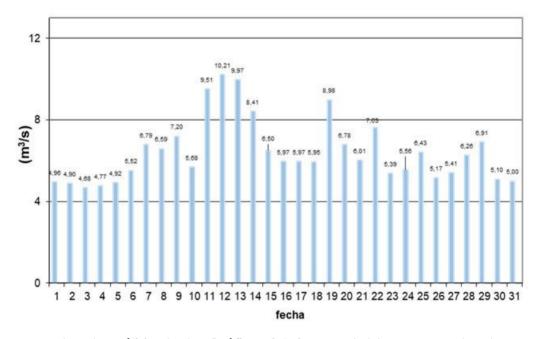

3.1.1 Comportamiento Canal Salitre y Elevación de Agua Cruda

Durante el mes de marzo de 2023, el nivel registrado sobre el canal receptor del interceptor Salitre tuvo una tendencia pronunciada alta a la llegada en el punto elevación de agua para fase II. Para el periodo reportado, el interceptor Salitre mantuvo intervalos de cotas ajustadas entre 2540,160 – 2543,450 m.s.n.m., cómo se puede observar en la Gráfica 3.1-1 Este reporte gráfico permite la interpretación de los niveles presentados a lo largo del mes con tendencia a estar en aproximadamente 3,47 metros, mientras que sobre el rio Bogotá se presentó un comportamiento normal con valores reportados sobre el intervalo generado entre la cota 2539,900 y 2540,800 m.s.n.m.

Por otro lado, se puede evidenciar que el canal salitre presentó nivel más bajo del mes alrededor de 3,16 m. Esta situación, se presentó a labores de limpieza en la rejilla de foso de muy gruesos con el apoyo del personal de CEPS, sin embargo, no ha sido posible alcanzar los niveles de diseño acorde a lo dispuesto en el AUTO DEL 16 DE DICIEMBRE.

El reporte de lluvias en el canal para este mes exhibe una frecuencia mensual de ocurrencia igual al 87%, equivalente a 27 días en los cuales se presentó algún tipo de precipitación. Los valores de precipitación más alta se registraron el día 11 de marzo con 39,340 mm en la estación de Bolivia, 26,30 mm en la estación de Ferias, 26,90 mm en la estación de Usaquén, 35,00 mm en la estación de PTAR, Cabe resaltar que todos los datos aquí reportados corresponden a precipitaciones de intensidad moderadas a altas.

Gráfica 3.1-1 Niveles en el Canal Salitre y río Bogotá – marzo 2023 vs. Precipitación


En el cuadro 3.1-1 se muestra caudal promedio de entrada y salida registrado en la planta, así como los volúmenes totales tratados de agua.

Cuadro 3.1-1 Caudales de entrada y salida de la PTAR Salitre registrados marzo 2023.

Parámetro	Afluente	Efluente	Diferencia
Caudal (m³/s)	6,42	6,41	1
Volumen (m³)	17.204.487,70	17.161.687,52	42.800,18

En registros de caudal se registró un promedio de operación de agua cruda igual 6,42 m³/s, fluctuando entre 4,68 m³/s y 10,21 m³/s, como se puede observar en la Grafica 3.1-2 - Caudal Promedio diario Agua Cruda. Este reporte gráfico permite la interpretación de los caudales captados a lo largo del mes.

Gráfica 3.1-2 Caudal Promedio diario Agua Cruda marzo 2023

De acuerdo al análisis de la Gráfica 3.1-2, se establece que el volumen diario captados varían de acuerdo con el comportamiento de la población servida y a la influencia de la precipitación. Los valores de captación se incrementaron ocasionados por las lluvias para el 87% en las estaciones ubicadas en el área de influencia de la PTAR, (Bolivia, Ferias, Suba, Usaquén, PTAR) afectando de manera directa el manejo del régimen hidráulico. Para el mes reportado, el volumen total elevado de agua cruda fue de 17.204.487,70 m³.

LOGROS: Se ha garantizado el tratamiento del agua que llega a la planta a través de la infraestructura instalada, captando en su totalidad el flujo que presenta el canal salitre. De esta forma, se aseguró que el drenaje del alcantarillado de la ciudad para las zonas 1 y 2 del Acueducto de Bogotá, fueran tratados en su totalidad

DIFICULTAD: Para el periodo analizado (marzo de 2023) se presentaron lluvias con intensidades moderadas a altas durante los 27 días del mes, lo que provoco niveles altos en el canal de aducción a la planta.

A su vez se presentaron problemas en el sistema que antecede la captación (posterior a la trampa de rocas), el cual posee un sistema de cribado de difícil acceso, y sin mecanismos para su limpieza, lo que ha generado taponamientos en la zona, que han traído como consecuencia niveles altos en este foso. A su vez, este taponamiento influye en la operación de las bombas de elevación, debido a la necesidad de operar un mayor número de estas, con un caudal menor al requerido, generando problemas operativos en la elevación de agua y represamiento en el canal Salitre.

Adicionalmente, se reiteran los daños constantes de los rieles que soportan los carritos de desplazamiento longitudinal de los puentes desarenadores, los cuales se encuentran demasiado oxidados. Estos problemas han limitado de manera constante el caudal de captación.

Por otra parte, se presentaron fallas de comunicación en el sistema de supervisión SCADA, por lo cual se presentaban intermitencias originando perdida de visualización con toda la planta, novedad que se presentó para los días 15, 16, 28, 29, 30 y 31 de marzo 2023.

A su vez para el día 22 de marzo se presentó falla de la comunicación de SCADA con el área de pretratamiento y Decantación primaria, ocasionado por switch que permite la señal de operación del sistema con el centro de control SCADA, por lo cual se requirió trabajar todos los equipos de la zona en modo local.

ACCIONES DE MEJORA: Todas las acciones de mejora apuntan a que una vez se reciba la PTAR SALITRE ampliada y optimizada, se determine qué acciones de mejora se puedan adelantar, orientado en la optimización de equipos y procesos de la planta.

3.1.2 Cribado

El agua residual descargada sobre la estructura de pretratamiento a través de los colectores pertenecientes a la red troncal de EAAB ESP, ENCOR, MANCOR, I.R.B. y Lisboa, es conducida hasta la zona conocida como "trampa de rocas", en la cual, a través de la operación de una cuchara bivalva, se retira el material sobrenadante, retenido por un sistema de predesbaste de rejas con separación de 100 mm.

Posteriormente, el agua pasa por un sistema de rejas gruesas, el cual consta de 10 equipos instalados en paralelo con un espacio entre barrotes de 38 mm, el cual se encarga de retener los elementos gruesos que atravesaron el sistema de predesbaste. Este sistema es auto limpiante y dispone de un canal de entrega con compuertas que permiten bloquearlas para adelantar labores de mantenimiento.

Finalmente, el agua cruda es conducida a un proceso de cribado fino, conformado por sistema de 10 rejas finas, instaladas de la misma manera que las gruesas (en paralelo), pero con un sistema de malla perforada que retiene elementos con tamaños mayores a 6 mm. De la misma manera que el cribado grueso, el sistema es auto limpiante y dispone de un canal de entrega con compuertas que permiten bloquearlas para adelantar labores de mantenimiento.

Los residuos retirados en los procesos de la zona de trampa de rocas, cribado grueso y cribado fino son recogidos, transportados y dispuestos en el relleno Sanitario doña Juana – RSDJ por el operador BOGOTA LIMPIA SA ESP, de acuerdo con el esquema de operación de áreas de servicio exclusivo, estipulado en la Ley 142 de Servicios Públicos Domiciliarios.

En el cuadro 3.2- se muestra la cantidad de residuos retirados de trampa de roca, rejas gruesas y rejas finas para para el mes de marzo 2023.

Cuadro 3.1-2 Cantidad de residuos retirados en trampa de rocas, cribado fino y grueso.

PUNTO DE TRATAMIENTO	Ton. Dispuestas en Relleno Sanitario Doña Juana	
Trampa de Rocas	15,69	
Rejas Gruesas	7,7	
Rejas Finas	64,44	
Total, dispuesto RSDJ	87,83	

3.1.3 Grasas Materiales Flotantes y Arenas.

La remoción de grasas, material flotante y arenas es realizada a través de un sistema de 5 puentes barredores longitudinales, equipados con 6 sopladores de inyección de burbujas gruesas. Para retirar la arena sedimentada en el fondo de cada desarenador, se dispone de dos bombas centrifugas instaladas en cada puente. El retiro del material flotante y grasas funciona a través de raspadores superficiales, que van arrastrando todo material que flote en el recorrido del puente.

Los residuos resultantes de este proceso son enviados al sitio autorizado para disposición final. Relleno Sanitario Doña Juana – RSDJ, a través del operador autorizado BOGOTA LIMPIA SA ESP.

En el siguiente cuadro se muestra la cantidad de residuos retirados para el mes de marzo de 2023.

Cuadro 3.1-3 Cantidad de residuos retirados en sobrenadantes, grasas, arenas y basura interna.

RESIDUO	Ton. Dispuestas en Relleno Sanitario Doña Juana
Grasas	11,47
Arenas	21,06
Basura Interna	4,61

3.1.4 Dosificación de Productos

Para el presente mes no se tuvo la necesidad de dosificar, ya que se controlaron los microorganismos filamentosos, que se venían presentando en meses anteriores los cuales venían afectando el proceso.

Durante el mes de reporte, no se realizó tratamiento por las antiguas estructuras de la PTAR el Salitre, por lo cual no se tuvo la necesidad de dosificar Cloruro Férrico (FeCl₃) y polímero aniónico (FLOPAM AN 934).

3.1.5 Decantación Primaria

Desde la arqueta de regulación de caudal, se alimentan dos cámaras de reparto; una para cada tres decantadores, para un total de 6 decantadores primarios. Los lodos decantados son llevados al fondo del foso, por medio del puente raspador y enviados a los espesadores actuales de Fase 1, el puente rascador posee un rastrillo superficial que retira las grasas.

Producto del fenómeno físico de decantación y de las operaciones de tratamiento que la preceden, se extrajeron lodos con valor promedio en concentración de 27,92 gr/l. El volumen promedio mensual de extracción de los decantadores 57-1 y 57-2 fue de 1511,51 m³/d, para los decantadores 57-3 y 57-5 fue de 1416,80 m³/d, para los decantadores 57-4 y 57-6 fue de 1473,77 m³/d. Las extracciones de lodo manejaron un promedio de 1467.36 m³/día, y un total de 122.513,76 m³ de lodo primario bombeado hacia espesamiento.

3.1.6 Calidad de Agua Tratada.

En el desarrollo de la línea de tratamiento en la planta del agua residual, se establece como proceso previo a la decantación secundaria, el tratamiento biológico el cual consta de 6 reactores, con una capacidad de 25400 m³ por unidad y con un tipo de tratamiento de alta carga con aireación extendida.

En el siguiente cuadro, se relaciona el valor promedio presentado para el mes de reporte, de acuerdo con las variables fisicoquímicas establecidas para el tratamiento biológico.

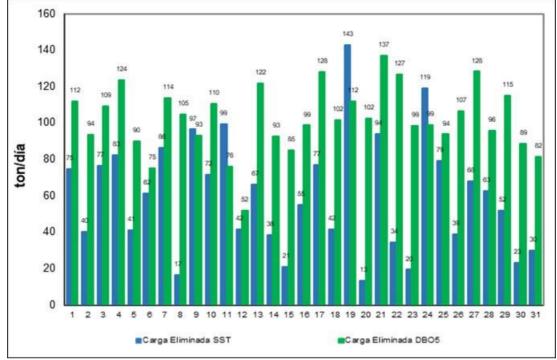
Cuadro 3.1-4 Licor de mezcla de Reactores Biológicos marzo 2023.

Reactor Biológico	рН	SST (mg/l)	SSV (mg/l)	Índice Volumétrico IVL (ml/g)
60,1	7,21	2977	2142	46
60,2	7,29	2410	1738	47
60,3	7,32	2313	1684	42
60,4	7,29	2659	1963	40
60,5	7,32	2534	1716	42
60,6	7,29	2535	1846	42

De acuerdo con la tabla anterior, para alcanzar una buena sedimentación y compactación de la biomasa floculenta, los valores establecidos para el índice volumétrico deben estar dentro del rango de <80 ml/g, (compactación y sedimentación excelente) a <150 ml/g (compactación y sedimentación moderada), ya que valores >150 ml/g corresponde a una compactación y sedimentación pobre¹. En ese sentido, se evidencia la estabilización en los reactores, con una sedimentación excelente...

En cuanto a los alcances operativos en cargas eliminadas, se obtuvo una eliminación de 1.867,63 Ton. de SST y 3.170,35 Ton. de DBO₅. En la siguiente tabla se detallan los datos de carga removida:

Cuadro 3.1-5 Carga removida y concentraciones para SST y DBO5 reportadas marzo 2023


PARÁMETRO	Caudal Afluente (m3/s)	Concentración de entrada (mg/l)	Caudal Efluente (m3/s)	Concentración de salida (mg/l)	Carga Removida (Ton.)
SST	6,42	118,77	6,41	6,9	1.867,63
DBO ₅	6,42	208,45	6,41	14,15	3.170,35

Producto del tratamiento primario y secundario adelantado, se removieron en total 1.867,63 Ton. de SST en base seca, para un promedio diario de 60,25 Ton/día. En la Gráfica 3.1-3, se muestra que la menor carga removida sucedió durante el día 20 de marzo de 2023, con valores reportados de 13,44 Ton/día respectivamente. El valor máximo alcanzado para el mes de reporte de carga removida se presentó el 19 de marzo 2023, con un registro de 142,81 Ton/día.

En términos de DBO₅, la carga de materia orgánica removida fue de 3.170,35 Ton en base seca, para un promedio de 102,27 Ton/día En la Gráfica 3.1-3 se muestra el comportamiento diario de la carga eliminada tanto para SST como para DBO₅, la cual permite establecer que el día de menor carga removida se ubica el 12 de marzo 2023, con reporte de 52,09 Ton/día, y el día donde se obtuvo la mayor carga registrada fue el 21 de marzo 2023, con reporte de 137,27 Ton/día respectivamente.

_ 1

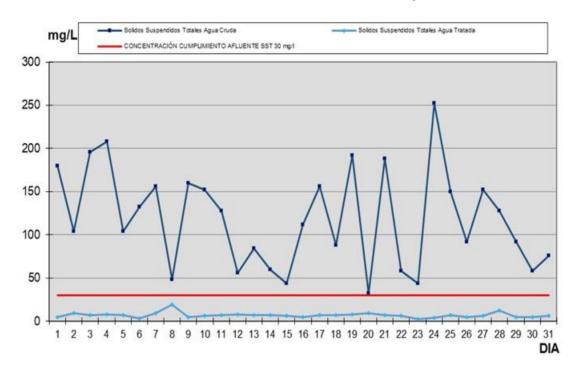
¹ Grady, L., Daigger, G., Lim, H. (1999). Biological Wastewater Treatment. 2° Ed. Marcel Dekker, Inc. New York, 1075 pp

Gráfica 3.1-3 Carga Eliminada de Sólidos y DBO5 (Ton/día) marzo 2023.

Para los parámetros de temperatura y pH medidos al agua vertida, se obtuvieron valores de 16,60 °C y 7,57 Und de pH respectivamente. Estos valores se consideran "normales" para el tratamiento adelantado en la PTAR EL SALITRE ampliada y optimizada.

3.1.7 Sólidos Suspendidos Totales

En La Gráfica 3.1-4 4 muestra las curvas de concentraciones ponderadas de SST en agua cruda y tratada para el mes del reporte. Durante este, las concentraciones de sólidos suspendidos totales presentaron un promedio de 118,77 mg/l en el agua cruda.


Respecto al valor de concentración promedio de sólidos suspendidos totales para el mes de marzo en agua tratada, se obtuvo un resultado de 6,90 mg/l, con concentraciones de SST entre 2 mg/l, dato presenta el día 23 de marzo de 2023, 19 mg/l como dato más alto presentado el día 8 de marzo 2023.

A lo largo del mes se presentó no se presentó reporte de concentración por encima de los valores máximos definidos en la licencia ambiental, tal como se relaciona a continuación.

Cuadro 3.1-6 Relación de fechas y resultados asociados a valores de concentración de SST Que superan los 30 mg/L

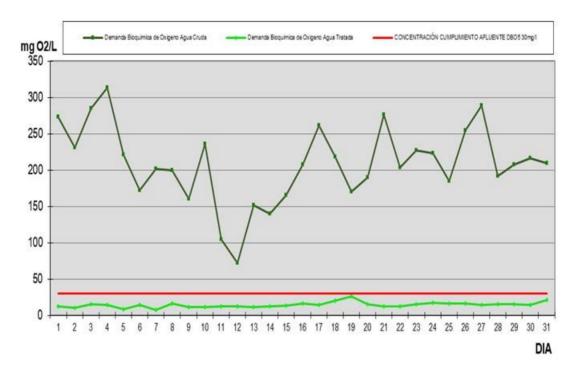
Día	Concentración Efluente SST	
	(mg/l)	

La siguiente gráfica muestra el comportamiento de las concentraciones del efluente durante el mes de marzo 2023.

Gráfica 3.1-4 Variación Concentraciones SST en Afluente y Efluente - marzo 2023.

3.1.8 Demanda Biológica de Oxígeno

El comportamiento de la DBO $_5$ durante el mes de marzo arrojó un valor promedio en el afluente de 208,45 mg O_2 /l. El valor máximo de concentración registrado fue de 314 mg O_2 /l, presentado el día 4 y el valor más bajo alcanzado fue de 72 mg O_2 /l, reportado el 12 de marzo. En la Gráfica 3.1-5 se observa el comportamiento de la DB O_5 .


En el agua tratada, el comportamiento del citado parámetro registró valores que oscilan entre 8 mgO₂/l, reportado el día 7 de marzo 2023, y un valor máximo registrado fue de 26 mgO₂/l, obtenido el día 19 de marzo. La concentración promedio del efluente para el mes del reporte fue de 14,15 mgO₂/l.

Respecto al cumplimiento de la licencia ambiental para la DBO₅, no se reportaron días con la concentración por encima del valor máximo exigido por la misma, de 30 mg/l, tal como se relaciona en el cuadro 3.1-7.

Cuadro 3.1-7 Relación de fechas y resultados asociados a valores de concentración de DBO5 Que superan los 30 mg/L

	Concentración
Día	Efluente DBO ₅
	(mgO2/l)

La siguiente gráfica muestra el comportamiento de las concentraciones del efluente durante la operación de la planta para el mes de marzo 2023.

Gráfica 3.1-5 Variación Concentraciones DBO5 en Afluente y Efluente marzo 2023.

3.1.9 Grasas y aceites

El siguiente cuadro reporta los resultados obtenidos de la muestra mensual tomada por el laboratorio de la EAAB para el mes de marzo 2023.

Cuadro 3.1-8 Concentración del parámetro Grasas y Aceites para el mes de marzo 2023

ORIGEN DE MUESTRA	VALOR CONCENTRACIÓN (mg/l)	
Afluente	59,66	
Efluente	8,68	

De acuerdo al cuadro anterior, el valor registrado en el efluente de 6 mg/L, se encuentra dentro del rango establecido en la resolución 631 de 2015 del MADS "Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones", la cual establece para prestadores del servicio de público de alcantarillado, con una carga mayor a 3000 kg/día DBO5, un valor máximo de 10 mg/L en el efluente.

3.1.10 pH

El valor promedio para pH en el efluente para el mes de marzo, alcanzó un dato de 7,57 und., el cual sugiere un comportamiento normal para la operación de la planta, dando cumplimiento a la Resolución 631 del 2015, art. 8, la cual establece un rango permitido entre 6 a 9 unidades de potencial de hidrógeno.

3.1.11 Temperatura

El valor promedio para la temperatura en el efluente para el mes de marzo, alcanzó un dato de 16,60 °C, el cual sugiere un comportamiento normal para la operación de la planta, dando cumplimiento a la Resolución 631 del 2015, art. 5, la cual refiere un valor máximo de 40 °C para cualquier tipo de vertimiento.

3.1.12 Tratamiento de Agua - Fase I

Para el presente mes evaluado, no se presentaron datos de remoción y cargas eliminadas en el tratamiento que se lleva a través de la infraestructura en PTAR El Salitre Fase I, dado que, en su totalidad, el caudal fue captado por la infraestructura de Fase II.

LOGROS: durante el mes de marzo de 2023 se dejaron de verter al rio Bogotá, 1.867,63 Ton. de SST y 3.170,35 Ton. de DBO₅, correspondiente al cálculo de cargas contaminantes para cada parámetro.

DIFICULTAD: A lo largo del mes se reiteraron las dificultades en los puentes perimetrales de la línea de clarificadores secundarios, debido a los daños reiterativos en los rodamientos por los desgastes excesivos en los ejes de las llantas, que conducen a su vez, las válvulas pic que permiten eliminación de las grasas superficiales de los clarificadores.

Es importante mencionar y hacer énfasis, que se generando elevación de la masa de fangos en los clarificadores secundarios, estos limitantes en la actualidad genera lodos con viscosidades demasiado altas generando problemas en los sifones, presentando tiempos de detención altos, pérdidas de sifón y succión en las estructuras generaban señales de alto torque.

ACCIONES DE MEJORA: se adelantaron maniobras de vaciado de las estructuras, permitiendo así realizar un mantenimiento correctivo a los puentes y verificación de la estructura interna.

Se continúa realizando, la revisión y extracción de las válvulas averiadas de los 12 clarificadores. Completando al corte del presente informe con extracción de válvulas, los clarificadores 64-1,64-2,64-9,64-10.

En el cuadro a continuación se relaciona la cantidad de telescópicas que se encuentran fuera de servicio por cada uno de los clarificadores, y un avance de las estructuras intervenidas por parte del área operativa y técnica.

Cuadro 3.1-9 Estado de las telescopicas de Clarificadores Secundarios

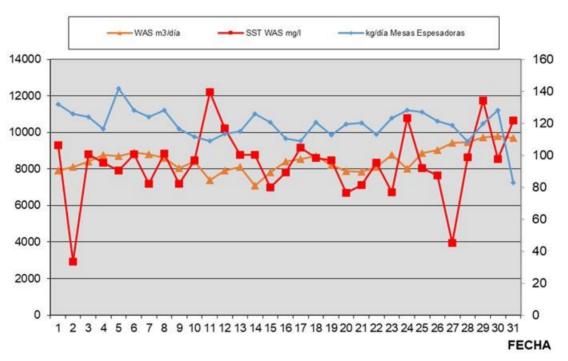
CLARIFICADOR	TELESCOPICAS	CLARIFICADOR	TELESCOPICAS
64-1	Extracción	64-7	5 av eriadas
64-2	Extracción	64-8	12 av eriadas
64-3	8 averiadas	64-9	Extracción
64-4	10 av eriadas	64-10	Extracción
64-5	0 averiadas	64-11	9 av eriadas
64-6	11 averiadas	64-12	9 av eriadas

A su vez se continuará el seguimiento a la eficiencia de los reactores, para evitar desestabilización del proceso.

3.2 LINEA DE LODOS

Procedentes del área de Decantación primaria de Fase II, se extrajeron lodos con valor promedio de concentración de 26,86 gr/l en edificio 58-1, 29,43 gr/l en edificio 58-2 y para el edifico 58-3 un valor de 27,46 g/l. El volumen promedio mensual de extracción de los decantadores 57-1 al 57-6, fue de 1.467,36 m³/d y un total de 122.513,76 m³ de lodo primario bombeado hacia espesamiento.

En el siguiente cuadro se presenta el resumen de la línea de lodos.


Cuadro 3.2-1 Datos línea de lodos marzo 2023

Parámetro	Registro
Lodo primario Fase I	0 m ³
Lodo primario Fase II	122.513,76 m ³
Rechazado Reactores	263.465,92 m ³
Lodo Mesas espesadoras	251.429,88 m ³
Lodo espesadores por gravedad	32.988,20 m ³
Lodo digerido	67.325,10 m ³
Lodo deshidratado centrifugas	69.903,98 m ³
Lodo deshidratado filtrobanda	0 m ³
Lodo Bypass Mixto a digerido	0 m ³
Biosólido generado	8702,51 Ton.
Sequedad del biosólido	26,19%

3.2.1 Mesas Espesadoras

El lodo de rechazo (WAS) proveniente del proceso de lodos activados debe tener ciertas características específicas como la concentración antes de ingresar al proceso de digestión. Para alcanzar los valores requeridos de concentración (5-30 g/L)², se debe espesar este lodo, para lo cual, la PTAR El Salitre ampliada y optimizada, dispone de ocho (8) Mesas Espesadoras, en las cuales se lleva a cabo el proceso de separación de una fracción de agua al lodo, a través de la dosificación de una mezcla de polímero y agua al lodo. Esta mezcla es transportada por una cinta horizontal porosa en movimiento, de tal modo que se alcancen los valores de concentración requeridos.

Gráfica 3.2-1 Caudal WAS (m3/día) /Concentración SST (mg/l) / Consumo Polímero (Kg/día) marzo 2023.

El volumen total tratado de lodo de rechazo WAS para este mes fue de 263.465,92 m³. Se obtuvo un valor de 7103,28 m³/día, como el menor valor desechado obtenido el día 14 marzo 2023. Por su parte, el valor más alto fue de 9800,46 m³/día, presentado el día 30.

Las concentraciones promedio mensual de SST, para el lodo rechazado fue de 8,32 g/l. El día 2 marzo 2023 se registró el menor valor 2,92 g/l, y por su parte, para el día 11 se registró el máximo valor obtenido de 12,20 g/l.

El consumo de polímero para el mes fue de 3697,14 Kg. Para el día 31 marzo 2023 se presentó el menor consumo de producto con una cantidad de 83,04 Kg. Por su parte, el consumo más alto fue de 141,74 Kg presentado el 5 de marzo. En el área se usó una referencia de polímero Catiónico de alta carga; FO 4490 VHM.

² Manual de instalación, operación y mantenimiento – Espesador de banda por gravedad EMO

Con los datos obtenidos y el análisis de la Gráfica 3.2-1 se evidenció estabilización en las dosificaciones de polímero ya que con consumos estuvieron por debajo de los demás meses al comparar los rechazos realizados en el mes en curso, dejando como referencia que el caudal tratado fue relativamente estable durante el mes sin evidenciar picos de caudal de lodo WAS.

LOGROS: durante este mes se trató el 100% del lodo de rechazo WAS, con una cantidad de 263.465,92 m³, obteniéndose las concentraciones deseadas para el lodo espesado por mesas hacia el tanque de lodos mixtos.

DIFICULTAD: durante este periodo de tiempo, se observaron formaciones de grumos de polímero en los tanques del skid de preparación de polímero, características negativas provenientes del mal funcionamiento del equipo generando una mala preparación del producto, lo que infiere un consumo mayor como se puede evidenciar en la Gráfica 3.2-1 Los Skid de preparación de polímero presentaron fallas en algunos de sus componentes, que no permitieron la utilización de algunos de ellos. La falla más recurrente es la rotura del tornillo sin fin de alimentación a la tolva de preparación (en la gran mayoría de Skid de preparación de polímero no se tienen todos los tornillos operativos), lo cual obliga a el personal operativo a realizar el cargue de esta tolva de forma manual, exponiendo al trabajador a riesgos físicos y químicos (manipulación y transporte del polímero), y locativos, al momento del cargue sobre el equipo.

Dado que estos equipos en la actualidad se encuentran en garantía, se limita cualquier intervención que permita optimizar y mejorar la preparación del producto.

Por otro lado, se están presentando inconvenientes mesas espesadoras presentando restricción por telas rotas, la disponibilidad de los equipos se ha reducido de manera significativa.

ACCIONES DE MEJORA: Todas las acciones de mejora apuntan a que una vez se reciba la PTAR SALITRE ampliada y optimizada, se determinarán acciones de mejora en la planta, las cuales involucran en su mayoría, la optimización de diferentes equipos en la planta.

A lo largo del mes de marzo, se continuaron labores para garantizar la adecuada deshidratación del lodo producto del rechazo del tratamiento biológico. actividades de cambio de las telas que se encuentran deterioradas y todos los ajustes necesarios para ampliar disponibilidad de equipos en el área.

3.2.2 Digestión

De acuerdo con el proceso de digestión adelantado, el cual recibe una mezcla de lodo espesado derivado de las purgas de los decantadores primarios, y el deshidratado en mesas espesadoras del rechazo proveniente de los reactores biológicos, se monitorean las variables necesarias para garantizar la estabilidad del tratamiento. En el anexo 6 se compilan los diferentes parámetros evaluados para el proceso.

El proceso de digestión anaerobia para el presente mes alcanzó un promedio de biogás de 19.997,66 nm³/día, de acuerdo con la sumatoria de las unidades de digestión disponibles, las cuales se comportan de acuerdo con el cargue de digestión y la producción de lodoEn la Gráfica 3.2-2 El proceso de digestión anaerobia para el presente mes alcanzó un promedio de biogás de 19.997,66 nm³/día, de acuerdo con la sumatoria de las unidades de digestión disponibles, las cuales se comportan de acuerdo con el cargue de digestión y la producción de lodo.

A partir del control de proceso adelantado; la operación registró lodos digeridos con las siguientes características: AGV's con valores promedio de 883,8 mg/L; pH entre 7,57 y 7,91 unidades, alcalinidades promedio cercanas a los 5407,81 mg CaCO₃/L, garantizando valores bajos de la relación AGV's / Alcalinidad para los digestores y un contenido de sólidos volátiles promedio de 22,06 mg/l.

La producción de biogás del mes fue de 619.927,46 nm³, con una generación promedio/día de biogás de 6.665,89 nm³. A continuación, en el cuadro 3.2-2 se relaciona las remociones promedio de material volátil, la generación promedio y total de biogás, por digestor.

Referente a Eficiencia de digestión se exige 38 % en remoción de MV. En el presente mes se presentó promedio de 42% remoción de MV.

Cuadro 3.2-2 Datos generacion biogas y % remoción MV en los digestores

DIGESTOR	Generación promedio de biogás [=] Nm3	Generación total de biogás [=] Nm3	% remoción promedio MV
72-1	5.642,30	174.911,19	42%
72-2	-	-	40%
72-3	6.427,47	199.251,46	44%
72-4	7.927,90	245.764,81	46%
72-5	-	-	41%
72-7	-	-	42%

Es importante precisar que para los digestores 72-5 y 75-7, no fue posible registrar la producción de biogás, por falta del instrumento de medición. Para el 72-2 el instrumento de medición se encuentra dañadoEn la Gráfica 3.2-2 se muestra la tendencia en la producción de biogás para el mes de marzo del 2023.

FECHA

14000 10500 10500 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Gráfica 3.2-2 Producción de Biogás marzo 2023.

A partir del control de proceso adelantado, se tienen en la actualidad seis estructuras en uso.

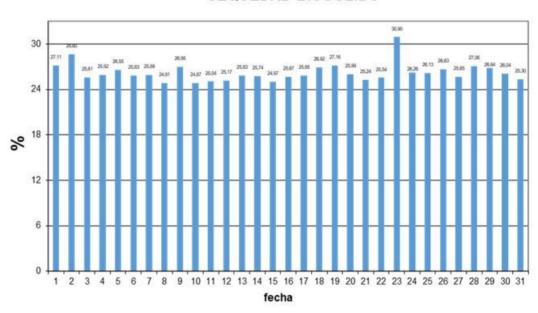
En cuanto a los AGV's se presentaron valores dentro de los rangos de operación normal del sistema de digestión anaerobia.

LOGROS: Durante el mes de marzo de 2023, se obtuvo un promedio de remoción de material volátil de 42%, disminuyendo de manera considerable su carga, estabilizándolos para hacerlos de esta manera menos nocivos al medio ambiente.

DIFICULTAD: En el mes de marzo se presentaron dificultades, específicamente en el 72-5, 72-7 por temas de perdida de eficiencia de la bomba de alimentación del digestor, por lo cual se disminuyó el cargue, reduciendo la producción de biogás de esta estructura.

A su vez se posee problemas con los instrumentos de medición de la producción de biogás de los digestores 72-5 y 72-7, los cuales no se encuentran instalados, limitando su cuantificación, que sumado al daño presentando en la instrumentación del digestor 72-2, no permiten tener lecturas fiables para la determinación del balance en la línea de Biogás.

Se presentaron dificultades con los equipos de bombeo a los digestores, los cuales generaron limitantes para alimentación de alguna estructura.


ACCIONES DE MEJORA: Para mejorar la eliminación de material orgánico y poder controlar la cantidad de lodo que se genera en los biológico, en la actualidad se están utilizando 6 digestores, y se está verificando constantemente las variables del proceso.

3.2.3 Centrifugas

Respecto a la operación de centrifugas, para para el mes de marzo 2023, se registró una producción promedio diaria de 280,73 Ton. de biosólido, para un total de 8702,51 Ton/mes. El porcentaje de sequedad promedio obtenido en proceso del biosólido fue de 26,19%.

En la Gráfica 3.2-3, se muestra la sequedad de biosólido para el mes evaluado. El valor de dosis promedio demandada de polímero catiónico fue de 11,93 kg por tonelada de material seco, considerado como un consumo alto dado que en diseño se tiene contemplado 10 kg por tonelada de material seco, en el área se dio uso de polímero Catiónico de alta carga FO 4490 VHM.

Gráfica 3.2-3 Sequedad de Biosólido marzo 2023

SEQUEDAD BIOSOLIDO

Es importante precisar, que el flujo total fue deshidratado por la centrifugas, se tuvo la necesidad de deshidratar el lodo a través de la infraestructura instalada en fase I (filtro bandas).

LOGROS: Durante el mes de marzo de 2023, se registró una producción total de lodo deshidratado de 8702,51 Ton/mes. La sequedad asociada a esta producción de material alcanzó un promedio de 26,19%

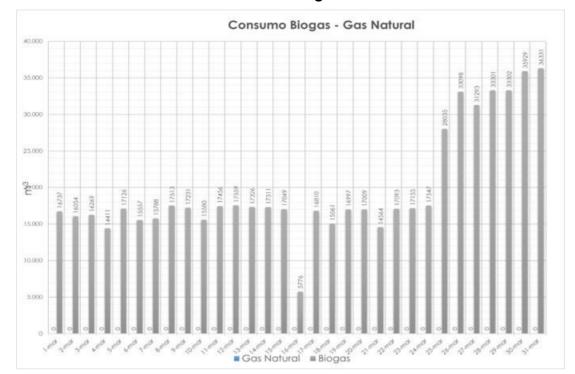
DIFICULTAD: Se presentó en la preparación de polímero en fase II, por las fallas recurrentes en los skid de preparación de polímero, asociados a roturas de tornillos de alimentación a tolvas, generando una condición insegura para el personal operativo, debido a la modificación en la maniobra del cargue de polímero, pues el operador en procura de garantizar la continuidad del proceso debe cargar la tolva de forma manual generando riesgos físicos sobre el trabajador y locativos sobre el equipo.

ACCIONES DE MEJORA: Se continuaron intervenciones en los sistemas de preparación buscando la optimización en la preparación a su vez se realizaron pruebas con los índices de dosificación, para mejorar la calidad y preparación.

3.3 TRATAMIENTO DEL BIOGÁS - MOTOGENERACIÓN

El biogás producido en la planta se somete a un proceso de eliminación de impurezas para poder utilizarlo como combustible, tanto en los motogeneradores como en calderas. Al ser sometido a este tratamiento, se consigue mejorar sus características como combustible, y se protege los equipos de motogeneración, susceptibles a las impurezas.

La planta de tratamiento de biogás (PTG) tiene por objetivo la reducción/eliminación de componentes tales como humedad, H₂S, siloxanos, así como el ajuste de la temperatura del biogás a la entrada a motores. Para el mes analizado se realizó una recuperación de 860.928,04 nm³/mes para su posterior uso en los cogeneradores y calderas.


En el presente mes, para el proceso de cogeneración se reutilizó 618.264,72 nm³/día de biogás generando 1.542.350 Kw de energía eléctrica.

Por su parte, el calor recuperado del circuito de alta temperatura del motor (refrigeración de camisas) es utilizado en el proceso de calefacción de los lodos. Así mismo se utilizaron 242.663,32 nm3/mes de biogás en las calderas para mantener la temperatura óptima que requiere la digestión anaerobia mesofílica alrededor de 37°C.

Finalmente, la línea de gas se completa con las teas (antorchas), cuyo objeto es el quemado del biogás excedente en el proceso. Para el mes de marzo se quemaron 264.419,53 nm³/día de biogás.

Para el presente mes no fue necesario dar uso de gas natural en ninguna parte del proceso.

A continuación, se detalla consumo diario de biogás - gas natural utilizado en el proceso.

Gráfica 3.3-1 Consumo Diario de Biogás - Gas natural marzo 2023.

LOGROS: Durante el mes de marzo de 2023, se aprovecharon 860.928,04 nm3 de biogás en el proceso a su vez se generaron 1.542.350 kw de energía eléctrica.

DIFICULTAD: Para el mes de marzo se presentaron dificultades en el área, específicamente con el equipo analizador de H2S y siloxanos, que se encuentra en la línea de descarga del flujo de planta de recuperación de biogás, y no registra datos de calibración.

Se utilizó el biogás en las calderas, para poder mantener la temperatura interna en los digestores.

ACCIONES DE MEJORA: realizar verificaciones del sistema de cogeneración, generando mayor control de variables de producción referente a consumos de biogás, que permitieron incrementar la generación de energía eléctrica.

A su vez se iniciaron actividades de mantenimiento Generadores para poner a punto todos los equipos

4. GESTIÓN DE MANTENIMIENTO ELECTROMECÁNICO INTRODUCCIÓN

El Departamento de Mantenimiento Electromecánico de la PTAR el Salitre tiene bajo su responsabilidad mantener los equipos operativos de la planta, crear las órdenes de mantenimiento que sean necesarias para las intervenciones de los equipos mecánicos, eléctricos, electrónicos y de instrumentación, velando por el manejo de la información y el stock de repuestos en almacén para cualquier tipo de intervención. Para cumplir con esta gestión del mantenimiento, la PTAR Salitre Cuenta Con El Siguiente Personal: 1 Profesional Especializado - Mantenimiento, 1 Profesional Mantenimiento Mecánico, 1 Profesional Mantenimiento Instrumentación, 1 Profesional Mantenimiento Eléctrico, 1 Auxiliar Administrativo Nivel 1, 3 Tecnólogo Coordinador, 21 Tecnólogo Nivel 2 Mantenimiento, 19 Técnico Nivel 2 Mantenimiento, Distribuidos en las Modalidades Mecánica, Eléctrica e Instrumentación.

Como soporte a la gestión administrativa de la PTAR el Salitre se continúa con la implementación del sistema de información de mantenimiento en SAP PM y el control de materiales utilizados de almacenes.

A partir del 16 de diciembre de 2021 se inicia la recepción de la PTAR fase II en conjunto con personal de CEPS EAAB, IVK & CAR. Por otro lado, se continúan realizando tareas de mantenimientos en conjunto con el personal de CEPS y AB para la PTAR Salitre fase II. Seguidamente se realizan también mantenimientos en PTAR Salitre fase I. Por otro lado, se organizan turnos de trabajo las 24 horas divididos en 3 grupos para suplir el apoyo de los respectivos mantenimientos para la PTAR salitre.

4.1 PLANEACIÓN Y PROGRAMACIÓN

De acuerdo a la reestructuración del área de mantenimiento se integró el plan de mantenimiento eléctrico, mecánico, esto con el fin de tener control en el seguimiento de los indicadores del área.

Se realizó una revisión a la programación del plan de mantenimiento, el cual se reevalúa, y reestructura; se generó una reducción en las de órdenes de trabajo preventivo de la PTAR fase I, con el fin de incrementar esfuerzos para la PTAR fase II de acuerdo a la recepción y entrenamiento en mantenimiento de estructuras y equipos se generan ordenes de trabajo tanto preventivas como correctivas.

El control de la ejecución tanto del mantenimiento preventivo como del mantenimiento correctivo se lleva en el formato MPML0301F04-01 Seguimiento de Solicitud Mantto.

Para los mantenimientos generados a los equipos de la PTAR fase II se realiza el seguimiento mediante listados generados en los formularios de Google forms llamado solicitud de mantenimiento, de igual manera el registro de solicitudes para el mantenimiento de equipos se lleva en el formulario llamado reporte de mantenimiento, desde mantenimiento se empieza plan piloto para control y manejo de indicadores desde 2023.

4.2 MANTENIMIENTO PREVENTIVO

El mantenimiento preventivo de la PTAR fase I se genera de acuerdo al formato MPML0302F19-01 - Plan de Mantenimiento Preventivo PTAR el Salitre en donde se especifican las frecuencias de mantenimiento para las Ubicaciones Técnicas y Equipos de la PTAR.

El plan de mantenimiento preventivo de los equipos de la PTAR fase II se ejecuta de acuerdo a la programación generada, en un archivo nombrado back log, el cual tiene la programación a realizar de los equipos montados en la PTAR fase II.

Se inicio él envió de programación semanal a operaciones, SST y calidad con el fin de que toda la operación tenga conocimiento de la labor del departamento de mantenimiento Electromecánico.

4.3 MANTENIMIENTO CORRECTIVO

Las órdenes generadas bajo este tipo de mantenimiento, son las que provienen las rutas de inspección de las solicitudes de los usuarios de mantenimiento, o del personal que reporte una inconsistencia en un equipo. Estos trabajos en algunas ocasiones no son de ejecución inmediata y permiten realizar una planeación y programación de tareas a realizar y los recursos a utilizar.

La gestión del mantenimiento correctivo se realiza a través del programa SAP, para ello se están realizando ajustes en los procedimientos para el reporte de fallas y el trámite correspondiente de las órdenes.

El mantenimiento correctivo realizado en la PTAR fase II se registra en formularios de la herramienta de Google forms generando formatos de orden de trabajo donde se registran las actividades realizadas, acorde a las solicitudes realizadas por los técnicos operarios de la planta.

4.4 DISPONIBILIDAD DE EQUIPOS

En los cuadros 4.4-1 y 4.4-2 se relacionan los equipos críticos disponibles y los equipos que se encuentran fuera de servicio o con operación restringida.

El indicador de los equipos críticos se encuentra relacionados en el Anexo Cap. 4_9.

Cuadro 4.4-1 Equipos Críticos marzo 2023

Sistema	Equipo critico	Equipos instalados (EI)	Equipos disponibles (ED)
S1	Equipos de supervisión sala de control	2	2
\$2	Tomillos de elevación	5	5
\$3	Medidores de Caudal de agua cruda	10	10
\$4	Rejas finas	4	4
\$5	Bombas dosificadoras de cloruro ferrico	4	4
S6	Bombas de todas las aguas pretratamiento	2	2
S7	Celdas Subestación electrica principal	10	10
\$8	Bombas polimero	4	4
S9	Puentes desarenadores	3	3
\$10	Puentes decantadores	8	8
\$11	Clasificador de hilazas	_	1
S12	Bombas de lodos espesados	3	3
\$13	Bombas de todas las aguas 13	3	3
\$14	Medidores de Caudal de agua tratada	5	5
\$15	Compresores de biogás	4	4
\$16	Bombas de recirculación	4	4
S17	Calderas	2	2
\$18	Filtrobandas	5	5
\$19	Bandas transportadoras 12	5	5
S20	Rastrillo Viajero	1	1
S21	Neveras Toma Muestras	2	2
S22	Bombas Descarga Cloruro Ferrico	2	2
S23	Compuertas PTAR Salitre	2	2

PTAR fase I

ITEM	Equipo crifico	Equipos instalados (EI)	Equipos disponibles (ED)
1	CUCHARA BIVALBA	1	1
2	REJAS DE GRUESOS	10	7
3	PRENSAS DE RESIDUOS GRUESOS	3	2
4	BOMBAS DE AGUA CRUDA	10	8
5	REJAS DE FINOS	10	10
6	PRENSAS DE RESIDUOS FINOS	3	2
7	SOPLA DORES DESA RENA DORES	6	5
8	PUENTES DESARENADORES	5	5
9	CLASIFICADORES DE ARENAS	5	5
	CONCENTRADORES DE GRASAS	2	2
	BOMBAS DE ALIMENTACIÓN A LAUNDR CHANNEL	5	5
	PUENTES DECANTADORES PRIMARIOS	6	6
	BOMBAS DE LODOS PRIMARIOS 1	3	3
14	BOMBAS DE LODOS PRIMARIOS 2	3	3
	BOMBAS DE LODOS PRIMARIOS 3	3	3
	BOMBAS DE FLOTANTES 1	2	2
	BOMBAS DE FLOTENTES 2	2 2	2
	BOMBAS DE FLOTANTES 3		
	COMPRESORES DE AIRE	6	5
	REACTORES BIOLOGICOS	6	6 11
	SOPLADORES PUENTES DECANTADORES SECUNDARIOS	12	10
	BOMBAS RAS 1	3	3
	BOMBAS RAS 2	3	3
	BOMBAS RAS 3	3	2
	BOMBAS WAS 1	2	2
	BOMBAS WAS 2	2	2
	BOMBAS WAS 3	2	2
	ESTACIONES DE FLOTANTES	36	30
	BOMBEO DE LODOS A MESAS	10	9
31	MESAS ESPESADORAS	8	4
	CENTRIFUGAS DESHIDRATA DORAS	4	4
	SILOS DE ALMACENAMIENTO	6	6
	PREPARACIÓN DE POLIMERO A MESAS ESPESADORAS	3	2
35	BOMBAS DE POLIMERO A MESAS ESPESADORAS	10	9
	PREPARACIÓN DE POLIMERO A CENTRIFUGAS DESHIDRATADORAS	3	2
	BOMBAS DE POLIMERO A CENTRIFUGAS DESHIDRATADORAS	4	2
38	DIGESTORES	8	8
39	BOMBAS DE LODO MIXTO A DIGESTION	10	6
40	COMPRESORES DE BIOGÁS	10	10
41	GASOMETROS	2	2
42	TEAS	2	2
43	CALDERAS	5	5
44	MOTOGENERADORES	5	3
	BOMBAS DE EFLUENTE	6	5
	BOMBAS DE PLUVIALES	16	16
	SUBESTACIONES ELÉCTRICAS PRINCIPALES	3	3
	SUBESTACIÓN ALTA TENSIÓN 115 KV	1	1
49	MEDIDORES DE CAUDAL DE AGUA CRUDA	10	10
50	MEDIDORES DE CAUDAL DE AGUA TRATADA	6	6
51	EQUIPOS DE SUPERVISIÓN SALA DE CONTROL	4	4
	NEVERAS TOMA MUESTRAS	2	2
	SISTEMAS DE DESODORIZACIÓN	3	0
	MEDIDORES DE NIVEL CANAL SALITRE	1	1
	MEDIDOR NIVEL FOSO A GUA CRUDA	2	2
	BOMBEO AGUA POTABLE	1	1
	BOMBEO AGUA DE SERVICIO	i	i
	RED CONTRAINCENDIOS DETECCIÓN	19	19
	RED CONTRAINCENDIOS BETECCIÓN RED CONTRAINCENDIOS ROCIADORES	16	16

PTAR fase II

Cuadro 4.4-2 Equipos Fuera de Servicio o con Operación Restringida PTAR fase I

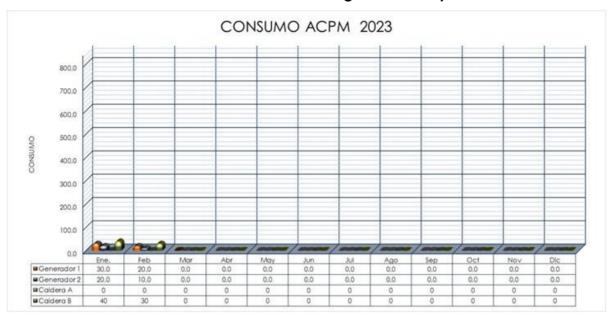
TAG	EQUIPO	DESCRIPCION	COMENTARIO	SOLUCION
018C02A	ISUMINISTRO ATRE ARRANQUE	Falla eléctrica, no comprime	cuenta con los repuestos para	El equipo se encuentra en la planta pendiente montaje en sitio

De acuerdo a los cuadros anteriores se garantizó la disponibilidad de los equipos críticos para la operación por parte de mantenimiento.

4.5 COSTOS

Como parte fundamental de la gestión de mantenimiento se relacionan los materiales utilizados durante el mes de marzo, en las labores de mantenimiento y operación de la planta, igualmente se relacionan los costos de mano de obra.

- Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I
- Anexo Cap 4_ 2 Costo energía eléctrica comprada por KWH desde enero 2020 PTAR fase I
- Anexo Cap 4_ 3 Consumo de energía eléctrica desde diciembre de 2022 PTAR fase II
- Anexo Cap 4_ 4 Costo energía eléctrica comprada por KWH desde diciembre de 2022 PTAR fase II
- Anexo Cap 4_ 5 Descripción del mantenimiento por zonas
- Anexo Cap 4_6 Consolidado costo total por áreas
- Anexo Cap 4 7 Órdenes de Trabajo por zonas fase I
- Anexo Cap 4 8 Órdenes de Trabajo generadas PTAR fase II enero 2023
- Anexo Cap 4 9 Indicadores de Gestión


4.6 GESTIÓN DE ENERGÍA

La gráfica 4.6-1 incorpora el consumo total de ACPM de la Planta, discriminando este valor para cada uno de los generadores y de igual forma para calderas.

En la gráfica 4.6-2 se presenta el consumo de energía eléctrica de la Planta desde enero de 2020 para la PTAR fase I.

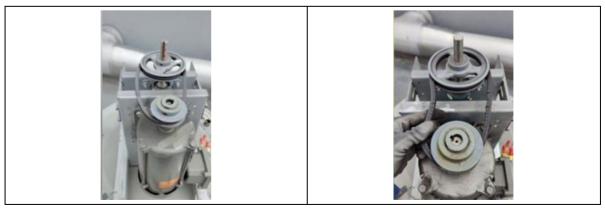
En la gráfica 4.6-3 se presenta el consumo de energía eléctrica de la Planta desde enero de 2020 para la PTAR fase II.

Gráfica 4.6-1 Consumo de ACPM en los generadores y calderas 2023

Fuente: Fuente propia.

Gráfica 4.6-2 Consumo de la energía eléctrica comprada en KWH desde enero de 2020

Fuente: Factura ENEL-Codensa


Gráfica 4.6-3 consumo de energía eléctrica de la Planta desde diciembre de 2022

Fuente: Factura ENEL-Codensa

4.7 HECHOS RELEVANTES EN EL MES DE MARZO:

- Se realizaron labores de mantenimiento preventivo a los diferentes equipos de la PTAR fase I programados para el mes de octubre según modulo PM de SAP.
- 2. Se realizan mantenimientos preventivos y correctivos los cuales son atendidos por las especialidades mecánicos, eléctricos e instrumentación del área de mantenimiento a los equipos de la PTAR fase II.
 - 2.1 Se ejecuta mantenimiento preventivo al extractor tipo hongo 091XV170C ubicado en la terraza del ccm10B, se encuentra correas con desgaste y desajustadas, queda pendiente de reparación ya que no hay correa.

Fotografía 1. Mantenimiento extractor tipo hongo 091XV170C

2.2 Se realiza mantenimiento a la Bomba Purga Flotantes Secundarios 108P004A, al izarla sobre la plataforma para verificar impulsor, se encuentra cable de control y potencia cortado, esto ocasiona que ingrese agua al motor y el bobinado se queme se envía a reparación externa

Fotografía 2. Bomba Purga Flotantes Secundarios 108P004A

Fuente: Fuente propia.

2.3 En el momento de ejecutar el mantenimiento a la Bomba Vaciado Deshidratación 095P201C, se encuentra con dos fusibles quemados se realizan pruebas para ver la causa no se encuentra ningún motivo se procede a cambiarlos y queda en funcionamiento.

Fotografía 3. Mantenimiento Bomba Vaciado Deshidratación 095P201C

2.4 El MasterPact lado B CCM9 presenta fallas, se hace revisión y se extrae MasterPact, se realiza termografía no se evidencia ninguna anomalía. Se realiza limpieza, se verifican conexiones de control no se evidencia ninguna falla, se inserta MasterPact se resetean los medidores de parámetros eléctricos para realiza seguimiento a partir de la hora y así poder visualizar alguna caída de tensión.

Fotografía 4. Mantenimiento MasterPact lado B CCM9

Fuente: Fuente propia.

2.5 Se realiza mantenimiento al agitador sumergible 060A002B, se encuentra que una bobina abierta he indica perdida de fase.

Fotografía 5. Mantenimiento agitador sumergible 060A002B

- 2.6 En el momento de ejecutar el mantenimiento a la Bomba Lodos Mixtos a Digestores 090P102B, se realiza corrección de gaveta ya que el guarda motor se encontraba en mal posición y no dejaba sacar la Gaveta se extrae el guarda motor y se extrae la gaveta se realiza el ajuste del equipo y queda en funcionamiento.
- 2.7 Durante la ejecución del plan de mantenimiento del mes de marzo se presentó atascamiento de la reja de gruesos 051DGL001C, para dar solución a esta novedad el equipo mecánico realiza el achique del pozo de la reja y se realiza la reparación la reja quedo funcionando correctamente.

Fotografía 6. Mantenimiento reja de gruesos 051DGL001C

Fuente: Fuente propia.

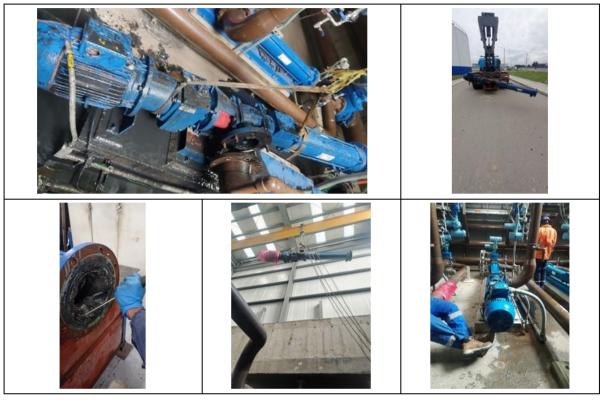
2.8 Se realiza acompañamiento al contratista KAESER en el mantenimiento de los compresores, el cual está realizando un mantenimiento general a todos equipos instalados en la PTAR fase II, se reemplazaron diferentes elementos como los filtros de aire y aceite se deja los compresores en condiciones operativas, así se da cumplimiento a los mantenimientos preventivos sugeridos por el fabricante.

Fotografía 7. Mantenimiento preventivo compresores KAESER

Fuente: Fuente propia.

2.9 Se realiza reparación en la línea de agua potable de la planta por ruptura en la tubería, se realiza reparación de tubería de agua potable de 6" dejándola subsanado la falla al 100 %.

Fotografía 8. Mantenimiento línea de agua potable



2.10 Se realizo mantenimiento correctivo a la bomba de desplazamiento positivo 077P001B, reportada por baja eficiencia, esto se debe a degaste del estator e impulsor. Esta bomba se trasladó al taller y se realiza el mantenimiento general y se reinstala dejando la operativa y con la eficiencia correspondiente.

Fotografía 9. Mantenimiento bomba de desplazamiento positivo 077P001B

Fuente: Fuente propia.

2.11 Se atendió solicitud de mantenimiento desarenador 54.3, 054DSB001C por falla en platina que sujeta sensor final de carrera retroceso se ajusta platinas, conector cable de alimentación y nivel del sensor se realiza prueba de funcionamiento y queda operativo. también se ajusta muletilla de manual automático que se encontró suelta

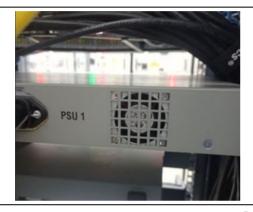
Fotografía 10. Mantenimiento puente desarenador 54,3

2.12 Se realiza mantenimiento correctivo a tomador de muestra de agua cruda por solicitud de Operaciones el cual presenta falla en el automatismo del muestreo, se realiza verificación de señales de controlador con encoder, se realiza limpieza, ajusté y testeo de sensor óptico de posicionamiento, se verifica estado físico de las levas del encoder, se limpia y se ajustan mangueras del compresor/bomba de vacío, se verifica y ajusta configuración general de muestreo, se entregó a jefe de turno funcionado y programado

Fotografía 11. Mantenimiento tomador de muestra de agua cruda

Fuente: Fuente propia

2.13 Se atiende solicitud, medición constante en SCADA, se revisa instrumento en campo se encuentra operando con normalidad, medida diferente visualizada en SCADA, Caudalímetro Electromagnético 091FIT201A en las mismas condiciones, se revisan instrumentos DP de la zona 91.2 no se encuentran comunicando, se revisa CCM10B se encuentra modulo DP/ETH en falla, se requiere cambio de modulo, por el momento visualizar medición directamente en campo


Fotografía 12. Mantenimiento Caudalímetro Electromagnético 091FIT201A

2.14 Se realiza mantenimiento por falla de comunicación en válvula de 3 vías de anillo de calefacción motogenerador y calderas 071MRV001A/E y 002A/E también reporta falla de comunicación en bomba de lodo 090P102D y se evidencia que el swicht de gabinete de comunicación EED-GC1 swicht allied telesis (este swicht envia los estados de modo de operación de las bombas y confirmación de marcha entré otros, también conecta la Master station 3 con Scada) se encontró fuente PSU1 en falla y continuamente apaga el swicht, también la fuente redundancia PSU2 estaba desconectada, se conecta y se deja operando con la fuente 2 y continúa en seguimiento

Fotografía 13. Mantenimiento válvula de 3 vías de anillo de calefacción motogenerador y calderas 071MRV001A/E y 002A/E

Fuente: Fuente propia

2.15 Se continua intervención en la zona de lodos juntions box PA 090JPA002, 090JPA004, no se encuentran encendidas alimentación únicamente 090JPA001, 090JPA003, Se verifica cableado estando ok, se verifica encendido de JPA apagadas conectando alimentación principal, estado ok, se verifica tensión de alimentación se evidencia bajo voltaje de entrada 16 V siendo este el mínimo según data sheet, el voltaje no es suficiente para el encendido de las juntions box siguientes siendo 090JPA002, 090JPA004, se verifica modulo PA/ETH en tablero de control CCM9, modulo alimentado con 20 V, baja alimentación, se verifica fuente DC variable de 24 a 28 V, PS5-B1C, fuente con salida de 20 V, no realiza variación de voltaje, fuente dañada, se realiza conexion de alimentación con fuente siguiente PS6-B1D, voltaje de salida 28 V, se energiza modulo con el voltaje suficiente otra el encendido de iuntions box 090JPA002, 090JPA004, se recomienda realizar cambio de fuente DC para dejar independiente cada módulo PA/ETH. Se verifica comunicación en panel view y SCADA, operando con normalidad

Fotografía 14. Mantenimiento modulo PROFIBUS 090JPA001 / 4

Fuente: Fuente propia

2.16 Se atiende solicitud de mantenimiento para los instrumentos 051DGL012B/C y 051DGL011J. Se evidencia un mal ajuste en la posición de los sensores, con apoyo del departamento mecánico, se adapta un buje para asegurar la posición del elemento sensor 051LE012B, al momento, opera con normalidad y se deja en seguimiento. Para el caso del sensor 051LE012C, se realiza limpieza general y se ajusta la posición del elemento, quedando operativo e igualmente en pruebas

Fotografía 15. Mantenimiento instrumentos 051DGL012B/C y 051DGL011J

Fuente: Fuente propia

2.17 Se atiende solicitud puente desarenador 54.1, 054DSB001A, sensor inductivo dañado, se realiza cambio de sensor inductivo final de carrera, se instala sensor nuevo, queda operativo y en seguimiento

Fotografía 16. Mantenimiento válvula de 3 vías de anillo de calefacción motogenerador y calderas 071MRV001A/E y 002A/E

Fuente: Fuente propia

2.18 Se realiza desmonte de tarjeta controladora del sensor de flujo 065FIT302A y 065 FIT302B el cual se encontró con humedad, sulfatación y componentes de la misma tarjeta deteriorados por el salitre y humedad, se realiza limpieza corrección de soldaduras cambio de conexiones se aísla con silicona por los pasos del cableado y tapas para evitar ingreso de humedad se reinstala y se hace prueba con scada queda operativos

Fotografía 17. Mantenimiento tarjeta controladora del sensor de flujo 065FIT302A y 065 FIT302B

- 2.19 Se atiende solicitud de coordinación de Instrumentación para revisar la Instrumentación de las mesas espesadoras 076DEP001A/F, Se encuentra:
- Mesa C con el sensor de nivel de lodo desajustado. Se ajusta.
- Mesa D con sensores de guiado de telas atascados, válvulas 3/2 vías de centrado de tela no están, solenoide de paso de agua de lavado de tela no está.
- Mesa F con el tablero neumático roto de la parte de abajo.
- Mesa G con la tela dañada, apretando los actuadores neumáticos y sensores de guiado de tela.
- Mesa H con sensores de guiado de tela atascados, la electroválvula de paso de aire no sirve, la válvula de paso de agua por parte mecánica está dañada

5. GESTIÓN AMBIENTAL Y SOCIAL

ACTIVIDADES AMBIENTALES

En este capítulo se describen las actividades de gestión ambiental y social realizadas dentro del cumplimiento de los requisitos legales en la PTAR El Salitre (Plan de Manejo Ambiental, Licencia Ambiental y Resoluciones posteriores) y en la zona de recepción y secado de Biosólido del predio El Corzo (Resolución 3292 de diciembre de 2006, expedida por la CAR) y su aprovechamiento en el Predio La Magdalena autorizado por medio de la Resolución 13001 de 2016 y con la modificación menor bajo el comunicado de la ANLA 2020121983-2-000 del 29 de julio de 2020.

5.1 PLAN DE MANEJO FORESTAL Y PAISAJÍSTICO

El Plan de Manejo Forestal y Paisajístico, plantea una serie de medidas encaminadas a revegetalizar, embellecer y generar barreras ambientales, teniendo en cuenta no sólo las funciones y objetivos que debe cumplir la vegetación como elemento de adecuación y conformación paisajística, sino además como elemento de protección compuesto por franjas de aislamiento visual, sonoro, olfativo y conservación ambiental; buscando una combinación de tonos, texturas y formas adecuadas que realcen y caractericen cada área de manejo, e implementando acciones enfocadas a mitigar y compensar el impacto causado por la operación de la PTAR El Salitre.

Cuadro 5.1-1 Barreras forestales y ambientales de la PTAR El Salitre

Barrera	Área (m²)
Interna	12.104
B1	17.760
B2 y 3 antigua	12.767
B3 nueva	7.657
B5	2.557
В6	7.557
B1-6	3.654
TOTAL	61.499

Fuente: Elaboración propia

En la Imagen 5.1-1 se muestra la ubicación espacial de cada una de las barreras ambientales con las que cuenta la PTAR El Salitre.

Barrera 6

Barrera 6

Barrera 7

Barrera 2

Barrera 3

Imagen 5.1-1 Localización de las barreras ambientales en la PTAR Salitre

Fuente: propia, tomada de: ArcGIS, 2021

La Planta de Tratamiento de Aguas Residuales El Salitre – PTAR, cuenta con barreras ambientales y zonas de jardines que requieren complementarse y desarrollar actividades de mantenimiento periódico y básico que faciliten el cumplimiento del propósito ambiental para el cual fueron establecidas.

En los predios de la PTAR, se encuentran ubicados 5540 árboles vivos y 666 m² de jardines.

En la siguiente tabla se relaciona la distribución de los árboles por cada una de las barreras ambientales:

Cuadro 5.1-2 Distribución de número de árboles por cada una de las barreras ambientales de la PTAR El Salitre

Barrera	Número de árboles vivos
Interna	335
B1	1509
B2	625
В3	1410
B5	708
B6 +B1-6	953
TOTAL	5540

Fuente: Inventario Forestal-Consorcio Mantenimiento Forestales 2021

5.1.1 Actividades de Mantenimiento y Establecimiento

En el mes de marzo se realizaron las siguientes actividades por parte del contratista Isaías Godoy bajo el contrato No 1-05-25596-1104-2022 para de esta manera dar cumplimiento al objeto del contrato "Mantenimiento de barreras forestales en la PTAR El Salitre y predios de aprovechamiento de los biosólidos de la PTAR El Salitre"

5.1.1.1 Fertilización

Para el mes de marzo se realizó la actividad de fertilización a 796 individuos arbóreos como se observa en la tabla 3. Esta actividad consiste en aplicar en la base del individuo una cantidad específica de fertilizante, el cual es una sustancia rica en nutrientes, empleada para mejorar las características del suelo, generando así un óptimo desarrollo de los individuos.

Cuadro 5.1-3 Cantidad de árboles fertilizados por barrera ambiental

ZONA	ESPECIE	CANTIDAD POR SP (UND)	CANTIDAD (UND)	TOTAL (UND)
	Myrsine guianensis (Aubl.) Kuntze	93		
D /	Oreopanax bogotensis Cuatrec	35	320	
Barrera 6	Alnus acuminata Kunth	113	320	
	Escallonia pendula (Ruiz & Pav.) Pers.	79]	
	Dodonaea viscosa Jacq	84		
	Pittosporum undulatum Vent	68]	
Dradia El Carra	Tecoma stans (L.) Kunth	29	276	
Predio El Corzo	Lafoensia acuminata (Ruiz & Pav.) DC.	23	2/6	
	Prunus serotina Ehrh	53]	
	Xylosma spiculifera (Tul.) Triana & Planch.	19	1	
	Tecoma stans (L.) Kunth	8		1
	Escallonia paniculata	15]	
	Syzygium paniculatum Gaertn.	11	1	
	Pittosporum undulatum Vent	5	1	796
	Alnus acuminata Kunth	7		
	Lafoensia acuminata (Ruiz & Pav.) DC.	9	100	
	Salix babylonica L.	8		
Predio La	Croton bogotanus Cuatrec	6		
Magdalena	Escallonia pendula (Ruiz & Pav.) Pers.	5		
	Abutilon ×hybridum V oss	4		
	Citharexylum subflavescens S.F.Blake	5		
	Senna viarum (Little) H.S.Irwin & Barneby	5	1	
	Prunus serotina Ehrh	6		
	Sambucus nigra L	4	1	
	Myrcianthes leucoxyla (Ortega) McVaugh	2		
	Alnus acuminata Kunth	12		1
	Myrcianthes leucoxyla (Ortega)	10		
	McVaugh	12		
0	Ficus tequendamae Dugand	9	100	
Siembra en	Prunus serotina Ehrh	12		
barrera 1-6 y barrera 1	Syzygium paniculatum Gaertn.	16		
Dallela I	Schinus molle L.	12		
	Quercus humboldtii Bonpl.	12]	
	Croton bogotanus Cuatrec	12]	
	Lafoensia acuminata (Ruiz & Pav.) DC.	3		

Fuente: Isaías Godoy marzo 2023

5.1.1.2 Plateo

Para el mes de marzo se realizó la actividad de plateo a 580 individuos arbóreos de las diferentes barreras, tiene como objeto la limpieza de especies invasoras y herbáceas, además de la eliminación de materiales extraños presentes en un área de un metro cuadrado en la base circundante de cada individuo arbóreo, esta actividad se realizó en la PTAR El Salitre a los árboles plantados en la barrera 1-6, barrera 1 y barrera 3; y en los predios El Corzo y La Magdalena cuadro 5.1-4 se muestra la cantidad de individuos intervenidos.

Cuadro 5.1-4 Cantidad de árboles plateados por zona

ZONA	ESPECIE	CANTIDAD (UND)	TOTAL (UND)
	Lafoensia acuminata (Ruiz & Pav.) DC.		
Barrera 1-6	Quercus humboldtii Bonpl.	25	
	Schinus molle L.		
	Syzygium paniculatum Gaertn.		
	Alnus acuminata Kunth		
	Prunus serotina Ehrh		
Barrera 3	Lafoensia acuminata (Ruiz & Pav.) DC.	16	
	Ficus tequendamae Dugand		
	Croton bogotanus Cuatrec		
	Myrcianthes leucoxyla (Ortega) McVaugh		
	Croton bogotanus Cuatrec		580
	Syzygium paniculatum Gaertn.		
Barrera 1	Prunus serotina Ehrh	59	
	Myrcianthes leucoxyla (Ortega) McVaugh		
	Lafoensia acuminata (Ruiz & Pav.) DC.		
	Dodonaea viscosa Jacq		
	Pittosporum undulatum Vent	_	
Predio El Corzo	Tecoma stans (L.) Kunth	380	
	Lafoensia acuminata (Ruiz & Pav.) DC.		
	Prunus serotina Ehrh		
	Tecoma stans (L.) Kunth		
Predio La	Escallonia paniculata	100	
Magdalena	Syzygium paniculatum Gaertn.	100	
	Pittosporum undulatum Vent		

Fuente: Isaías Godoy marzo 2023

5.1.1.3 Poda de mejoramiento de ramas altas

Para el mes de marzo se llevó a cabo la intervención a 1 individuo arbóreo al cual se le realizó la eliminación de ramas superiores a los 2 metros de altura con el fin de mejorar la arquitectura y desarrollo de los individuos, es decir cortar ramas muertas, enfermas, dañadas por los fuertes vientos, ayudar en la estabilización de este, generar un realce de la copa o aclarar el área para los individuos aledaños. Esta actividad se desarrolló en la barrera 6 de la PTAR El Salitre.

Cuadro 5.1-5 Poda de ramas altas por barrera

ACTIVIDAD	BARRERA	ESPECIE	CANTIDAD POR ESPECIE (UND)	TOTAL, POR BARRERA
Poda de mejoramiento (ramas altas) Superior 2 m altura	BARRERA INTERNA	Acacia melanoxylon R.BR.	1	1
TOTAL			1	

5.1.1.4 Corte de césped.

Para el mes de marzo se realizó la actividad de corte de césped a 97.178 m² como se observa en el cuadro 5.1_7 El corte de césped consiste mediante ayuda mecánica realizar el corte de pasto a ras de piso con 5 cm máximo de altura. Hay que tener en cuenta las posibles variaciones climáticas que podrían llegar a afectar la realización de la actividad, variaciones climáticas tales como la lluvia.

Cuadro 5.1-6 Área de corte de césped por barrera

ACTIVIDAD	BARRERA	ÁREA (M²)	TOTAL
	Zona interna PTAR	32.000	
	Barrera 1	6.459	
	Barrera unión 1-6	311	
	Barrera 2	1.775	
	Barrera 3 Antigua	507	
Corte de	Barrera 3 nueva	3.721	
césped.	Barrera 5	2.264	
Comprende	Barrera 6	7.557	
(Corte, acopio,	Predio La Magdalena	624	97.178
cargue y	Predio El Corzo	3.340	
disposición de	Pretratamiento zona 1	3.015	
césped)	Pretratamiento zona 2	3.084	
	Zona primarios	4.078	
	Talud barrera 2 y 3	18.416	
	Talud biológicos	8.784	
	Zona Ortiga	1.025	
	Zona de poda B1	218	

Fuente: Isaías Godoy marzo 2023

5.1.1.5 Manejo fitosanitario

Para el mes de marzo se realizó la actividad de manejo fitosanitario a 700 individuos arbóreos de las diferentes barreras como se observa en el cuadro 5.1-8 Esta actividad se basa en el control, prevención, curación y eliminación de aquellas plagas y enfermedades que puedan estar afectando el estado sanitario del material vegetal presente en la barrera 1, barrera 5 y barrera 6 de la PTAR El Salitre y los predios El Corzo y La Magdalena, se realiza mediante el uso de funguicidas e insecticidas.

Cuadro 5.1-7 Cantidad de árboles fumigados por zona

ACTIVIDAD	ZONA	ESPECIE	CANTIDAD POR SP(UND)	CANTIDAD (UND)	TOTAL (UND)
		Myrsine guianensis (Aubl.) Kuntze	93		•
		Oreopanax bogotensis Cuatrec	35	200	
	Barrera 6	Alnus acuminata Kunth	103	300	
		Escallonia pendula (Ruiz & Pav.) Pers.	69		
		Dodonaea viscosa Jacq	64		
		Pittosporum undulatum Vent	48	48	
	Predio El	Tecoma stans (L.) Kunth	23	200	
	Corzo	Lafoensia acuminata (Ruiz & Pav.) DC.	18	200	
		Prunus serotina Ehrh	33		
		Xylosma spiculifera (Tul.) Triana & Planch.	14		
		Tecoma stans (L.)Kunth	8		
		Escallonia paniculata	15		
		Syzygium paniculatum Gaertn.	11		
		Pittosporum undulatum Vent	5		700
	Predio La Magdalena	Alnus acuminata Kunth	7		
		Lafoensia acuminata (Ruiz & Pav.) DC.	9	100	
A design a la fit a serie it errie		Salix babylonica L.	8		
Manejo fitosanitario		Croton bogotanus Cuatrec	6		
		Escallonia pendula (Ruiz & Pav.) Pers.	5		
		Abutilon ×hybridum Voss	4		
		Citharexylum subflavescens S.F.Blake	5		
		Senna viarum (Little) H.S.Irwin & Barneby	5		
		Prunus serotina Ehrh	6		1
		Sambucus nigra L	4		
		Myrcianthes leucoxyla (Ortega) McVaugh	2		
		Alnus acuminata Kunth	12		
		Myrcianthes leucoxyla (Ortega) McVaugh	12		
		Ficus tequendamae Dugand	9		
	Siembra en	Prunus serotina Ehrh	12	100	
	barrera 1-6 y	Syzygium paniculatum Gaertn.	16		
	barrera 1	Schinus molle L.	12		
		Quercus humboldtii Bonpl.	12		
		Croton bogotanus Cuatrec	12		
		Lafoensia acuminata (Ruiz & Pav.) DC.	3		

5.1.1.6 Mantenimiento de jardinería

Durante el mes reportado se llevó a cabo el octavo ciclo de mantenimiento de jardinería. El desarrollo de esta actividad comprende la limpieza del terreno, la cual consiste en eliminación de pasto seco, maleza y residuos ordinarios de alrededor del jardín; poda de jardinería, en la cual mediante cortes con ayuda mecánica y manual se le da forma a los arbustos, se mejoran las flores y se brinda una regeneración de rebrotes; riego con el fin de suministrar hidratación necesaria para garantizar la supervivencia y respuesta ante los procesos de corte y fertilización, para aumentar los nutrientes de las plantas. Esta actividad se realizó en los jardines ubicados dentro de las áreas circundantes a las estructuras de la Fase I llevando a cabo un total de 2.677 m².

Cuadro 5.1-8 Área de mantenimiento de jardinería

MANTENIMIENTO DE JARDINERÍA	ÁREA M ²
Limpieza de terreno	681
Poda	681
Fertilización	681
Riego	634
TOTAL	2.677

5.1.1.7 Suministro de tierra negra

Durante el mes de marzo se realizó la actividad de suministro de tierra negra, esta actividad consistió en el suministro de 6 m3 de sustrato el cual está compuesto por humus y cascarilla de arroz; esta tierra se usó para rellenar los jardines ubicados alrededor de fase I y para los individuos arbóreos ubicados al lado del edificio administrativo de fase II.

5.1.1.8 Control de especies invasoras y exóticas

Durante el mes de marzo se realizó la actividad de control de especies invasoras, esta actividad consiste en erradicar y controlar especies como caña de azúcar, manualmente, evitando así la dispersión y propagación de semillas para evitar que esta especie se desarrolle nuevamente en el área, además de generar espacios para futuras siembras. Para este mes se reportó la actividad en un total de 235m².

Cuadro 5.1-9 Control de especies invasoras por área

ACTIVIDAD	BARRERA	ÁREA (m²)	ESPECIE
Control de especies invasoras en las áreas seleccionadas al interior de la PTAR como caña de azúcar y ojo de poeta, en el área seleccionada esta actividad incluye (Corte, acopio, cargue y disposición de residuos)	BARRERA 1	235	Caña de azúcar (Saccharum officinarum L.)

Fuente: Isaías Godoy marzo 2023

5.1.1.9 Control de Acacias de 11-20 m de altura

Durante el mes de marzo se realizó la actividad de control de Acacias entre 11 y 20 m de alto, se intervinieron un total de 23 individuos como se describe en el cuadro 5.1.12 estas intervenciones se realizan porque presentaba mal anclaje, peligro de volcamiento y mal estado tanto físico como sanitario los cuales representan un peligro para los demás individuos de las barreras.

Cuadro 5.1-10 Control de Acacias de 11 a 20 m de altura

ZONA	ESPECIE	CANTIDAD POR SP(UND)	CANTIDAD (UND)	TOTAL (UND)
BARRERA 6	Acacia decurrens Willd. (Acacia negra)	16	16	
BARRERA 5	Acacia melanoxylon R.Br. (Acacia japonesa)	6	7	23
DARRERA 3	Paraserianthes lophantha (Willd.) I.C.Nielsen (Acacia baracatinga)	1	/	

Fuente: Isaías Godoy marzo 2023

5.1.1.1 Control de Acacias de 21-30 m de altura

Durante el mes de marzo se realizó la actividad de control de Acacias entre 21 y 30 m de alto, se intervinieron un total de 18 individuos, de los cuales 11 fueron Acacias y un (1) Eucalipto como se describe en el cuadro 5.1-13, estas intervenciones se realizan porque presentaba mal anclaje, peligro de volcamiento y mal estado tanto físico como sanitario los cuales representan un peligro para los demás individuos de las barreras.

Cuadro 5.1-11 Control de Acacias de 21 a 30 m de altura

ZONA	ESPECIE	CANTIDAD POR SP(UND)	CANTIDAD (UND)	TOTAL (UND)
DA DDEDA /	Acacia decurrens Willd. (Acacia negra)	12	13	
BARRERA 6	Salix humboldtiana Willd. (Sauce llorón)	1	13	10
BARRERA 5	Acacia decurrens Willd. (Acacia negra)	2	5	18
BARRERA 5	Acacia melanoxylon R.Br. (Acacia japonesa)	3	5	

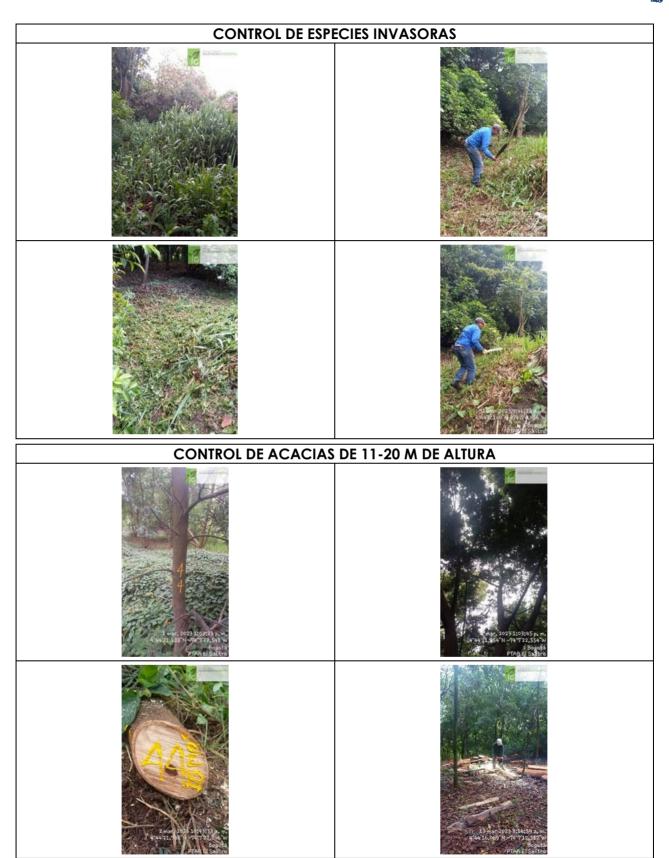
Fuente: Isaías Godoy marzo 2023

5.1.1.2 Presencia de fauna silvestre

Durante las actividades de mantenimiento dentro de las barreras forestales para el mes de marzo se pudo apreciar fauna silvestre que habita estas zonas, como por ejemplo, curies (Cavia porcellus), garza (Ardea alba), tinguas (Rallus semiplumbeus) y rana sabanera (Dendropsophus molitor), con el fin de contribuir a la protección de estas especies, previo a las actividades silviculturales que se ejecutaron, se realizó ahuyentamiento de fauna, adicionalmente se diligencio un formato de registro de fauna, debido a que estas especies son de vital importancia para restauración ecológica de la zona, así como los beneficios ecológicos que aportan a las barreras.

Todas las actividades descritas anteriormente se pueden apreciar en el siguiente registro fotográfico.

Fotografía 18. Registro fotográfico actividades de mantenimiento y establecimiento



CORTE DE CÉSPED MANEJO FITOSANITARIO

MANTENIMIENTO DE JARDENERÍA SUMINISTRO DE TIERRA NEGRA

5.2 OPTIMIZACIÓN DEL USO DEL AGUA

El programa de ahorro y uso eficiente del agua tiene como objetivo mantener el consumo de agua en los mínimos posibles durante cada actividad identificada en la PTAR El Salitre.

Durante el presente mes se continuaron las medidas de control y seguimiento sobre el consumo de agua potable al interior de la PTAR Fase I, estas se realizaron por medio de inspecciones visuales donde se verificó que los puntos de suministro hidráulico se encontraran en buen estado. Así mismo se tomó lectura de los medidores internos instalados con el objeto de determinar el consumo total y en cada área de la PTAR El Salitre Fase I.

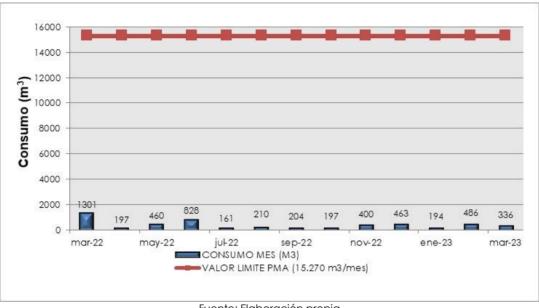
En el Cuadro 5.2-1 Se muestra el registro del consumo de agua potable en cada área de la PTAR durante el mes de marzo de 2023.

Cuadro 5.2-1 Cantidades Consumo de agua potable marzo 2023 en la Fase I.

UBICACIÓN DEL MEDIDOR	CONSUMO m ³
CASINO	91
RED C.I.	43
DECANTADORES 5.1	0
DECANTADORES 5.2	0
DECANTADORES 5.3	0,7
DECANTADORES 5.4	9,4
REJAS GRUESAS	0
REJAS FINAS	1,6
PRETRATA MIENTO	0
DESHIDRATACION	1,1
CONT. TRANSP	14,4
EDIF ADMIN	133
ESPESA DORES	0
GALERIA ORIENTAL	0
GALERIA OCCIDENTAL	0,1
JARDINERIA	41,6
PORTERIA	0

Fuente: Elaboración propia

Tal como se observa en la Grafica 5.2-1 los principales consumos de agua potable se dieron para el área del Edificio Administrativo, donde se encuentra el laboratorio de la planta, las oficinas de la División Social y los baños y vestuarios para el personal femenino de la planta, seguido del Casino en la cual se hace la preparación de los alimentos para el personal de la planta, en tercer lugar, la RED C.I., donde se realizaron actividades de lavado y destaponamiento de tuberías de Pretratamiento Fase 1 y actividades de limpieza en la zona. Los consumos durante el mes de marzo en las diferentes zonas han disminuido debido a que actualmente el caudal de ingreso se está tratando en su totalidad por la PTAR El Salitre Fase II.


Gráfica 5.2-1 Consumo de agua potable por áreas de la PTAR Fase I marzo de 2023

Fuente: Elaboración propia

A continuación, se presenta en la gráfica 5.2-2 el comportamiento del consumo mensual total, incluyendo las pérdidas del sistema, deducidas de los registros del macromedidor registrando 336 m³ de consumo en el mes de marzo, cumpliendo así con el límite máximo fijado en el PMA el cual debe ser <15240m³/mes (línea roja).

Gráfica 5.2-2 Consumo de agua potable de la PTAR Fase I periodo (mar/2022 a mar/2023)

Fuente: Elaboración propia

En la Grafica 5.2-3 se presenta el consumo mensual que se registra de la PTAR Salitre Fase II desde el mes de marzo del 2022. El consumo de agua potable para el mes de marzo fue de 7894 m³, consumo que se da por actividades operativas y de revisión en el macromedidor en la Fase II.

Gráfica 5.2-3 Consumo de aqua potable de la PTAR Salitre Fase II

Fuente: Elaboración propia

Nota: dado a las diferentes variaciones que se presenta en los consumos en la PTAR El Salitre, la División Ambiental y Social solicitó revisión y evaluación al Acueducto del macromedidor ubicado en Fase II, el día 9 de febrero de 2023 se realizaron las diferentes pruebas por parte del Laboratorio del Acueducto evidenciándose un desgaste en el medidor, motivo por el cual se debe cambiar, actualmente continuamos a la espera del cambio de medidor.

5.3 CONTROL DEL TRANSPORTE DE BIOSÓLIDOS

La ruta de transporte se realizó conforme a lo establecido en el Plan de Manejo Ambiental para el predio El Corzo I: "Aprovechamiento del biosólido en mezcla con suelo para la cobertura del predio El Corzo I", aprobado por la Resolución CAR 3292 de diciembre de 2006, en diciembre del 2017 se culminó el aprovechamiento y desde ese mismo mes se inicia el aprovechamiento en el predio La Magdalena el cual fue autorizado por medio de la Resolución 1301 de 2016 emitido por la Autoridad Nacional Licencias Ambientales y con la modificación menor bajo el comunicado de la ANLA 2020121983-2-000 del 29 de julio de 2020. Este predio está ubicado a 4 km del predio El Corzo el cual es usado para la recepción y secado del biosólido proveniente de la PTAR El Salitre, y el cual posteriormente es llevado hasta el predio La Magdalena para su aprovechamiento.

Durante este mes el transporte de biosólido desde la PTAR El Salitre hasta el predio El Corzo y posteriormente hasta el predio La Magdalena se realizó a través de volquetas con capacidad de 15 m³ las cuales cumplieron con las especificaciones establecidas por la Licencia Ambiental y las normas de tránsito.

Coogle

Function Characters (Consultant)

Imagen 5.3-1 Localización Predios El Corzo y La Magdalena

Fuente: Google Earth

5.4 PLAN DE USO BENÉFICO DE LOS LODOS

El biosólido de la PTAR El Salitre generado para el mes de septiembre es proveniente de la Fase II, por parte de la Fase I desde el día 25 de septiembre de 2021 no se está generando biosólido. Para la PTAR El Salitre el biosólido es clasificado según el Decreto 1287 del 10 de julio de 2014 establecido por el Ministerio de Vivienda, Ciudad y Territorio "Por el cual se establecen criterios para el uso de los biosólidos generados en plantas de tratamiento de aguas residuales municipales" que incorporó gran parte de las disposiciones contenidas en la norma US EPA 40 CFR part 503, e incluyó algunos requerimientos adicionales, de igual manera al aplicar esta regulación al biosólido obtenido en la PTAR El Salitre se evidencia que los parámetros fisicoquímicos se encuentran dentro del límite de biosólido Tipo B.

Con base en los criterios para el aprovechamiento de las distintas clases de biosólido, establecidos en el Decreto 1287 de 2014, la PTAR El Salitre realiza aprovechamiento del biosólido con mezcla de suelo como cobertura final para el restablecimiento de la cobertura vegetal del predio La Magdalena.

Esta actividad fue autorizada por la Autoridad Nacional de Licencias Ambientales – ANLA a través de la Resolución 1301 de 2016 y con la modificación menor bajo el comunicado de la ANLA 2020121983-2-000 del 29 de julio de 2020; es así como desde el mes de diciembre de 2017 se inició al aprovechamiento del biosólido en este predio propiedad de la EAAB –ESP, el cual se encuentra localizado al suroccidente de la ciudad en los límites de las localidades de Kennedy y Bosa el cual fue empleado para la disposición de los sobrantes de excavación de las obras de alcantarillado del Tintal y del Canal Cundinamarca.

Las características fisicoquímicas del biosólido de la PTAR El Salitre presentan concentraciones típicas de enmiendas orgánicas en cuanto a sus formas nitrógeno, fósforo y sólidos volátiles que hacen de este material muy útil en aplicaciones agrícolas y no agrícolas, como es el caso del aprovechamiento actual llevado a cabo en el predio La Magdalena donde se ha generado la cobertura vegetal de manera rápida y con una buena estructura, textura y apariencia de los pastos (lo cual se comprueba mediante muestreos y análisis fisicoquímicos y microbiológicos realizados en diferentes puntos del predio con periodicidad anual).

El área de Gestión Ambiental de la planta realiza seguimiento al aprovechamiento del biosólido en el predio La Magdalena, en concordancia con el PMA, aprobado por la Resolución 1301 de 2016 y con la modificación menor bajo el comunicado de la ANLA 2020121983-2-000 del 29 de julio de 2020, a través de inspecciones planeadas el día 3 de marzo del 2023 el aprovechamiento del biosólido se está realizando de manera efectiva en la celda 11; se ha evidenciado un aumento debido a la puesta en marcha de la Fase II de la PTAR el Salitre, incrementando el flujo de volquetas y material para aprovechamiento, de igual manera en las celdas intervenidas se evidencia que han presentado un crecimiento gradual del pasto kikuyo en las diferentes celdas de aprovechamiento, así como el seguimiento a la disposición de los residuos sólidos, vectores, olores, limpieza de canaletas, vías, higiene y seguridad industrial, señalización y demarcación, máquinas y herramientas, evidenciando el cumplimiento de cada una de las actividades de seguimiento en el predio La Magdalena.

En el siguiente registro fotográfico se presenta el patio de secado y progreso del aprovechamiento en el predio.

Fotografía 19. Registro fotográfico patio de secado predio el Corzo y proceso de mezcla predio la Magdalena marzo 2023

Vista general del área de secado

Disposición de secado en módulos en la cubierta tipo invernadero

Descargue de biosólido en celda 11 La Magdalena, metodología 3:1

Labores de mezcla Aprovechamiento predio La Magdalena celda 11, metodología 3:1

Fuente: Fuente propia.

5.5 CONTROL DEL MANEJO DE RESIDUOS

La gestión de residuos en la PTAR se realiza de acuerdo con el tipo de residuos, su impacto y los requisitos normativos asociados al mismo; esta gestión se divide en residuos provenientes del sistema de tratamiento, residuos convencionales no aprovechables, residuos convencionales aprovechables y residuos peligrosos.

El almacenamiento temporal de los residuos provenientes del sistema de tratamiento (residuos de cribado, desarenado y desengrasado que no son aprovechables), se realiza en diferentes contenedores, mientras la fracción de residuos No aprovechables generados por el personal de la planta, visitantes y casino, son recogidos en bolsas negras, y posteriormente todos estos residuos son unidos y transportados hasta el relleno sanitario Doña Juana para su disposición final.

La fracción de residuos convencionales reciclables (papel, cartón, plásticos y vidrio principalmente) se separa en recipientes provistos de bolsa blanca y son posteriormente acopiados y donados a una Asociación de Recicladores sin ánimo de lucro en convenio con la EAAB.

Para el mes de marzo se realizó la recolección el día 03 del material aprovechable, por parte de la Asociación Pedro León Trabuchi.

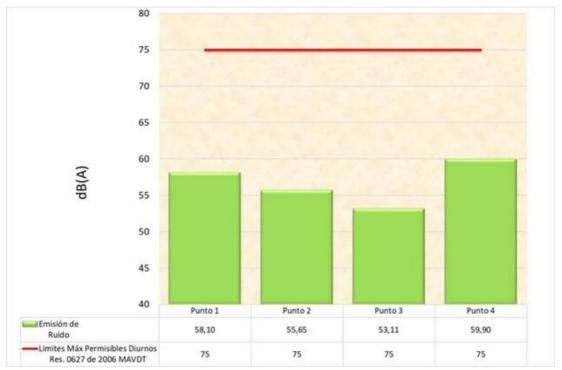
Cuadro 5.5-1 Residuos donados a la Asociación Pedro León Trabuchi

		Cantidad (Kg)		
Periodo	Tipo de residuo	Fase I	Fase II	PTAR SALITRE
	Cartón	18	100	
	Archivo	5	0	
	Plegadiza	10	10	
1/02/2023	Plástico	23	50	
а	Chatarra	2	5	
3/03/2023	PET	17	8	
	Tatuco	7	8	
	Galones (Ud)	9	0	
	Globos	0	64	
	Icopor	5	0	
Total:		96	245	341+9 galones

Fuente: Elaboración propia

5.6 CONTROL DE RUIDOS

Debido a la puesta en marcha de la Fase II de la PTAR El Salitre a partir del 24 de septiembre de 2021 fueron saliendo de operación de manera gradual estructuras y equipos como Tea, Gasómetro, Digestores 9.1, 9.2 y 9.3, Calderas A y B, Tanque almacenador de lodos y zona de deshidratación de lodos y que a la fecha se encuentran inoperativos, las cuales aportaban en la generación de ruido es por esto que a continuación se muestra información referente al último estudio realizado para el año 2022.

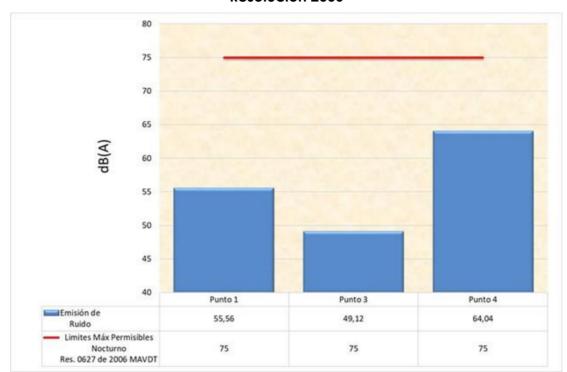

Anualmente se realiza un monitoreo de ruido por intermedio de una firma acreditada por el IDEAM, que para el año 2022 fue Ingeniería y Consultoría Global S.A.S (ICG). Los resultados del último monitoreo, realizado el día 01 de abril del 2022, demuestran que las emisiones de ruido de la planta permanecen por debajo del límite máximo establecido por la normatividad nacional, Resolución 627 de 2006 del Ministerio de Ambiente (Sector C – Ruido intermedio restringido, subsector zonas con usos industriales permitidos, Estándar máximo < 75 dB (A) jornada diurna y nocturna). En la siguiente tabla y graficas se pueden observar los resultados obtenidos.

Cuadro 5.6-1 Resultados del monitoreo diurno

Punto	LRAeq,1h (dBA)	LRAeq,1h, _{Residual} (L90, dBA)	Leq _{Emisión} (dBA)
P1	58.2	41.7	58.10
P2	56.0	44.9	55.65
Р3	54.4	48.5	53.11
P4	62.1	58.1	59.90

Fuente: Estudio de Ruido PTAR El Salitre. ICG - abril 2022

Gráfica 5.6-1 Comparación de emisión de ruido horario diurno con la Resolución 2006


Fuente: Estudio de Ruido PTAR El Salitre. ICG - abril 2022

Cuadro 5.6-2 Resultados del monitoreo nocturno

Punto	LRAeq,1h (dBA)	LRAeq,1h, _{Residual} (L90, dBA)	Leq _{Emisión} (dBA)
P1	55.7	40.7	55.56
P2	42.7	40.0	*
Р3	51.2	47.0	49.12
P4	65.3	59.3	64.04

Fuente: Estudio de Ruido PTAR El Salitre. ICG - abril 2022

^{*}En el punto 2 no fue posible calcular la emisión de ruido ya que la diferencia aritmética entre LRAeq,1h y nivel percentil L90l es igual o inferior a 3 dB(A), por lo cual el nivel de ruido de emisión (LRAeq,1h, Residual) es del orden igual o inferior al ruido residual.

Gráfica 5.6-2 Comparación de emisión de ruido horario nocturno con la Resolución 2006

Fuente: Estudio de Ruido PTAR El Salitre. ICG - abril 2022

5.7 CONTROL DE EMISIONES

Debido a la puesta en marcha de la Fase II de la PTAR El Salitre a partir del 24 de septiembre de 2021 fueron saliendo de operación de manera gradual estructuras y equipos como Tea, Gasómetro, Digestores 9.1, 9.2 y 9.3, Calderas A y B, Tanque almacenador de lodos y zona de deshidratación de lodos y que a la fecha se encuentran inoperativos, las cuales aportaban con la emisión atmosférica, es por esto que a continuación se muestra información referente al último estudio realizado, el cual fue de carácter anual en el mes de junio del 2022 por la firma acreditada por el IDEAM, Ingeniería y Consultoría Global S.A.S (ICG).

Para cuantificar las emisiones atmosféricas generadas por los equipos de electrógeneradores se realiza un monitoreo cumpliendo los requisitos establecidos en la Resolución 2153 de 2010 del Ministerio de Ambiente, la Resolución 6982 del 2011 de la Secretaría Distrital de Ambiente y la Resolución 1309 de 2010 del MAVDT. Resultando todos los parámetros por debajo de los límites máximos de emisión contemplados en las citadas normas.

Cuadro 5.7-1 Resultados de monitoreo de Emisiones / junio de 2022

Fuente Fija	Contaminante (mg/ m³)	Concentración corregida con O ₂ al 15% (mg/m3)	Resolución 1309 de 2010 MAVDT (mg/m³)
	MP	9.23	100
Electrógenerador	SO ₂	0.0086	400
1	NO_X	131.27	1800
	CO	0.028	N.A
	MP	8.61	100
Electrógenerador	SO ₂	0.0081	400
2	NO _X	122.54	1800
	CO	0.026	N.A

Fuente: Estudio de Emisiones Atmosféricas PTAR El Salitre. ICG - junio 2022

5.8 CONTROL DE OLORES

Los olores generados por los procesos de tratamiento de las aguas residuales y los lodos generados son prevenidos, mitigados y estimada su influencia sobre los barrios circunvecinos.

Son varias las medidas aplicadas que confluyen hacia la disminución de la perceptibilidad de olor dentro de las comunidades aledañas a la planta, dentro de los más importantes se cuentan:

- Mantenimiento de distancias mayores a 300 metros entre los focos de olor (estación elevadora, Espesadores, decantadores) y las áreas residenciales
- Establecimiento de barreras forestales y ambientales perimetrales
- Monitoreo constante de la eficiencia de la digestión de lodos (reducción de sólidos volátiles)
- Uso de cal para elevación de pH en caso de ser necesario (inestabilidad de lodos)

A partir del año 2021 se realizó la metodología de olores dispuesta en la Resolución 1541 de 2013 de olores ofensivos mediante la medición del parámetro Azufre Total Reducido – TRS. en cumplimiento de la Resolución No 00667 de 2021 emitido por la ANLA, dicha información se encontrará consignada en los informes de Cumplimiento Ambiental - ICA de la PTAR Salitre Fase I.

5.9 PLAN DE GESTIÓN SOCIAL

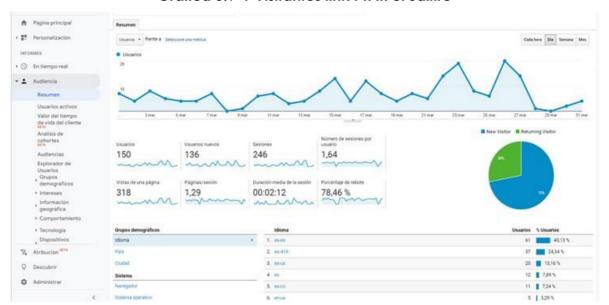
5.9.1 Componente de Comunicación e Información.

5.9.1.1 Divulgación de información por medio de plegables.

En el mes de marzo de 2023, se dio continuidad a la divulgación de información por medio de los plegables técnico y general de la PTAR El Salitre, los cuales fueron enviados mediante correo electrónico.

En total durante el mes, se envió a ciento diecinueve (119) personas el plegable técnico y el plegable con información general de la planta. Teniendo en cuenta que a cada persona le fueron remitidos los plegables, en total se logró difundir mediante correo electrónico doscientos treinta y ocho (238) plegables informativos.

A continuación, se presenta el consolidado del material informativo (plegables) enviados.


Cuadro 5.9-1 Consolidado plegables generales y técnicos enviados mes de marzo de 2023

Comunidad informada	Ejemplares enviados plegable general	Ejemplares enviados plegable técnico
Docentes y estudiantes colegio Liceo La Nueva Estancia	37	37
de Suba grado once de bachillerato.	57	37
Docentes y estudiantes colegio Liceo La Nueva Estancia	34	34
de Suba grado 701.	34	34
Docentes y estudiantes colegio Liceo La Nueva Estancia	48	48
de Suba grado 702.	40	
Subtotal piezas enviadas.	119	119
Total, piezas informativas enviadas.	2	38

Así mismo, se continuó realizando el seguimiento al contador de mensajes ubicado en la página Web de la empresa de Acueducto y Alcantarillado de Bogotá - EAAB, a través del cual se reporta la cantidad de veces que se visita el link, el cual contiene la información de la PTAR El Salitre.

En el mes de marzo de 2023, el reporte del link de las visitas correspondió a ciento cincuenta (150) personas.

A continuación, se presenta la gráfica con el número de accesos al link de la PTAR El Salitre durante el mes.

Gráfica 5.9-1 Visitantes link PTAR el Salitre

Cuadro 5.9-2 Comunicaciones correo: ptar.salitre@acueducto.com.co

Comunicaciones entrantes		
Tema	Cantidad	
Solicitud visitas presenciales	6	
Solicitud información y varios	9	
Quejas	0	
Respuesta y/o asignación visitas presenciales o virtuales	6	
Respuesta a solicitudes de información y varios	9	
Respuestas a quejas	0	

Las solicitudes de información y varios, correspondieron a: procedimiento y requisitos para realizar visitas guiadas, vacantes laborales y remisión de brochure de venta de servicios relacionados con equipos de automatización para plantas de tratamiento de aguas residuales.

En el cuadro 5.9-3, se especifica el número de personas cubiertas por cada actividad realizada. En la categoría "Entrega de material informativo por solicitud" se incluyen los plegables, herramientas pedagógicas y videos enviados o socializados durante el mes de marzo. En la categoría "Total piezas comunicativas entregadas" se incluyen el total de las mismas en todas las actividades desarrolladas.

Cuadro 5.9-3 Total de población informada en las diferentes actividades de divulgación mes de marzo de 2023

	Tipo de actividad	Cantidad de personas informadas por medio de cada pieza comunicativa y/o actividad de divulgación		
Α	Visitas guiadas/recorridos pedagógicos.	92		
В	Envío/entrega de material informativo por solicitud.	119		
С	Talleres, charlas y otras actividades externas.	736		
D	Actividad institucional.	90		
E	Comunicaciones entrantes a los correos electrónicos.	15		
F	Comunicaciones salientes de los correos electrónicos.	15		
Total	Total, personas informadas directamente (a+b+c+d+f) = 1.052	Total, piezas comunicativas enviadas (plegables, videos, herramientas y otras formas de comunicación): 357		

5.9.1.2 Difusión del video institucional de la PTAR El Salitre fase I.

Durante el mes de marzo de 2023, se continuó informando mediante correo electrónico a las comunidades y ciudadanía en general, acerca de la ruta de acceso al link del video institucional de la página web de la empresa de Acueducto y Alcantarillado de Bogotá – EAAB: <u>www.acueducto.com.co.</u>

En total durante el mes, la información y/o socialización del video institucional se dirigió a ciento diecinueve (119) personas.

5.9.1.3 Participación en seminarios, ferias ambientales o congresos.

En el mes de marzo de 2023, se realizó una (1) jornada informativa de PTAR al barrio con la participación total de noventa (90) personas.

En el cuadro 5.9-4 se relaciona la jornada de PTAR al barrio realizada durante el mes de marzo de 2023.

Cuadro 5.9-4 Jornadas informativas y pedagógicas de PTAR al barrio efectuadas en el mes de marzo de 2023

Fecha	Comunidad	Comunidad Localidad	
22/03/2023	Universidad Nacional de Colombia	Teusaquillo	90
	90		

En la jornada de PTAR al barrio ejecutada en la Universidad Nacional de Colombia – UN, en el marco de la celebración del día del agua; mediante la maqueta interactiva de la PTAR El Salitre fase I, los asistentes se informaron acerca del proceso de la ruta del agua, cuidados y uso eficiente del recurso hídrico, ruta del desagüe, tratamiento de las aguas residuales efectuado en la fase I, uso y aprovechamiento del abono orgánico junto con la importancia de la ampliación y optimización de la PTAR El Salitre fase II. Así mismo, se informó acerca del Plan de saneamiento y recuperación hidráulica del río Bogotá – PSRB.

A continuación, se presenta el registro fotográfico de la jornada de PTAR al barrio ejecutadas durante el mes de marzo de 2023.

Fotografía 20 Jornada informativa PTAR al barrio, Universidad Nacional de Colombia – UN, localidad de Teusaquillo Marzo 22 de 2023

5.9.1.4 Difusión de información por correo electrónico.

Con la finalidad de brindar información de la PTAR El Salitre, relacionada con la ubicación geográfica, historia, tratamiento, actividades de educación ambiental y gestión realizada para el tratamiento de las aguas residuales, en el mes de marzo de 2023, se enviaron ciento diecinueve (119) correos electrónicos dirigidos a docentes y estudiantes del colegio Liceo La Nueva Estancia de Suba.

5.9.2 Componente de Participación Comunitaria

5.9.2.1 Atención de visitas guiadas/recorridos pedagógicos solicitados por las comunidades - PTAR El Salitre Ampliada y optimizada.

Durante el mes de marzo, se llevó a cabo una (1) visita guiada con catorce (14) profesionales sociales de las obras que adelanta en la ciudad la empresa de Acueducto y Alcantarillado de Bogotá en la zona 3 de operación (localidades de Santafé, San Cristóbal, Tunjuelito, Fontibón, Antonio Nariño, Puente Aranda, Rafael Uribe Uribe, Mártires y La Candelaria).

A través del recorrido, los participantes conocieron el proceso de tratamiento realizado en la PTAR El Salitre Ampliada y optimizada y los beneficios del mismo en el proceso de descontaminación y recuperación del río Bogotá.

Fotografía 21 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fase II con profesionales sociales de obra. Empresa de Acueducto y Alcantarillado de Bogotá EAAB, zona 3 Marzo 24 de 2023

5.9.2.2 Conformación grupo de seguimiento de las obras PTAR El Salitre Fase II Participación en reuniones, comités de seguimiento, entre otras actividades. requeridas por el grupo de seguimiento o veeduría de la obra de ampliación y optimización de la PTAR El Salitre fase I.

eEl día 23 de marzo de 2023, se participó en la reunión virtual de Comité de Seguimiento de Obra SEGO de la localidad de Suba; mediante la cual, el Consorcio Expansión PTAR, actual ejecutor de la obra de ampliación de la fase II, presentó el avance de las obras de rehabilitación adelantadas a la fecha en las estructuras de la fase I (espesadores, edificio de tamizado y casino).

Así mismo, el Consorcio brindó la información relacionada con las generalidades del Proyecto de Construcción de la Planta de Tratamiento de Aguas Residuales – PTAR Canoas.

Fotografía 22 Reunión virtual Comité de Seguimiento de Obra – SEGO, localidad de Suba Marzo 23 de 2023

5.9.3 Componente de Educación Ambiental

5.9.3.1 Atención de visitas guiadas/recorridos pedagógicos solicitados por las instituciones educativas (colegios y universidades) en la PTAR El Salitre Ampliada y optimizada..

En el mes de marzo, se ejecutaron cinco (5) visitas guiadas/recorridos pedagógicos presenciales en la PTAR El Salitre fase Il con la participación de setenta y ocho (78) docentes y estudiantes del Servicio Nacional de Aprendizaje – SENA, Universidad Sergio Arboleda y colegio Liceo La Nueva Estancia de Suba.

Cuadro 5.9-5 Visitas guiadas/recorridos pedagógicos realizados con instituciones educativas PTAR El Salitre Ampliada y optimizada marzo de 2023.

Fecha	Comunidad	Localidad	N° de participantes
17-03 2023	Liceo Nueva Estancia de Suba	Engativá	21
23-03 2023	Centro Nacional de Aprendizaje SENA	Engativá	17
29-03 2023 Centro Nacional de Aprendizaje SENA Engativá		Engativá	16
30-03 2023	30-03 2023 Universidad Sergio Arboleda Engativá		13
29-03 2023	Centro Nacional de Aprendizaje SENA	Engativá	11
Total, Partic	78		

Mediante los recorridos efectuados, los docentes y estudiantes conocieron el proceso de tratamiento realizado en la PTAR El Salitre Ampliada y optimizada, los beneficios del mismo para la descontaminación y recuperación del río Bogotá y la importancia de modificar hábitos en los lugares de residencia, trabajo o estudio asociados con el uso inteligente del alcantarillado, adecuada disposición de los residuos y reciclaje.

Fotografía 23 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fase II con estudiantes del Liceo La Nueva Estancia de Suba Marzo 17 de 2023

Fotografía 24 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fase II con estudiantes Servicio Nacional de Aprendizaje SENA Marzo 23 de 2023

Fotografía 25 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fase II con estudiantes Servicio Nacional de Aprendizaje SENA Marzo 29 de 2023

Fotografía 26 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fase II con estudiantes Universidad Sergio Arboleda Marzo 30 de 2023

Fotografía 27 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fase II con estudiantes Servicio Nacional de Aprendizaje SENA Marzo 31 de 2023

5.9.3.2 Ejecución de charlas/talleres en los colegios y universidades.

En el mes de marzo de 2023, se ejecutaron veintitrés (23) talleres pedagógicos con la participación de quinientos noventa y siete (597) niños(as) de básica primaria y secundaria de los colegios Gimnasio Moderno Summerhill perteneciente a la localidad de Engativá, Liceo La Nueva Estancia de Suba, colegio Abraham Lincoln y Liceo Homérico ubicados en la localidad de Suba y Colegio San Facón de la localidad de Usaquén.

Cuadro 5.9-7 Talleres pedagógicos con niños(as) mes de marzo de 2023..

Fecha	Fecha Localidad Barrio Institución Educativa/Grado		Nivel	N° de participantes	
2/03/2023	Engativá	Mortiño	Gimnasio Moderno Summerhill	6°	23
2/03/2023	Engativá	Mortiño	Gimnasio Moderno Summerhill	7B°	24
2/03/2023	Engativá	Mortiño	Gimnasio Moderno Summerhill	8A°	18
7/03/2023	Suba	San José de Bavaria	Colegio Abraham Lincoln	Transición 1°	25
7/03/2023	Suba	San José de Bavaria	Colegio Abraham Lincoln	Transición 2°	24
7/03/2023	Suba	San José de Bavaria	Colegio Abraham Lincoln	Transición 3°	24
7/03/2023	Suba	San José de Bavaria	Colegio Abraham Lincoln	Kínder	24
9/03/2023	Suba	San José de Bavaria	Colegio Abraham Lincoln	Transición	22
9/03/2023	Suba	San José de Bavaria	Colegio Abraham Lincoln	Kínder	27
9/03/2023	Suba	San José de Bavaria	Colegio Abraham Lincoln	Transición	26
9/03/2023	Suba	San José de Bavaria	Colegio Abraham Lincoln	Kínder	26
14/03/2023	Suba	Costa Azul	Liceo Homérico	1° y 2°	30
14/03/2023	Suba	Costa Azul	Liceo Homérico	6°	34
14/03/2023	Suba	Costa Azul	Liceo Homérico	4°	17
21/03/2023	Engativá	Mortiño	Gimnasio Moderno Summerhill	8°	19
21/03/2023	Engativá	Mortiño	Gimnasio Moderno Summerhill	9°	31
23/03/2023	Usaquén	Toberín	Colegio San Facón	1 y 2°	41
23/03/2023	Usaquén	Toberín	Colegio San Facón	3 y 5°	37
23/03/2023	Usaquén	Toberín	Colegio San Facón	7 y 9°	53
28/03/2023	Suba	Costa Azul	Liceo Homérico	3°	17
28/03/2023	Suba	Costa Azul	Liceo Homérico	7°	24
29/03/2023	Suba	Costa Azul	Liceo Homérico	5°	17
29/03/2023	Suba	Costa Azul	Liceo Homérico	11°	14
Total, Participantes					597

A continuación, se presenta el registro fotográfico de los talleres efectuados en el mes de marzo de 2023.

Fotografía 28 Taller pedagógico con estudiantes de grado sexto de bachillerato, Colegio Gimnasio Moderno Summerhill, barrio Mortiño - localidad de Engativá Marzo 02 de 2023

Fotografía 29 Taller pedagógico con estudiantes de grado 7B de bachillerato, Colegio Gimnasio Moderno Summerhill, barrio Mortiño - localidad de Engativá Marzo 02 de 2023

Fotografía 30 Taller pedagógico con estudiantes de grado 8B de bachillerato, Colegio Gimnasio Moderno Summerhill, barrio Mortiño - localidad de Engativá Marzo 02 de 2023

Fotografía 31 Taller pedagógico con estudiantes de grado Transición, Colegio Abraham Lincoln - localidad de Suba Marzo 07 de 2023

Fotografía 32 Taller pedagógico con estudiantes de grado Transición, Colegio Abraham Lincoln - localidad de Suba Marzo 07 de 2023

Fotografía 33 Taller pedagógico con estudiantes de grado Transición, Colegio Abraham Lincoln - localidad de Suba Marzo 07 de 2023

Fotografía 34 Taller pedagógico con estudiantes de grado Kínder, Colegio Abraham Lincoln - localidad de Suba Marzo 07 de 2023

Fotografía 35 Taller pedagógico con estudiantes de grado Transición, Colegio Abraham Lincoln - localidad de Suba Marzo 09 de 2023

Fotografía 36 Taller pedagógico con estudiantes de grado kínder, Colegio Abraham Lincoln - localidad de Suba Marzo 09 de 2023

Fotografía 37 Taller pedagógico con estudiantes de grado Transición, Colegio Abraham Lincoln - localidad de Suba Marzo 09 de 2023

Fotografía 38 Taller pedagógico con estudiantes de grado Kínder 2º Colegio Abraham Lincoln- localidad de Suba Marzo 09 de 2023

Fotografía 39 Taller pedagógico con estudiantes de grados 1° y 2°de primaria, Liceo Homérico - localidad de Suba Marzo 14 de 2023

Fotografía 40 Taller pedagógico con estudiantes de grado sexto de bachillerato, Liceo Homérico - localidad de Suba Marzo 14 de 2023

Fotografía 41 Taller pedagógico con estudiantes de grado cuarto de primaria, Liceo Homérico - localidad de Suba Marzo 14 de 2023

Fotografía 42 Taller pedagógico con estudiantes de grado octavo de bachillerato, Colegio Gimnasio Moderno Summerhill, barrio Mortiño - localidad de Engativá Marzo 21 de 2023

Fotografía 43 Taller pedagógico con estudiantes de grado noveno de bachillerato, Colegio Gimnasio Moderno Summerhill, barrio Mortiño - localidad de Engativá Marzo 21 de 2023

Fotografía 44 Taller pedagógico con estudiantes de grado primero y segundo deprimaria, Colegio San Facón, barrio Toberín - localidad de Usaquén Marzo 23 de 2023

Fotografía 45 Taller pedagógico con estudiantes de grado tercero y quinto de primaria, Colegio San Facón, barrio Toberín - localidad de Usaquén Marzo 23 de 2023

Fotografía 46 Taller pedagógico con estudiantes de grado cuarto de primaria, Liceo Homérico, barrio Costa Azul - localidad de Suba Marzo 28 de 2023

Fotografía 47 Taller pedagógico con estudiantes de grado séptimo de bachillerato, Liceo Homérico - localidad de Suba Marzo 28 de 2023

Fotografía 48 Taller pedagógico con estudiantes de grado quinto de primaria, Liceo Homérico - localidad de Suba Marzo 29 de 2023

Fotografía 49 Taller pedagógico con estudiantes de grado once de bachillerato, Liceo Homérico - localidad de Suba Marzo 29 de 2023

5.9.3.3 Realización de talleres dirigidos a niños menores de doce años y/o según requerimiento.

Durante el mes de marzo, se desarrollaron cinco (5) talleres pedagógicos en el aula ambiental de la PTAR El Salitre con la participación de ciento treinta y nueve (139) estudiantes de los colegios Liceo La Nueva Estancia de Suba ubicado en la localidad Suba y Gimnasio Moderno Summerhill de la localidad de Engativá.

Cuadro 5. 9-7. Talleres pedagógicos Aula Ambiental de la PTAR El Salitre.

Fecha	Localidad	Barrio	Institución Educativa/Grado Nivel		N° de participantes
17/03/2023	Suba	Nogales	Liceo Nueva Estancia de Suba	1101°	22
17/03/2023	Suba	Nogales	Liceo Nueva Estancia de Suba	1101°	23
24/03/2023	Suba	Nogales	Liceo Nueva Estancia de Suba	701	39
30/03/2023	Engativá	Mortiño	Gimnasio Moderno Summerhill	l°	26
31/03/2023	Suba	Nogales	Liceo Nueva Estancia de Suba	702	29
	Total participantes				139

En los talleres, los estudiantes conocieron la ruta del desagüe, uso inteligente del alcantarillado, proceso, importancia y beneficios del tratamiento de las aguas residuales realizado en la PTAR El Salitre fase I en el marco del Plan de Saneamiento del Río Bogotá - PSRB.

Es de aclarar, que en el aula ambiental es posible realizar talleres dirigidos a diferentes grupos etáreos (no únicamente niños(as) menores de doce años); razón por la cual, los talleres se desarrollaron con estudiantes de grado once y séptimo de bachillerato.

A continuación, se presenta el registro fotográfico de los talleres ejecutados durante el mes de marzo.

Fotografía 50 Taller pedagógico Aula ambiental de la PTAR El Salitre con estudiantes de grado 1101 Liceo Nueva Estancia de Suba Marzo 17 de 2023

Fotografía 51 Taller pedagógico Aula ambiental de la PTAR El Salitre con estudiantes de grado 1102 Liceo La Nueva Estancia de Suba Marzo 17 de 2023

Fotografía 52 Taller pedagógico Aula ambiental de la PTAR El Salitre con estudiantes de grado Liceo Nueva Estancia de Suba Marzo 24 de 2023

Fotografía 53 Taller pedagógico Aula ambiental de la PTAR El Salitre con estudiantes de grado primero de primaria Gimnasio Moderno Summerhill Marzo 30 de 2023

Fotografía 54 Taller pedagógico Aula ambiental de la PTAR El Salitre con estudiantes de grado 702 Liceo Nueva Estancia de Suba Marzo 31 de 2023

5.9.3.4 Socialización de la herramienta pedagógica participativa.

Durante el mes de marzo de 2023, se enviaron mediante correo electrónico ciento diecinueve (119) cartillas pedagógicas denominadas: El Saneamiento del río Bogotá, dirigidas a docentes y estudiantes del colegio Liceo La Nueva Estancia de Suba.

A continuación, se relacionan las cartillas enviadas en el mes de marzo de 2023.

Cuadro 5.9-7 Consolidado cartillas pedagógicas El Saneamiento del río Bogotá enviadas en el mes de marzo de 2023.

Comunidad informada	Cartillas enviadas
Docentes y estudiantes colegio Liceo La Nueva Estancia de Suba grado once de bachillerato.	37
Docentes y estudiantes colegio Liceo La Nueva Estancia de Suba grado 701.	34
Docentes y estudiantes colegio Liceo La Nueva Estancia de Suba grado 702.	48
Total cartillas enviadas	119

5.9.4 Componente de Relaciones Interinstitucionales

5.9.4.1 Comité Ambiental Local- CAL de las localidades de Suba y Engativá.

El día 15 de marzo de 2023, se participó en la reunión virtual de Comisión Ambiental Local – CAL de la localidad de Barrios Unidos, mediante la cual, se llevó a cabo por parte de Aguas de Bogotá S.A E.S.P., la presentación de las actividades de mantenimiento adelantadas en los canales de la localidad. Así mismo, SubRed Norte socializó el Plan de Acción en Salud – PALSA y el Jardín Botánico de Bogotá – JBB dio a conocer las acciones adelantadas respecto a las huertas instaladas en espacio público. Así mismo, se programaron las actividades ambientales y pedagógicas en el marco de la celebración del día del agua – 22 de marzo de 2023.

Fotografía 55 Reunión Comisión Ambiental Local – CAL de la localidad de Barrios Unidos Marzo 15 de 2023

5.9.4.2 Reuniones CAR - Proyecto de construcción PTAR El Salitre Fase

El día 30 de marzo de 2023, se efectuó reunión presencial con los integrantes de la Veeduría Ciudadana en las instalaciones de la Corporación Autónoma Regional de Cundinamarca – CAR.

En la reunión, el Consorcio Expansión PTAR, presentó el avance financiero a la fecha y el informe de análisis físico y químico del agua tratada en la PTAR El Salitre Ampliada y Optimizada.

Fotografía 56 Reunión con veeduría ciudadana Proyecto de Ampliación y Optimización PTAR El Salitre fase Il Marzo 30 de 2023

5.9.5 Componente de Investigación Social

5.9.5.1 Realización de encuestas de percepción de la comunidad.

En el mes de marzo de 2023, se aplicaron ciento cincuenta y seis (156) encuestas de percepción a comunidades residentes en la localidad de suba (91) y Engativá (65).

5.9.5.2 Análisis de las encuestas de percepción de la comunidad.

El análisis de las encuestas de percepción que se diligencien entre los meses de enero a junio de 2023 con las comunidades, se llevará a cabo en el segundo semestre del año 2023.

5.9.5.3 Realización de encuestas de percepción a los visitantes.

Durante el mes de marzo de 2023, se aplicaron nueve (9) encuestas de percepción en la visita presencial efectuada con estudiantes del Servicio Nacional de Aprendizaje SENA.

5.9.5.4 Análisis de las encuestas de percepción a los visitantes.

El análisis de las encuestas de percepción que se diligencien entre los meses de enero a junio de 2023 con los visitantes, se llevará a cabo en el segundo semestre del año 2023.

5.9.5.5 Realización de encuestas de satisfacción en eventos y con niños.

El día 14 de enero de 2022, se ejecutó una reunión virtual con funcionarios del Sistema de Gestión de Calidad y la Dirección de Gestión Comunitaria de la empresa de Acueducto y Alcantarillado de Bogotá-EAAB, mediante la cual se eliminó el uso de los formatos correspondientes a la encuesta de satisfacción en eventos y con niños(as).

Acorde a lo expuesto, a partir del mes de enero de 2022, únicamente se aplica la encuesta de percepción dirigida a las comunidades y a las visitas guiadas.

5.9.6 Componente Generación de Empleo

En el mes de marzo de 2023, se cuenta con un consolidado de 142 empleados vinculados, de los cuales veintiocho (28) residen en la localidad de Suba y veinticinco (25) en la localidad de Engativá para un total de cincuenta y tres (53) colaboradores que habitan en las localidades del área de influencia de la PTAR El Salitre Ampliada y Optimizada.

Teniendo en cuenta lo anterior, el porcentaje de empleados residentes en las localidades de Suba y Engativá y que se encuentran vinculados a la PTAR El Salitre Ampliada y Optimizada hasta el mes de marzo de 2023 corresponde a 37%.

El consolidado de trabajadores vinculados a la PTAR El Salitre, se relaciona a continuación:

Cuadro 5.9-6 Estado de vinculación laboral PTAR El Salitre fase I mes de marzo de 2023

DIVISIÓN	TOTAL EMPLEADOS	SUBA	ENGATIVÁ	% EMPLEADOS DE LA ZONA VINCULADOS
DIVISIÓN ADMINISTRATIVA Y FINANCIERA	18	4	3	5%
DIVISION OPERATIVA Y TECNICA	67	19	11	21%
DIVISION MANTENIMIENTO ELECTROMECÁNICO	46	3	8	8%
DIVISION AMBIENTAL Y GESTIÓN SOCIAL	11	2	3	3%
TOTAL EMPLEADOS VINCULADOS	142	28	25	37%

6. GESTIÓN DE CALIDAD

6.1 INTRODUCCIÓN

A continuación, se describen las actividades desarrolladas en el marco del Sistema de Gestión de Calidad de la EAAB en la PTAR El Salitre durante el mes de marzo 2023, así como el avance con respecto a las actividades programadas en el plan de trabajo de calidad de la PTAR Salitre 2023.

6.2 ATENCIÓN CLIENTE EXTERNO

Se recibieron 15 comunicaciones mediante el correo institucional para la planta Ptar el Salitre las cuales fueron respondidas.

En el Informe de Cumplimiento Ambiental - ICA 30 se reporta la gestión realizada entre el 01/07/2022 y el 31/12/2022 para los autos y requerimientos abiertos por parte de la Autoridad Nacional de Licencias Ambientales – ANLA, este ICA fue radicado el 14/03/2023 a la Dirección de Saneamiento Ambiental mediante radicado 25510-22023-00279.

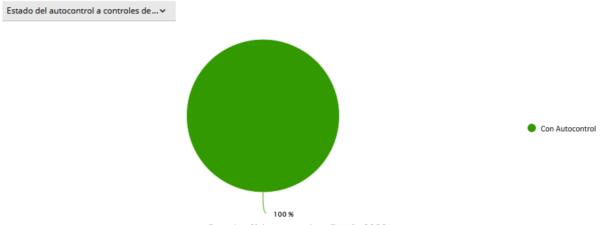
6.3 PLAN DE TRABAJO SGC

Durante el mes de marzo 2023 se resaltan las siguientes actividades del SGC:

- Se recibió capacitación de Activos de información, con el objetivo de cerrar brechas al tema de protección de datos generados en el área de Gestión social.
- Se realiza reunión con el fin de articular la Ptar Salitre con el PIRE de EAAB.
- Se sube la información en el Sistema Único de Información de Servicios Públicos Domiciliarios SUI los formularios de:
- *Residuos generados en sistema de tratamiento de aguas.
- * Sistema de tratamiento de lodos.
- Inducción Sistema Único de Gestión EAAB a los colaboradores de la PTAR Salitre (Contexto, política, riesgos, indicadores, PHVA, planificación del cambio, etc.), personal que ingresa nuevo a la organización.
- Seguimiento al plan de capacitación propuesto por las áreas con el fin que sean llevadas a cabo o reprogramadas según sea el caso.
- Se actualiza y se sube la información a la intranet de EAAB de los indicadores de:
- *Oportunidad en la entrega de los resultados
- *Índice de cumplimiento de mantenimiento fase I y fase II
- *índice de cumplimiento de plan de manejo ambiental
- *Costo xm3
- *Índice de cumplimiento operativo propuesto
- para el año 2023, de los resultados de los meses de enero y febrero.
- Se realiza actualización del plan de mejoramiento de Seguridad y Salud en el trabajo de la auditoria recibida por la EAABB en el año 2022.
- Se envía informe de empalme del año 2022 a la EABB.

- Se comparte temas de capacitación SEN a los jefes de proceso con el fin de inscribirse en temas de interés.
- Se realizo revisión en el área de operaciones verificando idoneidad en el diligenciamiento documental.
- Se actualiza el procedimiento e instructivos del área de Control de Calidad Ptar El Salitre.
- Se realiza actualización para el oficio secretaria distrital de hábitat.
- Mesas de trabajo y seguimiento sobre la Gestión Ambiental de la PTAR El Salitre Fase I y Fase II.
- Seguimiento a los oficios externos, internos de Fase II, organización digital (Drive y Lottus) y física de las comunicaciones relacionadas.
- Archivo, gestión documental y cargue digital a Lottus de la documentación de la PTAR El Salitre.
- Seguimiento a planes de mejoramiento del SUG, de autocontroles de riesgos y oportunidades y de implementación de cambios de alto impacto.
- Se realiza revisión de seguimiento a los procedimientos y procesos de las diferentes áreas de la PTAR EL SALITRE, para dar seguimiento a los compromisos adquiridos, al Sistema Único de Gestión de la EAAB y al cumplimiento de la NTC-ISO ISO 9001 2015, con el identificar el cumplimiento de los requisitos de la misma.
- Apoyo a la gestión pre-contractual de solicitudes de contratación.
- Se verifica la página de Aquarating para subir la información de Ptar del ítem de:
 - * Consumo energético.
 - * Capacidad de tratamiento de las estaciones depuradoras
 - * Mantenimiento Preventivo
 - * Laboratorio de análisis de calidad del agua
 - * Volumen anual de vertidos.

6.4 AUDITORÍA INTERNA Y PLANES DE MEJORAMIENTO


No se presentaron auditorías en este periodo.

6.5 GESTIÓN DE RIESGOS

Se realizaron todos los reportes de autocontroles de riesgo requeridos en el periodo:

Gráfica 6.5-1 reportes de autocontroles de riesgo

Fuente: Sistema Archer EAAB, 2023

6.6 INDICADORES

Se realiza la compilación y verificación de indicadores de la Ptar el salitre de los meses de enero y febrero 2023.

6.7 PRODUCTO NO CONFORME

Para el mes de marzo no se presentó producto no conforme ya que se tuvo concentraciones de salida de SST y DBO₅ de 12 mg/L y 16 mg/L, respectivamente, dando cumplimiento a los requisitos internos de la EAAB y de la licencia ambiental del programa de saneamiento del Río Bogotá.

Se presentaron dificultades a lo largo del mes en las válvulas telescópicas de la clarificación secundaria. Nos permitió determinar el estado de las 20 válvulas que posee cada uno de los 12 clarificadores, identificando que en su totalidad los clarificadores presentan daño en la mayoría de los balones, los cuales, cumplen con la función de graduar el nivel de eliminación de lodos hacia el sifón de los clarificadores.

Para el presente mes se realizó intervenciones necesarias para los clarificadores 64-1, 64-2 y 64,12, a su vez se inició intervención en los tanques de preparación de polímero para las centrifugas que permite evitar el desperdicio de polímero durante este proceso.

Por otro lado, se realizaron actividades de limpieza en la trampa de rocas con el apoyo del personal de CEPS lo cual dio como resultado el alcance de una limpieza a una profundidad de 2,35 m en la reja de la trampa de rocas acorde a lo dispuesto en el AUTO DEL 16 DE DICIEMBRE., sin embargo, no ha sido posible alcanzar los niveles de diseño acorde a lo dispuesto en el AUTO DEL 16 DE DICIEMBRE.

A pesar de las limitantes que se manejaron a lo largo de mes se logró dar cumplimiento al indicador Operativo.

La licencia ambiental en mención exige como concentración de salida para SST y DBO5 que sea igual o menor (\leq) a 30 mg/L, por lo que estamos cumpliendo con lo requerido. Así mismo, a partir de la literatura (Metcalf & Eddy, 2003)³ y el RAS 2017 (Res. 330 de 2017) se confirma que el tratamiento secundario de aguas residuales remueve entre el 80% y el 95% en DBO₅ y SST, es decir, que también se cumple con el promedio establecido por la literatura y el RAS 2017.

Se autoriza la liberación del producto (agua residual tratada) con restricción de uso, informando todas las características del agua tratada a las partes interesadas de la EAAB a través del Informe mensual de la PTAR El Salitre en la página web, y semestralmente a la Autoridad Nacional del Licencias Ambientales -ANLA mediante el Informe de Cumplimiento Ambiental -ICA.

En caso de que se requiera que el agua tratada por la PTAR El Salitre sea utilizada para consumo humano y doméstico, preservación de flora y fauna, uso agrícola, pecuario, recreativo, industrial u otro, el interesado deberá caracterizar el agua y dar cumplimiento a lo establecido en el Decreto 1594 de 1984, la Resolución 1207 de 2014 y demás normatividad vigente.

La FAO (1999)⁴, la OMS (2006)⁵ y la EPA (2012)⁶ establecen que, para el reúso del agua residual en actividades agrícolas o industriales, es necesario un tratamiento secundario con desinfección que obtenga valores por debajo de 10 mg/L para la DBO₅.

³ Metcalf & Eddy (2003) Wastewater Engineering: Treatment and Reuse. 4th Edition, McGraw-Hill, New York

⁴FAO. (1999). Wastewater treatment and use in agriculture..

⁵OMS. (2006). Guidelines for the Safe Use of Wastewater. Excreta and Greywater in Agriculture. 2006, ed., Francia.

⁶U.S. Environmental Protection Agency (EPA). (2012). Guidelines for Water Reuse. Washington D.C., Municipal Support Division Office of Wastewater Management Office of Water

En conclusión, la PTAR El Salitre contribuye considerablemente a la reducción de la carga contaminante del Río Bogotá, tratando las aguas residuales que provienen de la Cuenca Torca-Salitre, que corresponde a cerca del 30% de las aguas residuales de la ciudad de Bogotá⁷ y actualmente se encuentran en desarrollo los otros componentes del Programa de Descontaminación del Río Bogotá con esfuerzo y coordinación interinstitucional entre la EAAB, la CAR Cundinamarca, la SDA y demás entidades involucradas.

Por otro lado, es necesario aclarar que por orden de la honorable magistrada Nelly Villamizar y en razón del incidente 070, la EAAB inició la operación de la PTAR El Salitre Fase II desde el 16/12/2021, motivo por el cual la EAAB se encuentra ejecutando la Planificación de cambios de la Ampliación y Optimización de la PTAR El Salitre (Fase II) que se encontraba formulando desde el año 2019. Sin embargo, la planta aún no ha sido terminada ni estabilizada todavía por parte de la CAR Cundinamarca. La ampliación y optimización de la PTAR El Salitre se encuentra en desarrollo mediante el Contrato 803 de 2016 entre la CAR y el Consorcio Expansión PTAR Salitre – CEPS, este último aún no entrega la totalidad de los planos as-built aprobados, dossiers, manuales, pólizas, inventario de equipos, repuestos, garantías de los fabricantes, expertos para la operación asistida y demás requerimientos del Contrato 803 de 2016 necesarios para la adecuada operación, mantenimiento y administración de la PTAR El Salitre.

_

⁷ 2.564,655 habitantes asentados en la cuenca Salitre – Torca (Según Censo DANE 2018).

7. SISTEMA DE GESTIÓN DE SEGURIDAD Y SALUD EN EL TRABAJO

El Sistema de Gestión de Seguridad y Salud en el Trabajo desarrollado en la PTAR El Salitre, consiste en la planeación, organización, ejecución y evaluación de las actividades de medicina preventiva, higiene y seguridad industrial; enfocado en preservar, mantener y mejorar la salud de los colaboradores, estimulando la formación de una cultura en seguridad y auto cuidado, garantizando conductas, condiciones, procesos seguros y saludables en el logro de los objetivos de la empresa.

A través de este Sistema de Gestión se establece el alcance de las actividades de Seguridad y Salud en el Trabajo con relación al proceso de la PTAR El Salitre, que propende la preservación, mantenimiento y mejoramiento de la salud individual y colectiva de los trabajadores para el desarrollo de sus funciones en un ambiente laboral seguro.

En la PTAR El Salitre se desarrollan actividades con el fin de prevenir o mitigar los efectos causados por los accidentes de trabajo y enfermedades laborales, dando cumplimiento a los requisitos legales y contractuales del funcionamiento de la planta.

7.1 Medicina Preventiva y del Trabajo

En el programa de medicina preventiva y del trabajo se tiene como finalidad la promoción y prevención de la salud frente a los factores de riesgo laborales. Adicionalmente, se recomienda tener lugares de trabajo óptimos, de acuerdo a las condiciones psico-fisiológicas del colaborador para que pueda desarrollar sus actividades.

7.1.1 Condiciones de salud:

Se realiza seguimiento a las recomendaciones médicas por accidentes laborales e incapacidades por enfermedad común, se mantiene las actividades contempladas en el protocolo de Bioseguridad para prevenir posibles contagios por virus o bacterias; para minimizar la incidencia de EDAs y otras infecciones.

7.1.2 Actividades de promoción y prevención:

En la PTAR el Salitre se trabaja en la conservación de la salud de los trabajadores y juega un papel muy importante en la prevención de las enfermedades gastrointestinales cuyo origen podría estar en la contaminación cruzada, para tal fin se implementaron las siguientes medidas preventivas:

Se mantiene el uso del tapabocas constantemente en todas las áreas de la planta, en el casino, se realiza control en el acceso, los colaboradores deben retirarse el overol de trabajo, la chaqueta y el casco para poder ingresar; una vez adentro, se debe aplicar gel antibacterial, mantener el distanciamiento social y consumir los alimentos en el lugar establecido para tal fin. Adicionalmente, el personal no manipula los alimentos, esto lo hace personal especializado y con los recursos suficientes para garantizar la bioseguridad y las buenas prácticas de manejo.

Fotografía 57. Control acceso casino

Ingreso condiciones de higiene en el casino

Asepsia en el casino.

Diariamente se realiza la supervisión del uso adecuado de los elementos de protección personal (EPP's), en las actividades que se realizan en todas las áreas de la planta, para ello se utiliza el formato de inspección establecido.

En el área de pretratamiento es necesario que los colaboradores utilicen la mascarilla media cara para gases y vapores, teniendo presente que se han realizado mediciones diarias para el control del ácido sulfhídrico (H2S), por parte del área de seguridad y salud en el trabajo de la PTAR El Salitre, ya que se han presentado altos niveles del mismo generando afectación a los colaboradores que permanecen en el área o realizan algún tipo de actividad y/o desplazamiento en la zona; es por ello que se requiere de la supervisión constante y entrega oportuna de los elementos necesarios para la protección del trabajador.

Fotografía 58. Control de gases y vapores

Mediciones en el área de pretratamiento. Rejas gruesas.

Mediciones en bombas de elevación.

Mediciones en pretratamiento trampa de rocas.

Mediciones en Rejas Finas.

En el área de los cuartos eléctricos o CCM, se debe tener un control más específico, ya que el colaborador encargado de la zona es quien debe brindar el acompañamiento al personal que requiera ingresar a estas áreas, permitiendo que no se genere un peligro directo al trabajador y sea posible mitigar los riesgos asociados en los cuartos eléctricos.

La planta de desodorización no se encuentra en funcionamiento tanto en el área de pretratamiento como en el área de deshidratación, por lo cual se evidencia una disminución considerable de gases y H2S en ambas zonas, sin embargo, es importante el uso de protección respiratoria.

7.1.3 Manejo integral de sustancias químicas:

En la PTAR el Salitre se manejan sustancias químicas para el mantenimiento y operación de la planta, las cuales se encuentran almacenadas en contenedores de acuerdo con la matriz de compatibilidad de sustancias químicas, y se cuenta con el apoyo del personal de laboratorio para el manejo de estas.

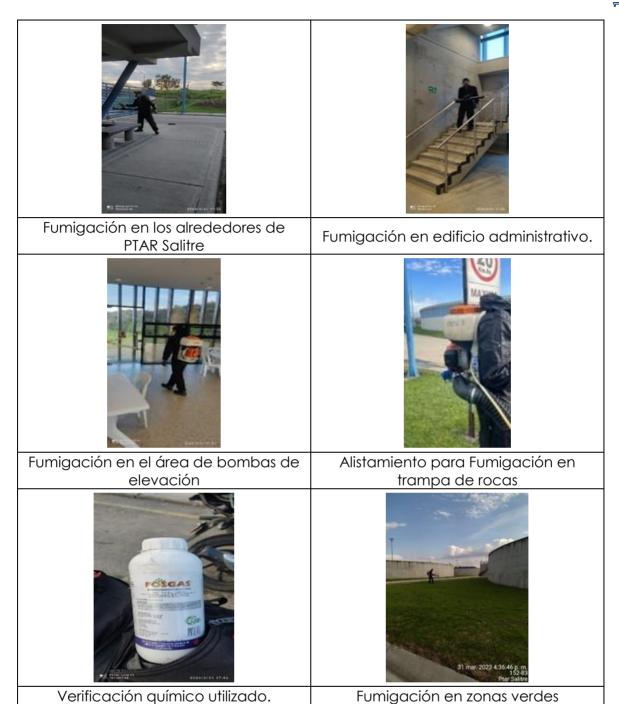
Se siguen ejecutando y con mayor frecuencia las actividades de limpieza y desinfección de las zonas comunes de la Planta de Tratamiento El Salitre: taller, laboratorio, sala de control, edificio administrativo, cafetería y casino, esto con el apoyo del personal de servicios generales y la empresa Eminser.

Fotografía 59. Labores de apoyo por parte de la empresa de aseo Eminser en las áreas de la PTAR El Salitre.

Se mantienen las jornadas de sensibilización con el personal a fin de generar conciencia y entender la importancia del lavado de manos constante, el auto cuidado para evitar el contagio de virus, bacterias, el orden y aseo en las diferentes zonas de la Planta.

Se continúa el seguimiento de vacunación al personal según lo establecido por el gobierno nacional; así mismo, se promueve la vacunación como método de autocuidado y cuidado colectivo, teniendo en cuenta que la presencialidad es del 100% de los trabajadores, esto nos permite cumplir con las metas establecidas por el ministerio de salud.

7.1.4 Programa de fumigación:


La fumigación, consiste en la desinfección e instalación de trampas para roedores en todas las áreas de la planta y casino con el fin de evitar la proliferación de insectos y roedores; esta actividad se realiza con el apoyo del contratista Fumigación Sanidad Ambiental y Equipos S.A.S, los días viernes en horas de la tarde para evitar contaminación en las áreas de trabajo.

El uso del tapabocas en la PTAR el Salitre es de carácter obligatorio como medida de prevención.

Fotografía 60. Programa fumigación áreas PTAR el Salitre.

7.1.5 Sistemas de vigilancia epidemiológica:

En el programa de vigilancia epidemiológica se realiza seguimiento a los casos por enfermedad común los cuales son atendidos por la EPS de cada trabajador.

7.1.5.1 Fomento de estilo de trabajo y vida saludable:

Durante el periodo se implementan jornadas de pausas activas al personal operativo, permitiendo al personal salir de su rutina y evitando que a futuro existan enfermedades laborales, reduciendo el ausentismo laboral.

Inmunización al personal: Durante el periodo del presente informe se realizó la actualización de esquemas de vacunación del personal que se vinculó al proyecto, se aplicaron dosis de tétano, fiebre tifoidea y hepatitis A + B.

7.2 Indicador de Accidentalidad y Ausentismo

En el procedimiento de reporte e investigación de incidentes y accidentes laborales en el formato establecido por la empresa, de conformidad al Decreto 1072 de 2015, Resolución 312 de 2019 y los parámetros dados por la Resolución 1401 de 2007, se establecen los siguientes formatos, para dar cumplimiento a la normatividad vigente:

- Formato reporte de incidente o accidente de trabajo
- Formato entrevista de incidente o accidente de trabajo
- Formato investigación de incidente o accidente de trabajo
- Formato Acta de asistencia
- Lección aprendida A.T.

7.2.1 Ausentismo Laboral.

En el mes de marzo, se presentan sesenta y un días (61) incapacidades con cincuenta y seis (56) días por enfermedad común y cinco (5) días a causa de accidente de trabajo. En el formato GH-FM-003, se relacionan los datos del colaborador, fecha de solicitud, fecha del evento, motivo por la cual justifica su ausencia o solicita un permiso. Las novedades que se pueden presentar son:

Las novedades que se pueden presentar son:

- Enfermedad general E.G
- Enfermedad laboral E.L
- Accidente de trabajo A.T
- Accidente común A.C
- Permiso personal PP
- Permiso Médico PM

7.3 Seguridad e Higiene Industrial

El programa de Higiene y Seguridad Industrial tiene como objetivo la identificación, reconocimiento, evaluación y control de los factores que se originan en los lugares de trabajo y que pueden afectar la salud de los trabajadores.

En el presente periodo se continúan desarrollando actividades como la entrega de elementos de protección personal, entrega de dotación al personal nuevo que ingresa al proyecto, cambio o reposición de elementos por daño o pérdida.

Fotografía 61. Actividades de entrega de dotación

Adicionalmente se da continuidad a las actividades de prevención en los siguientes temas:

7.3.1 Inducción en SST.

Con el propósito de dar cumplimiento a los lineamientos del Decreto 1072 de 2015, se realizan las inducciones correspondientes a contratistas que laboran en la PTAR El Salitre y personal nuevo que ingresa a la operación, En esta inducción se especifican las generalidades del SG-SST, las políticas que rigen en la empresa, reglamento de higiene y seguridad industrial, responsabilidades del trabajador frente al SG-SST, plan de prevención, preparación y respuesta ante emergencias, reporte e investigación de accidentes e incidentes laborales, identificación de diferentes conceptos referentes a seguridad y salud en el trabajo, la importancia del reporte de actos y condiciones inseguras, entre otros.

7.3.2 Programa de capacitación SST

El plan de capacitación de la PTAR El Salitre, está enfocado en todos los colaboradores y temas relacionados con la operación, mantenimiento y control de la planta, generando diferentes capacitaciones como lo son: peligro mecánico, peligro locativo prevención de caídas, socialización de lecciones aprendidas, control de peligros en las actividades diarias y la importancia de solicitar permisos de trabajo para tareas de alto riesgo al área de SST.

Fotografía 62. Actividades de capacitación SST

Socialización recomendaciones en caso de Sismo.

Socialización diligenciamiento ATS.

Pausas activas

Socialización recomendaciones en caso de Sismo.

Operación Presentación Sindicato acueducto.

а

7.3.3 Inspecciones de seguridad

Para el año 2023, se definió el plan de inspecciones SST mediante formato GH-FM-049, esta metodología de inspecciones ha permitido la identificación de peligros reales o potenciales que pueden afectar la infraestructura, salud y/o seguridad de los colaboradores; todo ello permite la aplicación de controles en cada uno de los peligros asociados a las actividades diarias.

En este plan se encuentran las siguientes inspecciones:

Inspección de seguridad en campo: Se realiza evaluando las diferentes áreas de la planta teniendo como objetivo mantener las buenas prácticas de orden y aseo en los diferentes puestos de trabajo, Evaluar el estado de Herramientas y áreas locativas quedando registrada en el formato establecido

Inspección de guadañadora: Herramienta para realizar cortes de pasto a ras de tierra, formado por un juego de cuchillas o de cintas, sujetas a un mango que forma ángulo con el plano de la hoja y es accionada por un motor. El objeto de la inspección es verificar el estado del equipo el cual queda registrado en el formato establecido.

Inspección de los elementos de protección personal: Se realiza la inspección en cada una de las actividades con el fin de concientizar a los trabajadores del buen uso y mantenimiento de estos elementos, dejando registro en el formato establecido. Se mantiene control estricto frente al uso de sus elementos de protección personal.

Inspección de elementos de protección contra caídas: se realiza la inspección para garantizar que el trabajador cuente con un elemento de protección contra caídas para el trabajo de tareas en alto riesgo (trabajo en alturas, espacios confinados, trabajos en caliente); quedando registrada en el formato establecido.

Inspección de equipos para atención de emergencias: Se realiza la inspección para garantizar la disponibilidad de elementos para la atención de emergencias en la PTAR el salitre, dando cumplimiento en el sistema de gestión de seguridad y salud en el trabajo, dejando registro en el formato establecido.

Inspección de equipos de trabajo en Espacios Confinados: Trabajar en un espacio confinado es peligroso debido al riesgo de inhalar gases nocivos, los niveles bajos de oxígeno, o el riesgo de incendio y/o explosión. Otros peligros incluyen el ahogamiento o la asfixia por otras fuentes como Ácido sulfhídrico H2S u otros gases contaminantes, es por ello que la inspección de los equipos es importante para garantizar la ejecución de la tarea y quedando registrada en el formato establecido.

Inspección de vehículos livianos: es la aplicable a los vehículos que, en función de la naturaleza del servicio que realizan y/o al elemento transportado y/o en los casos en que su normatividad específica lo exija, requieren de una verificación adicional de sus características técnicas y/o mecánicas no consideradas en las inspecciones técnicas ordinarias. La inspección técnica vehicular se realiza conjuntamente con el conductor. Dejando registrada la información en el formato establecido.

Inspección de mini cargador: Los mini cargadores de dirección deslizante pueden ser peligrosos si no se observan ciertas precauciones de seguridad. Las lesiones y muertes pueden prevenirse. El objetivo de la inspección es verificar el estado actual del equipo el cual queda registrado en el formato establecido.

Inspecciones control de atmósferas: Con el fin de garantizar un control en el manejo de gases y vapores se realizan mediciones en diferentes áreas de la planta en oxigeno O2, Monóxido de carbono CO, Gases explosivos, y Ácido sulfhídrico H2S. Quedando registro en el formato establecido.

7.3.4 Tareas de Alto Riesgo Autorizadas

Las actividades que representen alto riesgo al colaborador, son supervisadas y acompañadas por el área de Seguridad y Salud en el Trabajo quien determina las medidas de seguridad necesarias para el inicio de las tareas asignadas; se requiere de la medición y control de atmósferas peligrosas en espacios confinados y dotar al colaborador de todos los elementos de protección contra caídas, para el desarrollo adecuado de la actividad. Adicionalmente, se entregan todos los elementos de protección personal necesarios y se firma el permiso correspondiente según la evaluación del área de seguridad y salud en el trabajo para la actividad.

En el mes de marzo se realizaron las siguientes actividades de alto riesgo.

Cuadro 7.3-1 actividades de trabajos de alto riesgo

FECHA	UBICACIÓN	ACTIVIDAD	DEPENDENCIA
2/03/2023	Rejas de gruesos	Retiro de elementos de seguridad de alturas (tie off)	Operaciones
4/03/2023	Pretratamiento	Mantenimiento preventivo bombas electro-sumergibles arqueta 86	Mantenimiento
6/03/2023	Pretratamiento	Reparación de rejas de gruesos	Operaciones
6/03/2023		Lavado de tanque de agua potable	Operaciones
	Edificios 58	Limpieza telescópicas edificios 58:1-2-3	Operaciones
	Pretratamiento fase 1	desarme de andamio	Operaciones
7/03/2023		Extracción tubo vactor	Operaciones
3/07/2023		Limpieza telescópicas edificios 58:1-2-3	Operaciones
	Edificios 58	Limpieza telescópicas edificios 58:1-2-3	Operaciones
	Edificios 58	limpieza de tanque de grasas y lodos	Operaciones
3/10/2023		Remover lodo 95.2	Operaciones
3/11/2023		Rearme de válvulas	Operaciones
	Pretratamiento	Mantenimiento preventivo de bombas	Mantenimiento
3/12/2023		Accionar válvula en plataforma de silos	Operaciones
	Centrifugas	Armada de andamio para actividad de contratista Gecolsa	Mantenimiento
13/03/2023	Silos	Manipulación de válvulas de alimentación a los silos	Operaciones
	Bombeo de lodos y flotantes 58	Limpieza de telescópicas Edificios 58,1,2,3	Operaciones
	Rejas de gruesos	Mantenimiento correctivo de rejas	Mantenimiento
	Cogeneración	Acompañamiento a personal de Gecolsa, Mantenimiento generadores	Operaciones
14/03/2023	Tanque vaciado	Se realiza traslado de bomba a taller a sitio y se realiza descenso del equipo y pruebas	Mantenimiento
14/03/2023	Cogeneración	Revisión de Swift de flujo	Mantenimiento
15/03/2023	Edificios 58	Limpieza de telescópicas Edificios 58,1,2,3	Operaciones
15/03/2023		Mantenimiento preventivo agitador sumergible	Mantenimiento
	Cribado de gruesos	Limpieza de fosa I rejas de gruesos	operaciones
	Cogeneración	Rearme de Swift de nivel por falla de agua en el circuito de alta	Mantenimiento
17/03/2023	Puentes desarenadores	Desmonte de ruedas	Mantenimiento
20/03/2023		Limpieza de telescópicos edificios 58.1-58.2-58.3	Operaciones
21/03/2023		Revisión de interruptor de nivel	Mantenimiento
	Compuertas desarenadores	Limpieza y verificación de las compuertas	Mantenimiento
21/03/2023		Limpieza de telescópicos edificios 58.1-58.2-58.3	Operaciones
23/03/2023		Limpieza de telescópicos edificios 58.1-58.2-58.3	Operaciones
23/03/2023		Mantenimiento preventivo al agitador sumergible	Mantenimiento
26/03/2023	,	Cambio de tarieta	Instrumentación
	Bombeo de lodos 58	Limpieza de telescópicas de los 58	Operaciones
	Desarenadores Pretratamiento	Limpieza desarenadores	Operaciones
	Edificios 58,1,2,3	Limpieza de telescópicas	Operaciones
	Rejas gruesas	Limpieza de la fosa y la reja l	Operaciones
	Pretratamiento	Mantenimiento correctivo rejas de gruesos reparación	Mantenimiento
	Clarificadores secundarios	Inspección de Aceite	Mantenimiento
	Decantación secundaria	Mantenimiento preventivo decantación secundaria	Mantenimiento
	Edificio 58,1,2,3	Limpieza de telescópicas	Operaciones
		1	

Cuadro 7.3-2 actividades de trabajo en espacios confinados

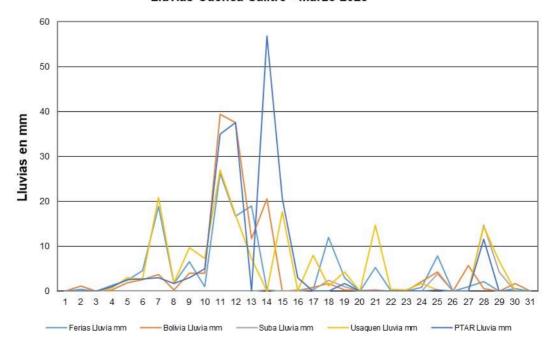
FECHA	UBICACIÓN	ACTIVIDAD	ÁREA
6/03/2023	Pretratamiento	Reparación de rejas de gruesos	Operaciones
6/03/2023	Edificio 25	Lavado de tanque de agua potable	Operaciones
7/03/2023	Edificio 95	Extracción tubo vactor en fosa	Operaciones
10/03/2023	Edificio 58	Limpieza de tanque de grasa y lodos edificio	Operaciones
13/03/2023	Rejas de gruesos	Mantenimiento correctivo a reja	Mantenimiento
16/03/2023	Generador 2	Desbloqueo de la celda generador 2	Mantenimiento
16/03/2023	Rejas de gruesos	Limpieza de fosa I en rejas de gruesos	Operaciones
27/03/2023	Pretratamiento	Limpieza de fosa y reja l	Operaciones
27/03/2023	Rejas gruesas	Mantenimiento correctivo sistema matriz	Mantenimiento
27/03/2023	Pretratamiento	Limpieza de tanques desarenadores	Operaciones

Cuadro 7.3-3 trabajos con energías peligrosas: riesgo eléctrico

FECHA	UBICACIÓN	ACTIVIDAD	ÁREA
27/03/2023	Cogonorgoión	Extracción de interruptor celda de media tensión	Mantenimiento
2//03/2023	Cogeneración	generador 5 bloqueo y etiquetado.	Electromecánico
20 (02 (2002	CCM 11	Dashlaguaa dal ganaradar E y blaguaa dal ganaradar A	Mantenimiento
29/03/2023	CCMTI	Desbloqueo del generador 5 y bloqueo del generador 4	Electromecánico

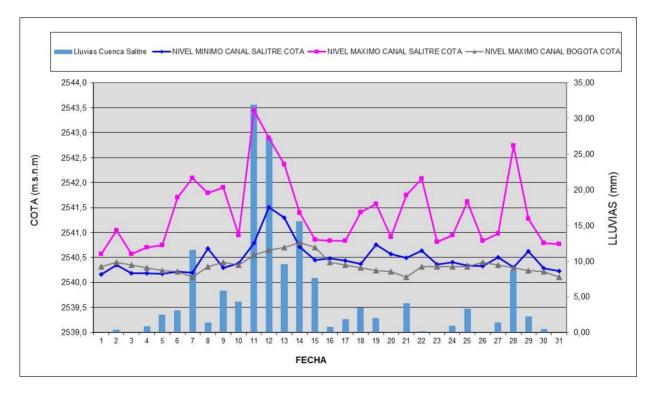
ANEXOS CAPÍTULO 3

Anexo Cap. 3_1 eficiencia de la planta


						PLAN	'A DE T	RATAMIE	PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES EL SALITRE FASE II BOGOTA	GUAS	RESIDU/	LES EL	SALITRE	ASE II BC	GOTA						
MES:	marzo	2023						œ	RESULTADOS LABORATORIO EAAB-LABORATORIO PTAR	OS LAE	SORATO	IRIO EAA	3-LABOR	TORIO P	TAR						
						ANEX	01-EF	ICIENCIA	ANEXO 1 - EFICIENCIA DE LA PLANTA - MUESTRAS COMPUESTAS: (2) * 12 Horas	ANTA-	MUEST	RAS CON	IPUEST AS	3: (2) * 12	Horas						
	TOL	FOTALES	TOT	TOTALES			LABO	RATORIO EMPI	LABORATORIO EMPRESA ACUEDUCTO ALCANTARILLADO DE BOGOTA	TO ALCANTA	RILLADO DE	BOGOTA				LABO	LABORATORIO INTERNO PTAR SALITRE	INO PTAR SA	LITRE		
						S	SUS SOUT	SOLIDOS SUSPENDIDO TOTALES	LES	出	MANDA BIOG	DEMANDA BIOQUIMICA DE OXIGENO	GENO	SOI	IDOS SUSPI	SOLIDOS SUSPENDIDO TOTALES	ES.	IBQ	MANDA BIO	DEMANDA BIOQUIMICA DE OXIGENO	SENO
DIA	AGUA	AGUA CRUDA	AGUA T	AGUA TRATADA	DIFERENCIA	AC	AT	CARGA	CARGA	AC	AT	CARGA	CARGA	AC	ΑΤ	CARGA	CARGA	AC	AT	CARGA	CARGA
	m³/s	p/cm	s/sm	p/ _c m	%	l/gm	l/gm	p/	t/d	Ng O₂⁄I	l/o gm	p/a	t O ₂ /d	l/gm	l/6m	t/d	t/d	l⁄o 6m	Mg O₂⁄I	t/d	t 0,/d
-	4,96	428160	4,81	415690	2,91	180	9	70,77	74,99	273	12	116,89	111,90	177	20	75,78	67,47	238	13	101,69	96,28
2	4,90	423405	4,76	411073	2,91	104	6	44,03	40,33	231	10	97,81	93,70	127	13	53,56	48,42	247	13	104,58	99,24
m ×	4,68	404433	4,58	395508	2,21	196	٠.	79,27	76,50	285	12	115,26	109,33	185	12	74,62	69,87	272	91 6	109,80	103,48
2	4,92	424666	4,84	418454	1,46	104	^	44,17	41,24	221	6	93,85	60'06	121	10	51,38	47,41	220	2 4	93,21	87,57
9	5,52	476902	5,40	466286	2,23	132	3	62,95	61,55	172	14	82,03	75,50	125	6	59,61	55,42	202	11	96,33	91,20
7	6,79	586613	6,58	568113	3,15	156	6	91,51	86,40	202	8	118,50	113,95	168	10	98,55	92,87	177	16	103,54	94,73
8	6,59	569629	6,45	557461	2,14	48	61	27,34	16,75	200	16	113,93	105,01	146	12	83,17	76,48	150	17	85,16	75,96
6	7,20	622437	7,02	606140	2,62	160	2	69'26	96,56	161	12	100,21	93,24	136	12	84,65	77,68	169	50	105,19	93,37
10	5,68	490563	5,56	480480	2,06	152	9	74,57	71,68	236	- :	115,77	110,49	197	= :	96,64	91,60	201	15	98,36	92,83
+ 5	9,51	821626	9,73	840626	-2,31	128	7	105,17	99,28	105	12	86,27	76,18	189	10	155,29	146,88	125	9 9	102,29	89,26
12	10,21	882480	11,04	953744	-8,08	92 5	00	49,42	41,79	7.5	12	63,54	52,09	91	o 0	80,31	71,72	107	13	93,98	82,06
13	26'6	861489	69'6	837249	2,81	48		72,37	66,50	152	11	130,95	121,74	94	80	86'08	74,28	108	13	92,61	82,14
41	8,41	726927	8,65	747557	-2,84	09	7	43,62	38,38	140	15	101,77	92,80	100	10	72,69	65,59	110	13	96'62	70,62
12	06,50	29196/	6,84	591320	-5,28	44	9	24,71	71,12	165	13	92,68	84,99	06	20	50,55	46,12	140	= :	78,63	72,13
16	5,97	515498	60'9	526354	-2,11	112	1 2	57,74	55,10	208	9 ;	107,22	98,80	131	7	67,27	63,59	169	- ;	87,12	81,59
,	26'9	516031	06'9	509943	81,1	156	,	90,50	76,93	797	4	135,20	128,06	29.	0 :	84,11	19,27	602	4 1	65,701	100,45
8 7	5,95	513745	5,86	506528	1,40	403	7 0	45,21	41,66	218	20	112,00	101,87	156	11 0	102 40	74,32	217	17	111,23	102,61
20	6.78	586080	0,00	590533	0.76	32	0 0	18.75	13.44	190	15	11136	102.50	150	2 /	87.62	83.49	163	- 82	95.24	84.90
21	6,01	519691	5,95	513673	1,16	188	7	97,70	94,11	276	12	143,43	137,27	141	6	73,02	68,39	216	17	111,99	103,52
22	7,63	659511	7,47	645800	2,08	58	9	38,25	34,38	204	12	134,54	126,79	96	6	62,98	57,49	184	18	121,02	109,72
23	5,39	465532	5,38	464630	0,19	44	2	20,48	19,55	227	15	105,68	98,71	127	7	59,12	55,87	252	18	117,08	108,72
24	5,56	480181	5,54	478865	0,27	252	4	121,01	119,09	223	17	107,08	98,94	168	6	80,43	76,36	238	17	114,04	105,90
25	6,43	222,383	5,41	553451	0.45	190	٠ 4	83,31	79,43	255	0 9	113.88	93,89	113	<u>0</u>	50.24	90,00	200	07	16,91	106,12 82,65
27	5,41	467044	5,47	472242	-1.11	152	9	66'02	68,16	289	14	134.98	128,36	142	6	60'99	62.07	219	. 9	102,28	94,73
28	6,26	541091	6,14	530546	1,95	128	12	69,26	62,89	192	15	103,89	95,93	135	12	72,78	89'99	161	17	86,85	77,83
29	6,91	596678	6,83	590476	1,04	92	5	54,89	51,94	208	15	124,11	115,25	112	8	66,83	62,10	140	15	83,24	74,67
30	5,10	440220	5,09	439631	0,13	58	5	25,53	23,33	216	14	95,09	88,80	106	9	46,44	44,03	176	15	77,48	70,88
31	5,00	431889	5,01	432537	-0,15	9/2	9	32,82	30,23	210	21	90,70	81,61	105	8	45,13	41,89	207	18	89,40	81,83
TOTAL		1720448770		17161687 52			l	1988 08	1867.63		l	3412.76	3170.35		ľ	2431.84	2263.23			3086.55	2828.84
											1	2								2000	
MAXIMO	10,21	882479,80	11,04	953744,00	3,15	252,00	19,00	148,95	142,81	314,00	26,00	143,43	137,27	248,00	20,00	192,40	182,42	288,00	19,50	121,02	113,55
MEDIO	6,42	554983,47	6,41	553602,82	0,49	118,77	06'9	64,13	60,25	208,45	14,15	110,09	102,27	142,16	9,90	78,45	73,01	188,74	15,06	99,57	91,25
MINIMO	4,68	404432,70	4,58	395508,30	-8,08	32,00	2,00	18,75	13,44	72,00	8,00	63,54	52,09	00'06	5,50	45,13	41,89	106,50	10,50	77,48	70,62

Anexo Cap. 3_2 Lluvias Cuenca Salitre – marzo 2023

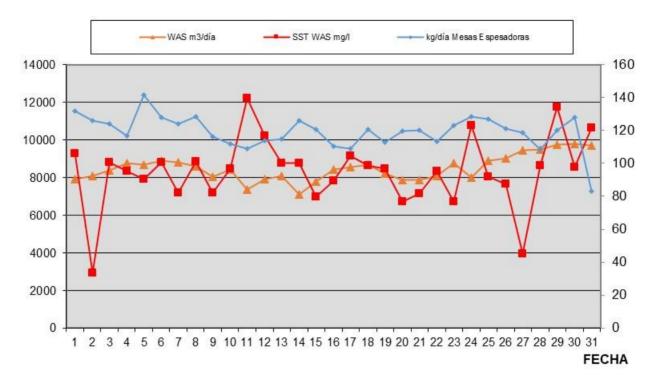
Tipo de Reporte : Lluvias Cuenca Salitre - Marzo 2023


		Ferias	Bolivia	Suba	Usaquen	PTAR	PROMEDIO
Fecha	Tiempo	Lluvia	Lluvia	Lluvia	Lluvia	Lluvia	Lluvia
		mm	mm	mm	mm	mm	mm
1	24:00:00	0,00	0,00	0,00	0,00	0,00	0,00
2	24:00:00	0,40	1,10	0,10	0,00	0,00	0,32
3	24:00:00	0,00	0,00		0,00	0,00	0,00
4	24:00:00	1,30	0,30		0,70	1,00	0,83
5	24:00:00	2,40	1,80		3,00	2,50	2,43
6	24:00:00	4,50	2,50		2,70	2,60	3,08
7	24:00:00	18,80	3,70		20,80	2,90	11,55
8	24:00:00	1,60	0,30		1,80	1,60	1,33
9	24:00:00	6,50	4,00		9,70	3,00	5,80
10	24:00:00	1,00	4,00		7,20	4,90	4,28
11	24:00:00	26,30	39,40		26,90	35,00	31,90
12	24:00:00	16,70	37,50		16,90	37,50	27,15
13	24:00:00	19,00	11,70		7,30	0,00	9,50
14	24:00:00	0,30	20,50	0,30	0,00	56,80	15,58
15	24:00:00	0,00	0,00	0,00	17,60	20,50	7,62
16	24:00:00	0,00	0,10	0,30	0,10	3,00	0,70
17	24:00:00	0,20	0,80	0,30	7,90	0,00	1,84
18	24:00:00	11,90	1,70	2,40	1,10	0,00	3,42
19	24:00:00	2,90	0,20	0,90	4,30	1,60	1,98
20	24:00:00	0,00	0,10	0,00	0,00	0,00	0,02
21	24:00:00	5,30	0,20	0,00	14,70	0,00	4,04
22	24:00:00	0,10	0,00	0,00	0,40	0,00	0,10
23	24:00:00	0,00	0,00	0,00	0,30	0,00	0,06
24	24:00:00	0,80	2,10	0,00	1,60	0,00	0,90
25	24:00:00	7,80	4,30	3,80	0,20	0,20	3,26
26	24:00:00	0,00	0,00	0,00	0,00	0,00	0,00
27	24:00:00	1,00	5,70	0,00	0,00	0,00	1,34
28	24:00:00	2,10	0,50	14,60	14,40	11,50	8,62
29	24:00:00	0,00	0,00	4,20	6,70	0,00	2,18
30	24:00:00	0,50	1,60	0,00	0,10	0,00	0,44
31	24:00:00	0,00	0,00	0,00	0,00	0,00	0,00

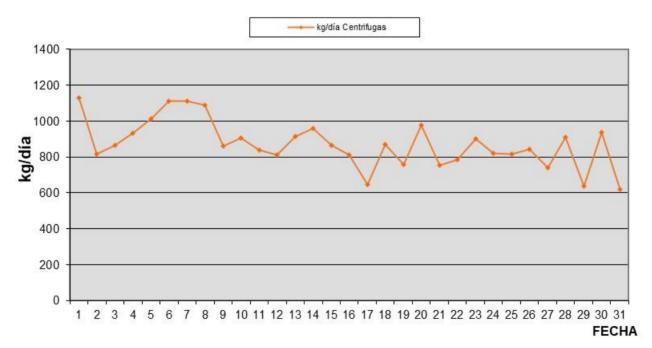
Lluvias Cuenca Salitre - Marzo 2023

Anexo Cap. 3_3 Niveles lámina de agua cotas a nivel del mar del Canal Salitre Vs Lluvias Canal Aferente

		SALITRE	- fase 2			BOGO	TA fase 2	
DÍA	NIVEL MINIMO CANAL SALITRE COTA	NIVEL MAXIMO CANAL SALITRE COTA	NIVEL MINIMO CANAL SALITRE LAMINA DE AGUA	NIVEL MAXIMO CANAL SALITRE LAMINA DE AGUA	NIVEL MINIMO CANAL BOGOTA COTA	NIVEL MAXIMO CANAL BOGOTA COTA	NIVEL MINIMO BOGOTA LAMINA DE AGUA	NIVEL MAXIMO BOGOTA LAMINA DE AGUA
1/03/2022	2540,16	2540,57	3,16	3,57	2540,25	2540,32	1,95	2,02
2/03/2022	2540,35	2541,04	3,35	4,04	2540,17	2540,41	1,87	2,11
3/03/2022	2540,19	2540,57	3,19	3,57	2540,04	2540,35	1,74	2,05
4/03/2022	2540,18	2540,70	3,18	3,70	2540,10	2540,30	1,80	2,00
5/03/2022	2540,17	2540,75	3,17	3,75	2539,90	2540,24	1,60	1,94
6/03/2022	2540,22	2541,70	3,22	4,70	2539,97	2540,22	1,67	1,92
7/03/2022	2540,20	2542,09	3,20	5,09	2539,96	2540,11	1,66	1,81
8/03/2022	2540,68	2541,79	3,68	4,79	2540,25	2540,32	1,95	2,02
9/03/2022	2540,30	2541,90	3,30	4,90	2540,17	2540,41	1,87	2,11
10/03/2022	2540,38	2540,95	3,38	3,95	2540,04	2540,35	1,74	2,05
11/03/2022	2540,79	2543,45	3,79	6,45	2540,10	2540,55	1,80	2,00
12/03/2022	2541,51	2542,89	4,51	5,89	2539,90	2540,65	1,60	1,94
13/03/2022	2541,30	2542,37	4,30	5,37	2539,97	2540,70	1,67	1,92
14/03/2022	2540,71	2541,40	3,71	4,40	2539,96	2540,80	1,66	1,81
15/03/2022	2540,45	2540,86	3,45	3,86	2540,25	2540,70	1,95	2,02
16/03/2022	2540,48	2540,83	3,48	3,83	2540,17	2540,41	1,87	2,11
17/03/2022	2540,44	2540,83	3,44	3,83	2540,04	2540,35	1,74	2,05
18/03/2022	2540,37	2541,41	3,37	4,41	2540,10	2540,30	1,80	2,00
19/03/2022	2540,76	2541,57	3,76	4,57	2539,90	2540,24	1,60	1,94
20/03/2022	2540,57	2540,91	3,57	3,91	2539,97	2540,22	1,67	1,92
21/03/2022	2540,49	2541,75	3,49	4,75	2539,96	2540,11	1,66	1,81
22/03/2022	2540,64	2542,08	3,64	5,08	2540,25	2540,32	1,95	2,02
23/03/2022	2540,36	2540,81	3,36	3,81	2540,25	2540,32	1,95	2,02
24/03/2022	2540,40	2540,95	3,40	3,95	2540,25	2540,32	1,95	2,02
25/03/2022	2540,34	2541,62	3,34	4,62	2540,25	2540,32	1,95	2,02
26/03/2022	2540,33	2540,83	3,33	3,83	2540,17	2540,41	1,87	2,11
27/03/2022	2540,50	2540,98	3,50	3,98	2540,04	2540,35	1,74	2,05
28/03/2022	2540,31	2542,74	3,31	5,74	2540,10	2540,30	1,80	2,00
29/03/2022	2540,62	2541,28	3,62	4,28	2539,90	2540,24	1,60	1,94
30/03/2022	2540,28	2540,79	3,28	3,79	2539,97	2540,22	1,67	1,92
31/03/2022	2540,23	2540,77	3,23	3,77	2539,96	2540,11	1,66	1,81


Anexo Cap. 3_4 Consumo polímero

	Δ		

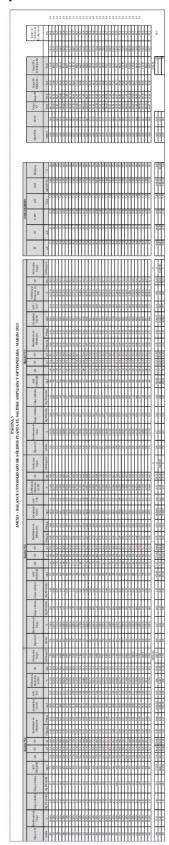

PLANTA DE TRATAMIENTO EL SALITRE BOGOTA

	C	ONSUMOS FASE 2 N	1ARZO 2023	
	POLIMERO MESA			CENTRIFUGAS
DÍA	kg/día Mesas Espesadoras	REFERENCIA	kg/día Centrifugas	REFERENCIA
1	132	FO 4490 VHM	1129	FO 4490 VHM
2	126	FO 4490 VHM	819	FO 4490 VHM
3	124	FO 4490 VHM	865	FO 4490 VHM
4	117	FO 4490 VHM	933	FO 4490 VHM
5	142	FO 4490 VHM	1013	FO 4490 VHM
6	128	FO 4490 VHM	1113	FO 4490 VHM
7	124	FO 4490 VHM	1113	FO 4490 VHM
8	128	FO 4490 VHM	1088	FO 4490 VHM
9	116	FO 4490 VHM	863	FO 4490 VHM
10	112	FO 4490 VHM	907	FO 4490 VHM
11	109	FO 4490 VHM	841	FO 4490 VHM
12	114	FO 4490 VHM	813	FO 4490 VHM
13	115	FO 4490 VHM	916	FO 4490 VHM
14	126	FO 4490 VHM	960	FO 4490 VHM
15	121	FO 4490 VHM	865	FO 4490 VHM
16	110	FO 4490 VHM	814	FO 4490 VHM
1 <i>7</i>	109	FO 4490 VHM	647	FO 4490 VHM
18	121	FO 4490 VHM	869	FO 4490 VHM
19	113	FO 4490 VHM	759	FO 4490 VHM
20	119	FO 4490 VHM	978	FO 4490 VHM
21	120	FO 4490 VHM	753	FO 4490 VHM
22	113	FO 4490 VHM	787	FO 4490 VHM
23	123	FO 4490 VHM	901	FO 4490 VHM
24	128	FO 4490 VHM	820	FO 4490 VHM
25	127	FO 4490 VHM	815	FO 4490 VHM
26	121	FO 4490 VHM	843	FO 4490 VHM
27	119	FO 4490 VHM	739	FO 4490 VHM
28	109	FO 4490 VHM	911	FO 4490 VHM
29	120	FO 4490 VHM	637	FO 4490 VHM
30	128	FO 4490 VHM	935	FO 4490 VHM
31	83	FO 4490 VHM	619	FO 4490 VHM

Total	3697,14	27063,59	
Medio	119,26	873,02	
Mini	83,04	619,08	
Maxi	141,74	1128,92	

kg/día Mesas Espesadoras

kg/día Centrifugas


Anexo Cap. 3_ 5a balance consolidado de sólidos planta el salitre ampliada y optimizada – marzo 2023

	, P	~ · · · ·		•	·		•	_			•		Т		_	•		·	_	_	_	_	,	_			_	_		_	_	_	T	_
			th and		130.82	(8.9)	150,72	149,85	114.22	156.09	147,78	101,98	103.23	125.57	85,43	81,41	112.29	100.28	13100	80,23	88.64	56.74	164.07	100.85	146.71	162.05	8916	108.96	162,23	108,92	6697	162.23	100	114.00
		carga ST	Kg SVim3dfa	2.02	43	58	1.93	2.08	1,40	167	8	131	131	1.53	1.08	10	4.0	1.33	1,62	1.05	1,10	0.74	181	1.30	1.87	2.06	1,14	1,39	1,98	1,35	0.83	2.08		7
	agga		Ne MS m3	293	230	2	275	273	208	236	20)	98	183	2.29	95'1	1,48	208	183	23)	1,46	1,62	103	283	134	293	295	291	199	296	661	122	296		208
	ombo adgestion	NS SA	o.d No	-	ł	ļ	47.4	46.8	31.1	41.9	41.7	301	360	37,4	27.2	530	39,4	368	40.2	27.0	Ц	189	ł	Ļ	414	979	865	35.6	47.5	328	300	86.33		35.49
	Bon	ls.	10		0.55	43.5	67.4	61.4	46.2	62.7	63.9	98	48.8	55.8	39.1	38.5	36.8	49.3	54.6	37,6	43.6	36.5	4	┺	63.6	75.4	43.7	50.9	71.1	48.3	44.1	0018	L	\$242
		% Errisdo a Digestión	2	960001	90000	960001	100,00%	100,00%	100,00%	100,00%	100,00%	101,00%	100,00%	100,00%	900001	100,00%	100,00%	900001	100,00%	100,00%	100,00%	100,00%	100.00%	100,00%	100,00%	960001	9,00001	100,00%	100,00%	100,00%	100,00%	-	ŀ	_
		Volumen	mBVdis	2961	2516	2361	2236	2841	2472	289)	2313	2212	3354	2250	2185	2231	3013	3034	2216	2134	2183	2141	3366	2102	2317	2149	3317	2141	2282	2255	1519	2800	0010	222
		SSV WAS	100	629	2013	8879	612	16%	669	233	270	23	828	236	633	979	808	0.30	1009	92%	4(0)	495	92.9	199	168	229	292	6,16	8.90	6.12	197	93%	000	200
		\$5T W.A.S	00	626	╀	+	₽	792	Н	Н	~	219	₽	H	Н	+	288	₽	29%	Н	630	7,14	+	۰	808	197	Н	8,665	_	856	10.65	12.30		833
	Carificados Reclumdo	S3 Total	alt.	2 2007	╀	+	₽	1028 0	Н	Н	+	800	0.22	0 200	Н	+	2800	٠	1028 0	Н	Н	7890	+	٠	3 8877	1806 00	Н	Н	Н	н	9305	97 (180) (8	t	3988
	Cariffork	\$2 WAS3	th m8/dia	2002	ł	t	H	3300	Н	Н	+	2000	t	Н	Н	+	3900	t	0 200	Н	П	2807	t	t	3113	3100	Н	3000	Н	Н	1003	2000	t	980
		1 WAS 2	in mikidin	1800	ł	$^{+}$	ŀ	2100	Н	Н	+	240	H	Н	Н	+	2300	ł	2800	Н	Н	3547	+	H	H	H	Н	Н	Н	3100	3101	3130	ł	3
	Ц	WAS 1	m3/dia	3334	3300	330	3329	3301	3400	3400	(3)	2870	2930	2800	3000	2313	200	3017	3001	2931	3568	2546	2867	3578	2002	2895	3134	3222	3306	3300	3333	3000		200
		Rujo Recirculado	%	(6)	6	8	25	06	45	98	33	92	92	×	K	8	99	33	97	31	(8)	3 3	8 19	9	66	15	88"	42	(6)	- 24	15	15		9
		Total		212854	FEME 16	213613	212982	212445	212857	210174	3387.88	21236	214876	210057	52000	214965	23933	619691	92932	239675	234938	233935	10103	61830	213994	229838	978552	228346	23393	237091	210156	239675	and the	217288
			SST (g.0) SSV(g.0)	2.06	52.5	2.08	808	5.46	7,30	6.61	5.41	6.76	8101	8.36	60,0	2,14	889	6.04	4.02	6.88	5.18	5.17	909	888	2019	828	08'9	5.81	2,63	5.29	7,92	01		
		RAS 3	SST (g/0)	996	212	876	189	2/2	066	808	7,31	230	14.12	11.34	833	66	280	808	979	976	199	7,45	807	878	8.45	00'01	876	822	10.51	10,27	11,12	91		2
		2	media	L	L		L						L					L						L					Ц	Ц		L		
				23635	21091	71424	71479	21693	71463	82389	(000)	5000	82.99	63552	16899	08300	0820	73743	77,883	82340	80119	75846	66201	1969	30150	73142	0812	74330	76584	81913	25766	81518	2000	23300
	фенцор		STGO SSV(91)	339	98.9	8.78	4.72	4.94	5,94	6,30	930	2,80	00'6	12.35	12,02	97	8,10	683	2/5	Ξ	8,10	0,10	+	╀	3,74	2.08	Н	4.29	Н	5,53	878	13		
_	Carificadores Reformado	RAS 2	SSTGA	609	99.9	2.94	(6.3)	0.62	8.21	866	812	8.66	1274	17.62	9591	16.35	978	676	7,52	17,38	1136	888	130	7.11	8.15	8.16	7,83	5.86	10,77	1272	11,99	81	9	=
20 202	One	-	m3/dia	L	ļ	ļ	L	L	Ц	Ц	4	1	L	Ц	Ц	4	1	ļ		Ц		1	ļ	L	L	L	Ц		Н	Ц		L	ļ	_
- MAR				71499	f	t	╀	20005	Н	Н	+	72441	F	Н	Н	+	26296	╁	Н	Н	Н	77648	+	╁	Ͱ	20662	Н	75424	ш	78902	71238	24236	21000	2,633
IZADA			0 SSV(g1)	810	812	ľ	H	810	900	Н	+	7,94	7.58	Н	Н	+	201	╀	019	Н	Н	0,64	Ŧ	H	H	826	Н	Н	Н	10'9	630	45	1	×
PTIM		RAS I	SST(g/0)	11.52	6	101	0011	11.08	1251	1031	8.73	1000	11.14	11,10	11.97	1041	9.83	7.47	8.54	11,08	9.52	9,49	8.84	11.78	90'9	1611	8.16	6,30	6,71	15'8	9.12	13	2	9
DAYC			m3/d/a	ŀ	l	L	ŀ	L	Ц		-	1	L	Ц		_	1	L		Ц		1	1	L		L			Н	Н		L		_
VMPLIA			Ĺ	1878	98,289	88488	18289	0000	2008	900	09988	22212	70308	73821	73335	25572	70061	2222	22566	78105	7705.	77100	+	20005	71215	682383	Н	78302	7777.	77787	72151	887789	2000	2889
LITRE /	9	fine Fects		ľ	ŕ	1	17	100	9	-	00	5 5	=	12	13	2	15	12	20	61	30	3 51	33 65	20	×	38	22	28	23	30	31	1	1	2
ELSA	Beeske de ledo	Volumen lodo sspesadores Frate	m3 dia	1182	0001	881	1219	0611	1305	1128	2	1000	1100	1008	0111	200	880	086	006	1032	1007	1080	600	109)	1901	9501	1033	1075	1027	1085	1075	1210		1064
PÁGINA 1 BALANCE CONSOLIDADO DE SÓLIDOS PLANTA EL SALITRE AMPLIADA Y OPTIMNIZADA - MARZO 2023		Estracción es	£m3	۰			۰	0		0	0	00	0	0	0	0	00		0		0	0		0	0	0	0	0	0	0	0	-	1	
EDOS 1	Decemberioln Rate I	Benedión Bu 41-44 4	m3	ļ	1	1	-	_	H			+	-	H	H		1	1	_	Н	_	1	1	-	_	_	Н	_	1	_		-	1	_
DE SÓI	December		┝	ľ	ľ	ľ	ا	٥		١	1	1	0		١	1	1	ľ	٥		٥	1	ľ	0	٥			١			J	F	ľ	_
IDADO		TOTAL	gui	٥	0	0	٥	0	٥	٥	0	00	0	٥	0	٥	00	0	0	٥	0	0	0	0	0	0	٥	0	0	0	0	0		0
TOSAC		Baracción 58,3	gu	1812	1612	100	1623	1468	1541	1321	1331	1345	1395	100)	1670	1041	186	1612	9191	1138	1490	1518	1403	6291	1575	1438	2951	1768	2291	1961	1001	1912	100	474
NCE CO		Berneción 58.2	gu	1628	1860	189	1624	1367	1470	1486	1522	1200	1336	1881	1524	1090	666	1891	1663	1251	1194	1458	6991	1311	1404	1837	1259	1402	1981	1542	8991	1993		2
-BALA		9		ł	ł	ł	H				+	+	10		Н	+	+	ł		Н	-88	+	ł	H	H	H	H	Н		Н	_	ŀ	ł	
ANEXO		G Barnec	£m3	1862	ļ	Ļ	1737	L	Ц	1556	4	1	1003	Ц	1883	4	673	Ļ	Ц	Ц	Ц	160	l	L	L	1993	Ц	Ц	1488	23.1 162	Ш	L		
<		82 W 583	2	H	3 102	╀	╀	⊦	Н	2902	+	972	╀	Н	Н	+	1	301	Ц	Ц	Ц	420	1	2.8	L						Ш	0.00	+	-
		36.1 W 56.2	2	112	₽	2.6 6.5	L	L	Н	2.0 5.5	+	932 236	╀	Н	Н	+						421 174		0.7					N 102	21.5 18.0	ш		10.00	
		TOTAL W SU	Ton'din L	930	L		149	7.0	92.5 27.6		1	417 28	51.8	8.4		- 1	086			н		101.5 42.	+			953 30		419 10;			1009	10034		
	пец	Baracción TO1 Total	mg Ton	ž,	686	87.8	192	60.	4576	4933	582	550	134	4371	4877	212	903	1 1 1 1 1	Ц	Ц	Ц	4619	1	134	294	605	142	746	993	731	764	_	100000	_
	Decemberion Fase II		H	519	25.4	L	147 48	30 48	42.2 46		_	33 48	ı	П	Ш	1	20 20	П	43.7	П	642 43	- 1	П	58 48	ı	42.4 49	ш	21.5 47			47.2 47	H	t	
	Des	37,6	8.0																													136.02	1000	177
		57.5	16	304	13	60	181	99	39,3	582	0.4	918	287	23	323	800	11.5	37,4	53	48.4	335	48,3	0.0	21	423	380	99	37.8	58.4	38.6	42.5	97.76	0	8
		7	-		9.8	9.81	10.5	8.7	43.7	12.9	89.1	2.1	900	3.5	0.5	2.0	83.7	81.0	3.8	71,1	36.9	45.6	3.0	1.2	5.8	55.4	0.7	2.9	27.9	1.9	48.1	H	ł	_
		57,4	8.4	L	ļ					0,		2		2.2	57					Į.	2	01-		100		6.		97	71	8.		ans.	0000	746
		57,3	£ 80		36.0	ľ	8.3	1	47,3		(ii)	37.5		1	12.5	3	-	36	46	,	12,	20	98	O.	47.	47,	7,	15.	2.2	41	49,2	81.15	0000	20.1X
		27.52	10	185	312	458	21	91	31,7	238	38	24.3	41,4	2.5	13.7	929	71.1	340	45.4	72.0	7.2	364	000	1.5	4374	416	061	19.8	430	9,5	40.5	96	200	-
		46	1 00	L	l	١	L	.7	347	23	362	42.4	7.9	60	2.7	89	619	433	40	000	640	062	4.6	60	203	41	89	6.7	52.7	43.4	480	H	ł	
				ē	55%	22	N	ď																	• *		· I						1	
		176	168	106	200	22	5	ĺ	3		1		ľ					l					l									9012	2000	27.58

Anexo Cap. 3_5b balance consolidado de sólidos planta el salitre ampliada y optimizada – marzo 2023

'	•		•		•	_	•	•		'	١							•			•	•	4	•	4		•	_	•		1		•	_	,,	-	٠,
		rodund da blogan	Negas di	8317	SKAT	7270	0999	7275	6873	7633	7220	6707	6752	erre	6004	9000	5 867	989	(69)	0329	089	6545	566	4447	430	3354	6083	8698	6.174	9699	1001	5599	629	9025 146	1647	100	444.2
		4	do no	20.5	38.8	33.4	7,11	20,1	20.3	7/5	202	22.3	20.3	698	908	1,6	30,7	11.2	7,87	36.3	N.S.	33.5	XS.	20	4.13	1/6	503	565	1.7	7,12	7%	100	8.0	ľ	41.80	37.78	28.65
		Remotion de NY	,	9000	20,60%	47,30%	20/06	2,30%	MADE.	5077	2,400	27,21%	46,25%	40.00	40,40%	0.000	27,12%	2000	1000	25,37%	20,000	8/2/55	8028	MATER	200	20,00	20.00	41,00%	8000	31715	51,31%	2000	47,11%		200	980	60
		AOK / TAC		97.00	0.15	17.0	1170	1170	0,03	1170	100	O/10	900	O(O	0.01	370	Ol O	900	900	900	1170	300	O'D	9	17.0	400	400	900	O'D	900	Of 10	Of 10	0(10		90	н	3000
		Alotheidad Q.0003	Long	4700	4672	020	11.13	44.77	3400	9778	95.69	402	25.00	23.98	25/40	œ	84.00	009	11.97	907	909	20.00	4637	20.00	0.07	13/06	90.00	2225	44.65	23.99	1 29	3579	911		05'6899	4491.55	93990
		Bendinie et o de Elimina den	Priles	0.05	0.98	0.54	850	0.55	0,57	0.54	0.90	670	870	950	870	970	000	3670	600	95'0	95'0	0.54	0.486	0.00	970	970	25'0	25'0	970	10,0	09'0	15'0	0,53		970	0,86	0,48
	-		Phekul	900	0.0	900	0.0	92.0	00	200	0.00	900	0.0	20 /	200	0.0	0.0	11.0	20.0	12.0	11.0	2.0	300	90	900	0.0	0.0	0.0	900	0.0	00	900	900	1	0.00	ш	200
	dgottee 72,5	ST SY	to to	77.5 30.7	35.1 30.4	M.S BUS	28 82	7X 74	39,5 22,7	238 252	202	35.3 79.1	36.2 85.7	938 078	24 0.8	8.12 8.72	TH 98	7,04 Q.M.	801 811	7.8 E.T.	8'81 1'22	23I LK	XX BX	The BEG	38.1	DO OW	ST ON	50.8 PA	31.5 10.0	54 1.8	90 90	36,4 866	33,1 17,6		DOM: ILT	30.00	35.00 15.80
		No.	_	151	192	190	2902	Н	163	Н	103	200	192	443	14.7	100	012	912	017	200	200	Н	+	200	Ĕ.	11.7	440	110	110	122	111	1116	123	1	111	4 700	131
		Mas CIBCORE	for mel	1.0	12	200	1115	057	7.0	0.5	987	201	177	377	344	306	937	659	177	909	057	Н	+	200	96	429	4	42	4.8	0.9	4.8	177	431	ł	П	Н	0380
		Grgavedenk	Ng SY exterior	0071	12.0	060	08'1	ort .	100	271	XI.	95'0	360	9910	271	93.0	95'0	901	0.1	95'0	90'1	800	0,78	30	371	350	1,48	1/88	960	27'1	3/1	00'1	800		97	0.1	870
) ga velleri a	Kg STrek.du	111	161	017	213	300	152	213	192	593	011	103	181	017	617	110	111	617	151	112	3	rot	657	157	3708	212	977	991	250	193	101		211	657	60.3
		Organia de Co	×	27.67.0	21.71%	16 15%	28.88	RITE	N.27%	5.22.31	UN.S.	9228	5000	9.01	8358	que.	9,00	5.85	923	2011	9.083	20.00	427	1,000	40.0	5001	1.00	2,0	5,000	302	N.P.	20,24%	2000		6.24	62.0	16.00
		- 0	- P	F	17.0	H	H	4/S P	-		1	Н	Ï	34 2	248	186	OK 989	12 0		N 88	L	Н	+	+	30 H	F	ľ	980	94 94	x x	862 21	20	313 30	l	Н	Ц	30
	H	ide Digestor (sed extra	902	.D	117	107	905	462	920	7	527	908	20.	7	*	199	940	302	383	100	404	376	24	Ä	100	679	8	*	10	¥	9	31		463	Н	Н
		Protection	ex?biogas/d	L	L	L	L								L	L	L	L	L	L	L		1	1	L	L	L	L	L	L	L	L	L	٥	٥	e,0xxo	0
		28.	100	177.0	977	38.0	33.4	31.7	129.9	38.5	582	8 40 E	107	41.7	197	565	165	125 %	82.8	977 %	378	Н	1	480	404	197	45.8	107 %	187	9 50 t	9 440	45.7	199		17504	н	1661
		S. Dictorcia Remoder de Mr	,	1 40.0%	0 36.25%	5 50,78	90000 6	н	-		S XXXVIII	2 33.64%	40,00 k	49,03%	46,75%	8.1578 6	8,000	41,57%	2 10,52 T	%35°CP P	%n'W 0	н	4	4010	2000	17,55%	37.65	25,55%	%S/12 0	18,34	N 44,117	۰	1000		80	Н	900
		atad AOY (_	0.83	2 00.00	9 0'0	6110 6	4 0,029	-	Н	3 0,005	0.002	7 0.005	0.001	0000	9900 7	9000 0	1 0,004	14000	1000	0000 0	Н	+	9000	9	00'0	1400	0000	0000	1 0,00	8000 9	\$400	6000	l	9018	н	000
		Ak desina Occos	t rect	┞	30/0	3000	0855	Н	34.07	25.03	25.25	1576	3677	255.3	2.06	544	90	367	9030	388	0025	Н	1	SUR.	400	725	006	510	206	315	200	2168	3035		733.00	Н	30600
		Rendesiento de Birairas ico	Print	100	650	0.63	052	Н	628	053	0.67	950	100	606	0.63	1673	890	850	100	0/0	990	603	100	90	940	000	197	900	890	150	053	\$50	150		960	Ц	150
8		SV Res	Inteksi	370	0.70	400	02/0	92.00 17	1 0.03	7,000	N OVE	970 6	0.0	0,00	200	0.0	0,70 S	17,0	32.10 97	120 5	110 2	20 or	900	0.00	700	0,0	4 0,70	0.0	300	0,70	8,00	800	308 008		0.30	0.0	B,40 0.64
VRZO 24	dges ke 72,2	ts ts	a la	12.0	80.6	179	17 777	X 2 X	400 23	40.T	384 21	40.T	40.6 21	43.6 34	4)8	OK 235	12 X CB	38.7 22	12 9 H	40.T 34	12.4 33.	100	37.4	W 2 2	18	10.13	19.2 B	980	17 270	N 12	77.4 19	26.3	36.0		4410 2730	1610 22	3810 18
DA - M	dp	¥		1901	2992	200	29/2	692	2002	130	176	116	543	4114	111	743	118	612	611	811	990	511	110	41	41.	1384	180	1993	980	282	195	282	21.1		200	116	890
MNIZA		AOY	rani	8.00	831	767	200	3/9	638	600	829	36	636	500	626	88	557	538	247	ST	538	4.13	222	30	200	538	937	818	8.7	992	35.7	959	STP		10,50	90,00	45.50
PÁGINA 2 NEXO - BALANCE CONSOLIDADO DE SÓLIDOS PLANTA EL SALITRE AMFLIADA Y OFTIANIZADA - MARZO 2023		Orgavelinica	Ng SY ext dis	07,00	980	0,78	271	1,48	1.04	100	971	11,0	92.0	0.54	0.52	900	20'0	970	12.0	000	901	650	900	10.0	0.1	96'0	100	1,51	2/0	O,TJ	100	210	970		1,48	950	970
PLIADA						_		_								Ļ	L	L	_						81	L	L		L	L	L	_	_		H	H	990
TREAM		de Carps volémica	Ng ST exit dia	2	12	-	302	161	134	16	91	17	17	1.1	17	960	50	60	950	αn	91	0.03	00.00	8 6	2	2	2	81	150	01	57	901	99.0		300	27	-
A 2 EL SALF		Durbecke de Onp	,	24170	0000	8500	86,37%	17,72%	855%	H276	8538	1073	10,170	80076	6339	9689	10,498	11,87%	190'0	8/11/8	10170	10,54%	B.386	II out	MAGN.	UV/U	15,570	84693	27.575	10,73%	12,78%	0.32%	0.00%		G.PO	0.0	90'0
PÁGINA 2 ANTA EL 9		DgraceB	rs.Yda	988	307	362	117	413	459	38.7	369	20.0	25.6	350	30.1	135	22.6	25.6	361	307	363	28	200	***	693	22.5	38.8	17.	986	272	393	oχ	202		697	310	980
DOS PI		Pochs	_	-	2	×	7	- 5	9	4	×	6	or	=	12	13	24	я	98	11	- 82	- 64	A :	,	ži.	z	ri	A	42	×	×	α	31		N	si	
DE SÓL		Producido biogas	n/began (d	2005	525	5680	578	6000	COD	11/11	5560	538	333	1006	1006	345	508	5064	585	1925	9867	350	9000	470	1207	1886	200	9339	2005	688	9335	809	620	17 40 11, 70	191	(70)	1201
DAMO		ŧ	000	275	520	477	077	901	412	618	415	52.9	497	975	531	8547	513	570	125	175	275	513	537	25	334	505	480	12.5	439	576	522	015	17.7		27.0	51,70	33.82
ONSOL		n Dicienda Renxido GeNY	,	28.200	1300	22 (45	43.17%	33,00%	37,576	100	66	16.295	162 547	167.70	14.900	631	1982	1062	1007	945 7 7	43,27%	45,585	35.0%	2010	20,000	4000	1001	1000	10000	1463	10,90	18,00%	36176	l	650	Н	910
ANCE C		AGNTAC BU		20 101	2 344	22	900	Н	0.00	3 3 3	200	1 600	17 243	7 311	4 00	3 14	116	J. 511	3 911	0110	4 4110	Н	+	100	t	3 00 0	40	8 411	613	177	31	100	0.000	1	O.T	Н	9000
- BAL				┞	ľ	0	H	Н	-	_		Ī	0	0	0	0	0	0	0	H	-	Н	+	Ŧ	F	ľ	0	0 4	9	0	٥	H	⊦		Н	Н	н
ANEX		Alsahadad Cucos	racel	6303	ŀ	9539	989	Н	_	Ц	6306	959	6979	199	8900	9899	1999	829	6009	1985	1929	Н	+	5627	1200	9309	4239	1300	8159	8899	0799	1693	8200		0000	Н	898
		Redinkeso de Bretandos	In Prince	1970	1970	1970	150	Н	0.56	Н	0.50	1970	950	860	0.53	0.52	0,63	1970	1970	090	1970	850	+	200	1630	190	0.53	860	0.47	0.57	950	950	950		890	Н	0,47
	dgeste U.1	SV Ben	ret Printed	8 000	S OTO	4 000	0.00	2 076	6 067	190 6	3 000	3 065	9 010	2.00	4 007	4 010	5 gTo	170 8	8 OT8	4 073	1/0	Ц	4 068	000	100	9	outs o	010 8	890 0	3 QTO	R 067	2 068	3 068		2520 078	11	960
	quo	15	la la	40.6 24	407 34	41.9	418 24	410 19	384 216	42.9 24	410 24	43.0 26	42.6 23	77 817	404 31	44.1	45.8 28.	43.2 2.6	45.0 28.	22 559	424 260	48.2 28.0	440 254	47.0	48.2	468 28	468 24	92 092	38.5 18	461 26	47.8 26	44.7	466 263		4870 28	4308 235	3840 1800
		36		17.6	1766	3/1	0.77	7.00	7,36	170	7,77	7.1	1.51	170	1,78	1,18	1,78	1.86	7,51	1,85	11/1	7.08	1,14	0 10	1/8	1700	17.04	1.88	7.54	1,82	1.75	2/2	1,53		97	1,70	1,86
		AOV CHOOSE	in rect	1064	888	857	IT8	105	627	25%	840	118	144	20.L	858	100	100	908	07.7	001	331	1111	946	100	100	858	11.8	133	8.40	RIT	23	808	830		00800	Н	н
		Ogsveleka	Kg SYrnolds	101	074	190	901	513	076	131	101	590	190	990	072	\$50	090	690	190	990	970	653	100	900	160	990	100	260	610	290	160	190	010		5	Ш	900
		Carys vedenica	Kg STreb.du	151	901	150	051	151	1.12	357	*	350	0.82	350	101	8.0	11.0	35.0	980	150	100	0.0	NO.	200	271	350	1.00	37	22.0	98.0	971	950	360		101	100	0.0
		Darbación de Car	Г	0.32.0	9,070	D'Ann	9.5	13,54%	-	17.22%	H,XVS	5,000	9.0	5.2	tra.	DAM.	- 4	11,9671	% 90'01	9.11	940	0.54%	DOOR	U.U.S.		0.400	-	11,17%	87378	11,13%	11,51%	11,72%	11,96%	l	-	П	001
			,	L	┞	┝	H	Н	-	Н		Ц	Н	Н	H	H	H	H	H	H	H	Н	+	+	H	H	H	H	H	H	┞	⊦	⊦	1	Ц	Ш	0 81
	H	DgstorA	rol-co.	250	244	288	300	3.38	333	430	231	210	146	130	268	1.0	36	241	240	338	208	10	28	100	192	232	198	240	100	2.80	252	216	181		Ц	Ц	Ц
		Diseases was years as	10.Cm	æ	ш	307	119	-132	929	342	×	997	434	486	81	188	177	557	117	289	œ	340	91	200	18	909	n	180	3.89	585	91	1911	3443		244.5	***	11 1
		TOTAL	TOTAL	78.68	768	008	23.63	800	82.00	888	18.22	2893	8044	1000	Tree	TI EL	98.92	172	254	252	1198	27.0	3//	A II	XAX	20.00	2248	88.03	623	988	999	2700	ac		2700	11 82	aa
		T	T about	980	1000	1007	т		-	Н	201	202			2003	1868	6851	1361	2367	2007	Г		4	1911		1801	1111	1967	198	13/81	1901	1901	160	1			0891
		HONESON COMBOOL STOREGON GROSSON	10,00	1004	┞	0	0	0	0		0		0	0	0						0			1			١		Ĺ			0	0		200	Н	0
		SOLD OTES	⊢	ĺ	1	Ĺ	L		1	H	1	Ĺ	Н	Н	Ĺ	Ĺ	Ľ	Ĺ	Ĺ	Ĺ	L	H	1	f	ĺ	H	Ĺ	Ĺ	ľ	Ľ	ŀ	Ĺ	H		Н	Н	н
	Moss Espreadras	III CT-SEIG	10000	٥	0	٥	0	0	0	0	٥	0	0	0	0	٥	0	0	0	0	0	0	٥	1	10	٥	٥	٥	0	0	٥	٥	0		٥	ш	0
	Mos	oreano,	10,00	٥	٥	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	0	0	۰	0	٥	٥	٥	0	0	0	0	0		0	0	0
		CI CIRSIDO D	40.00	٥	٥	0	0	0	0	0	٥	0	0	0	0	٥	0	0	0	0	0	0	٥	-	٥	٥	٥	٥	0	0	٥	٥	0		٥	0	0
		Trismonc	10.00	1221	9001	1000	100	2235	1756	1347	2000	138	200	140	101	2002	1880	1990	1365	9301	2257	167	130	36	108	1660	2367	180	328	138	236	243	1000		256	3361	100
		Cristicola	ny, a	1881	1002	8001	2305	2215	2394	236	207	н	н	1388	1383	1007	1226	123	1713	2212	2307	181	1007	7707		1920	2303	1.89	2413	2310	2365	202	1001			2004	
		Chistogra G	10,00	128	1001	⊢	H	Ш		2211	2002	2.88	2340	1400	1827	186	1691	8951	2345	1681	L	Н	1882	1001	۰	1803	280	1204	1917	5951	1881	2300	0171		Н	Н	- 22
	11	E	Ĺ	L	L	L	L	Ц		Ц		Ц	Ц	Ц	L	L	L	L	L	L	L	Ц	1	1	1	L	L	L	L	L	L	Ĺ	L	I	Ц	Ц	٢

Anexo Cap. 3_ 5c balance consolidado de sólidos planta el salitre ampliada y optimizada – marzo 2023

ANEXO - CUADRO RESUMEN DESHIDRATACIÓN POR CENTRIFUGA

MES: MARZO 2023

Anexo Cap. 3_6 resumen deshidratación por centrifuga

			_			_		_	_	_									_				٠,								_							
	W L. Digerido	t.	2'66	81,5	82,0	82,2	6'98	92,0	85,0	91,9	9,98	97,8	88,3	81,0	82,9	84,3	88,7	77,2	6'08	87,0	79,2	87,6	83,3	8'66	78,9	84,2	6'98	107,7	88,7	95,7	65,1	110,6	90,5	2714,0		87,55	110,55	65,13
	ST (promedio	digestores) g/l	37,7	6'28	36'8	6'88	38,0	39,3	38,5	38,1	0'68	39,2	39,7	38,8	38,3	39,3	38,7	39,0	39,3	6'98	42,6	38,3	38,6	38,6	35,8	40,2	38,4	39,9	38,0	39,0	40,8	39,4	39,7			28'82	42,60	35,80
BIOSOLIDO fase 2	Biosolido	m3/dìa	345,10	291,71	330,74	333,74	318,37	316,74	335,02	340,97	239,95	295,77	305,20	264,35	271,36	311,57	326,49	296,36	271,29	323,78	292,28	302,33	229,87	276,59	229,27	294,10	268,97	325,64	244,95	234,28	246,07	263,54	245,26			289,41	345,10	229,27
BIOS	Biosolido	Ton/día	334,75	282,96	320,82	323,73	308,82	307,24	324,97	330,74	232,75	286,90	296,04	256,42	263,22	302,22	316,70	287,47	263,15	314,07	283,51	293,26	222,97	268,29	222,39	285,28	260,90	315,87	237,60	227,25	238,69	255,63	237,90	8702,51	8702,51	280,73	334,75	222,39
	Densidad	g/cm3	1,00	1,00	0,98	1,00	66'0	1,01	1,01	1,02	1,01	1,02	1,02	1,01	1,02	1,03	1,01	1,00	1,01	1,01	1,02	1,01	1,00	0,97	1,00	66'0	0,99	0,95	1,02	1,01	1,01	1,02	1,01			1,00	1,03	0,95
	Sequedad	(%)	27,11	28,60	25,61	25,92	26,55	25,83	25,89	24,81	26,95	24,87	25,04	25,17	25,83	25,74	24,97	25,67	25,85	26,92	27,16	25,99	25,24	25,54	30,90	26,26	26,13	26,63	25,65	27,06	26,84	26,04	25,30			26,19	30,90	24,81
ГОДО	m ³ TOTAL	LPD/DIA	2647,43	2152,57	2077,68	2115,34	2285,58	2342,27	2209,03	2413,73	2221,27	2493,62	2227,08	2085,47	2163,20	2143,86	2292,94	1981,22	2057,80	2359,00	1859,61	2288,37	2159,57	2587,54	2203,46	2097,68	2264,44	2697,75	2337,27	2456,57	1596,43	2803,47	2282,73	69904		2254,97	2803,47	1596,43
ГО	gr polimero/	m3 Lodo	426,42	380,25	416,45	441,13	443,22	475,12	503,78	450,78	388,40	363,74	377,57	389,62	423,26	447,98	377,21	410,92	314,20	368,44	408,23	427,24	348,63	304,01	409,04	390,67	359,92	312,48	316,29	370,74	399,31	333,63	271,20			388,71	503,78	271,20
	Polimero	Ton/dia	1,129	0,819	0,865	0,933	1,013	1,113	1,113	1,088	0,863	0,907	0,841	0,813	0,916	0,960	0,865	0,814	0,647	0,869	0,759	0,978	0,753	0,787	0,901	0,820	0,815	0,843	0,739	0,911	0,637	0,935	0,619	27,06359		0,87	1,13	0,62
POLIMERO:	Kg polimero/	Ton MS	12,44	10,11	10,53	11,12	12,36	14,02	13,23	13,26	13,76	12,71	11,34	12,59	13,47	12,35	10,94	11,03	9,51	10,28	9,86	12,83	13,38	11,48	13,12	10,94	11,96	10,02	12,13	14,81	9,95	14,05	10,29			11,93	14,81	9,51
ď	COL	2	FO 4490 VHM																																			
	FECHA		01-02-23	02-02-23	03-02-23	04-02-23	05-02-23	06-02-23	07-02-23	08-02-23	09-02-23	10-02-23	11-02-23	12-02-23	13-02-23	14-02-23	15-02-23	16-02-23	17-02-23	18-02-23	19-02-23	20-02-23	21-02-23	22-02-23	23-02-23	24-02-23	25-02-23	26-02-23	27-02-23	28-02-23	01-03-23	02-03-23	03-03-23	TOTALES		MEDIO	MAXIMO	MINIMO

Anexo Cap. 3_7 Consumo Biogás

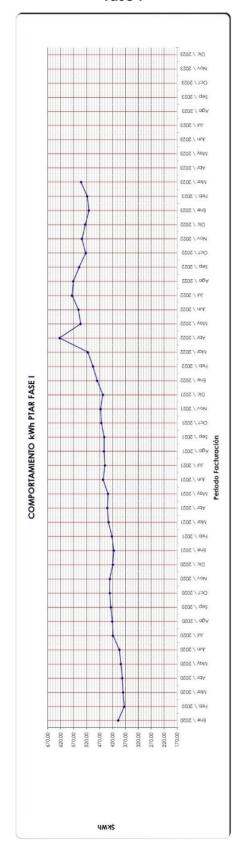
	3/DIA)		_			CONSUMO CALDERA BIOGAS (nm3/DIA)
Intrinces F. Total of the process F. Total of the pr		TOTAL		_	_	_
0			11HT001E_FT_TOT.Tot	11 1 HT001E_FT_TOT.Tot	11 1 HT001E_FT_TOT.Tot	
0	0	8,693,8		00	00	0'0 0'0
0	0 8	8953,		000	0'0 0'0	4156,8 0,0 0,0
0	0 8'1	788		00'0	0'0 0'0	3946,7 0,0 0,0
0	73,3 0	8		000	0'0 0'0	3693.4 0,0 0,0
0	9433,7 0	l∽		000	0'0 0'0	4648,9 0,0 0,0
1	9474,0 0			000	0'0 0'0	4531,9 0,0 0,0
0	8723,5 0		0'0		0'0	0,0 6,089,7
0	9058,7 0	6		000	0'0 0'0	4047,5 0,0 0,0
0	1293,4 0	æ		000	0'0 0'0	3857,2 0,0 0,0
0	126,3 0	6		000	0'0 0'0	3974,6 0,0 0,0
0	8341,6 0	ώ		000	0'0 0'0	3127,8 0,0 0,0
0		8		000	0,0 0,0	2293,5 0,0 0,0
0		0		000	0'0 0'0	4447,0 0,0 0,0
0	10152,1 0	ΙĒ		000	0,0 0,0	4565,4 0,0 0,0
0	714,9 0	5		000	000	3762,2 0,0 0,0
0	0 0 0	٠.		000	0'0 0'0	3587,2 0,0 0,0
0	9149,0 0	6		000	0'0 0'0	0,0 0,0 0,0 0,0
0	592,7 0	6		000	0'0 0'0	4530,3 0,0 0,0
0	0 0 0 0 0	٠.		000	000	0,0 0,0 0,0
0 0 0 0 0 0 0 0 0 0	9869,2 0			0'0	0'0 0'0	4646,0 0,0 0,0
0 0 0 0 0 0 0 0 0 0	9964,0 0		0'0		0'0	4248,1 0,0
0 0 0 0 0 0 0 0 0 0	9716,0 0		0'0		0.0	4545,8 0,0
0 0 0 0 0 0 0 0 0 0	9215,9 0		0'0	0,0 0,0	0.0	0.0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3454,0 0		000		0.0	3313,9 0,0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5296,8 0		0'0		0,0	0,0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5186,4 0			0,0	0,0 0,0	0,0 0,0 0,0
0 0 0 0 0 0 14415 1627 0 0 0 0 0 14415 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4724,0 0	1		000	000 000	134,7 0,0 0,0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 6'5909	4,		000	000	0'0 0'0
0 0 0 0 0 0 12,11 0 0 0 0 0 0 1462,78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5024,5 0			000	0'0 0'0	0'0 0'0 0'0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2912,7 0		0'0	0'0 0'0	0'0	0'0 0'0
00	101,6		0'0		0,0	0,0
	242663.32		Ľ			

Anexo Cap 3_8a Características fisicoquímicas del agua cruda y tratada

Į.		П						П	Т	I	I	Т	T				П	Ţ				Т	Т	T	l	Ī				П	ſ		
	Temp	J.	9'81	18,0	20,3	18,0	19,3	19,5	9'91	18,0	19.1	7*81	16.0	18,5	19,3	18,2	17,4	17,2	18,0	17,4	5'91	8'91	0,81	16.4	18.0	17,6	18,3	5.61	20.1	19,9			15,90
	REDOX	am	-256	-231	-194	-217	-196	-248	-243	-282	-199	-204	-234	-208	-255	-157	-162	-107	-152	-114	-168	-154	-108	-305	-253	-193	-199	-205	-226	-184		-198,74	-285,00
	SSD	md	4,0	1,5	4,5	1,5	3,0	0'0	1,3	2.0	3,0	4.0	2 %	3,5	0.0	6,4	3,5	3,0	2,5	2,0	4,0	0.0	2 :	4.0	1.7	3,0	1,5	1,3	0'0	0.0		2,24	0,00
	SSD	am	4.0	3,0	2,0	3,0	0.0	5,0	1,5	2.0	1,5	000	00	9'0	2.0	5.0	1.8	2,5	2.0	2.0	5.0	5.0	0.2	2.5	0.5	5.0	0.0	0.0	1,0	0,5	İ	1,39	00'0
_	роо РМ	mg-O2/I	099	009	720	763	494	391	446	475	37.1	304	906	340	322	410	440	283	436	493	555	411	cle s	554	515	292	428	439	446	464	ŀ	489	255
	DQ O AM I	mg-0.2/l	620	540	280	527	454	490	316	526	472	330	143	168	283	324	362	428	582	262	349	308	914	440	411	431	375	209	420	452	Ì	388	143
-	DBO 5 PM D	mg-02/l n	207	242	298	308	228	189	202	88	152	730	07	127	112	154	199	234	128	224	267	257	747	234	243	246	176	187	173	233		509	98
-	DBO5 AM DE	mg-0.2/1 m	268	252	245	268	211	219	89 :	101	98 :	1/1	2 20	88	108	126	139	8 5	131	101	164	110	107	187	160	192	145	92	139	181	ŀ	168	64
-	TURBEDAD DB	PM (NTU) m	156	106	991	167	133	113	136	138	119	# 00	87	06	77	87	112	25.	151	128	144	68	130	351	123	147	132	119	86	106		125	-11
-	TURBEDAD TU	AM(NTU) P	128	130	124	135	101	108	105	83	128	88 52	201	. 21	88	39	81	at a	881	116	2,0	æ 8	200	001	75	16	88	99	113	801		101	47
	SF P.M. TUR	mg/L AM	170	290	147	283	254	233	217	283	202	233	263	277	167	263	347	310	313	297	213	214	757	202	366	103	203	294	267	290	ļ		103,0
ANEXO No. 9 (PAGINA 1) LABORATORIO PTAR EL SALITRE - AGUA CRUDA	SF A.M. SI	Н	H	203	254	430	237	+	+	+	+	+	+	117	H	H	4	260	ł	H	1	+	907	ł	ł	340	-	-	250	286	ŀ	\dashv	100,001
GUA C	SV PM SI	mg/L 1	Н		Н	_		-	+	+	+	+	+	243	H		H	330	33.7	283	400	253	500	303	347	637	330	333	380	333	ŀ	_	213,0
Œ - A(STPM S	mg/L 1	H	009	857	07.7	657	+	+	+	+	+	+	520	Н	570	1177	040	089	580	613	467	000	009	613	740	533	627	617	623			420,0
ALITE	SV AM	mg/L	377	340	373	387	223	430	393	153	061	177	211	061	217	273	270	383	130	207	240	217	107	387	280	320	297	273	353	307	ŀ	-	117,0
S EL S	STAM	mg/L	019	543	627	817	460	029	637	257	437	600	317	307	463	463	553	643	393	47.7	463	320	272	503	213	099	453	373	603	593	H	_	257,0
I	TURB/DBO	PM	0,75	0,44	0,55	0,54	85.0	19'0	99'0	0.70	0,78	0,00	85.0	0,71	69'0	95'0	95.0	0.57	0.97	0,57	0,54	0,35	0.00	990	0.51	09'0	0,75	99'0	0,57	0,45		9'0	0,3
TOR	TURB/DBO	WV	0,48	0,52	0,51	0,50	0,48	0,49	0,71	0,82	0,69	0,51	0.73	0,58	0.78	0,63	0,58	0.51	#1	1,15	0,46	0,81	0,30	0.53	0.50	0,51	0,61	0,72	0,63	0,60		9'0	0,4
	TURB /	Md	0,84	1,02	0,75	0,71	98'0	88'0	0,72	0.78	1,47	0,48	0.70	82'0	1,00	86'0	0,71	0.64	99'0	0.85	0,71	1,25	0.77	290	06:0	0,75	0,71	82'0	1,03	1,10		8'0	0,5
_ _	TURB/ SST	WV	92'0	0.87	0,84	0,84	1,16	0,89	0,72	0,72	0.67	0.93	0.82	0,71	89'0	0,87	62'0	0.81	0,70	82'0	0.97	0.74	0,83	0.30	1.07	1,10	1.07	0.92	0.97	96'0		8'0	9'0
¥ 5	SSF P.M.	mg/l	21,0	17,0	41,0	45,0	24,0	29,0	52,0	400	26,0	780	260	29,0	18,0	18,0	29,0	390	105,0	31,0	50,0	13,0	0'97	200	220	380	61,0	37,0	23,0	15,0		35,6	13,0
6	SSV/SST	P.M.	68'0	0,84	0,81	0,81	0,85	0,78	0,73	0,77	89'0	160	0.79	0,75	0,77	08'0	0.82	0.81	0.54	0,79	0,75	0,82	28,0	0.74	0.84	0,81	29'0	92'0	92'0	0,84		8'0	0,5
	SSV P.M.	mg/l	164	87	180	190	131	100	138	136	55	1/7	9.6	87	59	7.1	129	171	123	119	153	28	911	121	118	157	126	115	7.2	81		125,7	55.0
ANE	SSF A.M.		0.00		0.62		17,0		39,0			П		1			28,0		1			49,0	П			L	0.6		23.0	23,0		31,3	9,0
	SSV/SST	A.M.	0,82	0,82	08'0	08'0	08'0	0,85	0,73	0,73	0.74	68.0	890	29'0	0.75	92'0	0,73	98'0	0,43	0,52	0,82	0,59	18'0	0.26	0.81	68'0	68'0	0.74	08'0	08'0		8'0	0,4
	SSV A.M.	l/Sm	139	122	119	139	70	103	100	82	142	18	30	48	92	69	7.5	00 5	116	78	64	11	1 00	93	11	78	73	53	93	06	İ	91,7	39,0
	SSTPM	ng./l	185	104	221	235	155	129	061	176	81	667	135	116	17	68	158	210	228	150	203	17	751	230	133	195	187	152	98	96	ľ	161,4	71,0
ļ	SSTAM	ng./l	169	149	148	191	82	121	242	116	191	8 8	007	72	123	16	103	116	268	149	38	021	7117	123	8	88	82	72	116	113		-	92,0
İ	CO ND.	Srl	1058	910	906	505	873	819	260	815	576	104	407	597	687	787	824	398	623	908	834	786	934	308	1.28	823	629	79.1	846	898	H	77.4	
	COND.	Sτ	566	864	932	686	006	914	829	462	746	80.4	428	401	504	712	743	845	425	537	800	448	900	179	192	852	817	519	833	882	Į	725	401
	Alcalinidad PM	mg-CaCO3/I	254,0	268,0	252,0	274,0	270,0	248,0	227,0	244,0	157,0	0,000	1410	173,0	185.0	216,0	229,0	2220	178,0	219,0	221,0	216,0	0,027	2120	3660	240,0	212,0	221,0	248,0	260,0		230,8	106,0
2023	M md Hd		7,23	7,21	7,59	7,24	7,30	7,25	7,23	7,23	7,23	1,44	2.80	7,64	7,64	7.68	3.68	7.08	7,65	7,15	7,25	7,21	6,1	7.10	7.25	7,17	7,15	7,22	7,25	7,23	Ì	7,35	7,08
	Alcalinidad AM	mg-CaCO3/l	253,0	252.0	263,0	273,0	275,0	290,0	194,0	149.0	219,0	252.0	134.0	123,0	163,0	208,0	214,0	241.0	125.0	158.0	217.0	155,0	0.577	230.0	234.0	252.0	237.0	153,0	251,0	254,0		215,1	123.0
MARZO	pH am Alc	ш	Ш	7,48	7,52	7,65	7,39	7,41	7,26	7,30	7,33	1,39	7.61	7,66	7,61	7,70	7,64	7.67	7,14	7,61	6,70	7,15	20,00	2,50	2.30	7,30	7,29	7,14	7,30	7,33	ŀ	7,38	6,70
	DIA P	Unidad	1	2	3	7	w	9	7	8	T	T	:	Т		П	П	T	19	П		7	Ť	3.5	T	Т	28			П			Mini

Anexo Cap 3_8b Características fisicoquímicas del agua cruda y tratada

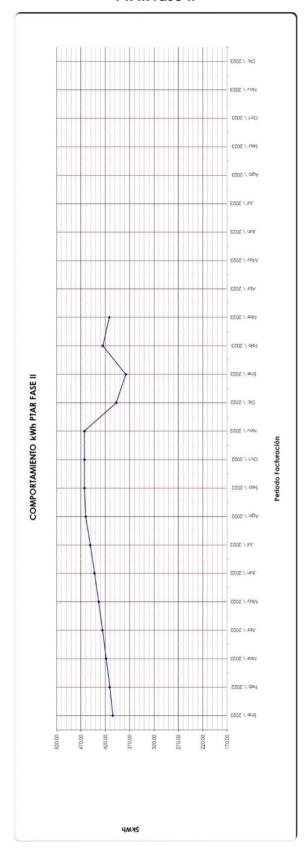
Part All All All All All All All All All A	LABORATORI	R EL SALITRE	- AGUA TRA	LADA						
1.2. 1.0. <th< th=""><th>ST PM SV</th><th>TURBIEDAD DBO5 AM</th><th>и рвоз РМ рдо АМ</th><th>м роори</th><th>Turb/DBO</th><th>Turb/DBO</th><th>Turb/ Turb/</th><th>gss</th><th>SSD TEMP (°C)</th><th>(°C) FLOTANTES</th></th<>	ST PM SV	TURBIEDAD DBO5 AM	и рвоз РМ рдо АМ	м роори	Turb/DBO	Turb/DBO	Turb/ Turb/	gss	SSD TEMP (°C)	(°C) FLOTANTES
7.53 2.02.0 7.47 2.04.0 9.29 9.02 1.4 1.2 0.05 9.1 9.1 9.2 9.0	//gm	PM (NTU) mg-O2/l	1 mg-02/1 mg-02/1	12/1 mg-02/l	AM	H	┝	am	md md	MM/PM
7.50 2.0.2.0 7.50 2.0.2.0 1.	353 300	6 14	12 67	22	0,50	H	0,23 0,60			
750 2720 750 2720 750 250 98 10 68 11 71 350 11 71 350 754 2720 750 2800 920 920 920 920 10 6 0.050 12 5 50 95 95 95 10 5 5 5 5 6 60 60 10 5 5 5 6 6 6 6 6 7 353 153 358 153 358 153 153 150	360	6 13	13 60	133	0,54	0,46	0,64 0,43	0'0	0,0	
7.3. 2.7. 7. 2.0. 0.0. 6. 0.00 1.0. 6.0	230	6 18	14 103		0,39		H			
74.4 27.7 7.5 27.7 7.5 27.7 7.5 27.7 7.5 27.7 7.5 27.7 7.5 27.7 7.5 27.7 7.5 27.7 7.5 27.7 7.5 27.7 7.5 27.7 7.5 27.7 7.5 27.7 7.5 27.7 7.5	383	6 13		H	0,46	H	0,60 0,50	H	0,0	
7.30 2.37.0 7.10 2.37.0 1.10	433	5 16	11 104		0,38		H		0,0	
7.40 2.0.10 7.41 2.0.20 7.55 1.89 2.0 0.0 <	358	5 10	12 70	28	0,50		0,56 0,56	0'0	0,0	
7.56 2.0.0.0 7.75 118.0. 7.85 118.0. 7.85 118.0. 7.85 118.0. 11.0. <t< td=""><td>283</td><td>5 18</td><td>13 48</td><td>L</td><td>0,39</td><td>H</td><td>0,64 0,56</td><td>L</td><td>0,0</td><td></td></t<>	283	5 18	13 48	L	0,39	H	0,64 0,56	L	0,0	
7.42 1.42 7.47 1.42 7.42 1.42 7.42 1.42 7.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.44 <th< td=""><td>367</td><td>7 14</td><td>19 32</td><td></td><td>0,71</td><td></td><td>0,63 0,88</td><td>0'0</td><td>0,0</td><td></td></th<>	367	7 14	19 32		0,71		0,63 0,88	0'0	0,0	
7.1. 1.8.0.0 7.1. 1.0. 6.0. 8.2. 7.1. 1.0. 2.0. 1.0.	153	7 21	18 73	L	0,24	H	H		0,0	
71.1 11.00. 7.50. 440. 7.5 6.0 7.5 6.0 7.5 6.0 7.5 6.0 7.5 6.0 7.5 6.0 7.5 6.0 7.5 6.0 7.5 6.0 7.5 6.0 7.5 7.5 4.0 0.57 30.0 4.7 257. 7.7 1.80. 7.50. 1.40. 6.0 6.0 6.0 6.0 7.5 7 4 0.57 30.0 4.7 257. 7.8 1.80. 7.50. 1.40. 6.0 6.0 6.0 6.0 6.0 6.0 30.3 6.7 30.0 4.7 257. 30.0 7.5 4 0.57 30.0 4.7 259. 30.0 4.7 259. 30.0 4.7 259. 30.0 4.7 259. 30.0 4.7 259. 30.0 4.7 259. 30.0 4.7 259. 30.0 4.7 259. 30.0 4.7 259. 30.0	447	6 11	12 56	_	99'0	050	050 050	0'0	0,0	
772 1172 1272 142 142 447 427 41 60 7 4 60 7 60 7 4 60 7 60 67 7 4 60 7 7 4 60 7 20 7 20 7 4 60 7 20 7 4 60 7 20 7 4 60 7 20 80 11 7 4 60 7 3 60 7 3 60 7 3 60 80 11 7 4 60 80 10 7 4 60 90 10 7 4 60 90 10 7 4 60 90 10 7 4 60 90 10 7 4 60 90 10 10 8 90 10 10 8 90 10 10 8 90 <th< td=""><td>293</td><td>6 19</td><td>12 70</td><td></td><td>96'0</td><td>_</td><td>Н</td><td></td><td>0,0</td><td></td></th<>	293	6 19	12 70		96'0	_	Н		0,0	
770 170 770 170 770 400 67 7 4 6.05 300 147 300 741 1820 7.80 1440 640 640 671 1 4 6.05 303 677 303 677 303 677 303 677 303 677 303 677 303 677 303 677 303 678 308 678 7 4 605 303 677 303 677 303 677 303 678 7 4 605 303 677 303 677 303 678	257	6 12	13 57	114	09'0	-	98'0 95'0	0'0	0,0	
744 (18) 7.56 (18) 7.60 (18) 7.60 (18) 7.60 (18) 7.60 (18) 7.60 (18) 7.60 (18) 7.60 (18) 7.60 (18) 7.60 (18) 7.60 (18) 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.70	283	8 15	10 76		0,47	08'0	Н		0,0	
741 11.10 7.50 2.00 2.00 7.00 <th< td=""><td>333</td><td>11 14</td><td>11 84</td><td>98</td><td>09'0</td><td>_</td><td>0,64 1,38</td><td>0'0</td><td>0,0</td><td></td></th<>	333	11 14	11 84	98	09'0	_	0,64 1,38	0'0	0,0	
788 28.00. 7.66 28.00. 28.00. 28.00. 17. 18.00.	380	5 11	11 80		0,45		0,63 0,71	0'0	0,0	
78.8 28.70 7.64 28.00 30.0 100 10.0 <t< td=""><td>390</td><td>5 11</td><td>10 80</td><td>59</td><td>0,45</td><td>_</td><td>-</td><td>0'0</td><td>0,0</td><td></td></t<>	390	5 11	10 80	59	0,45	_	-	0'0	0,0	
75.2 26.00 7.10 26.00 4.10 7.0 8.10 1.0 9.00 4.10 1.0 9.00 4.10 1.0 9.00 4.10 1.0 9.00 4.10 1.0 9.00 4.10 1.0 9.00 4.10 1.0 9.00 4.10 1.0 9.00 4.10 1.0 9.00 4.10 1.0 9.00 4.10 1.0 9.00 4.10 1.0 9.00 4.10 1.0 9.00 4.10 1.0 9.00 4.10 1.0 9.00	347	6 14	14 122		96,0				0,0	
7.4 180.0 7.51 144.0 7.8 5.89 14 0.67 8 7 0.84 183 190 310 7.5 180.0 7.21 146.0 577 657 65 6 6 7 0.84 187 190 310 7.5 180.0 7.20 2.20 7.7 6.27 6 6 6 6 7 6.7 310 190 310 7.5 2.00 7.20 2.20 7.4 6.7 6 6 6 6 7 6.7 310 120 300 120 7 2.20 310 120 300 120 2.20 120 2.20 6 6 6 6 6 6 6 7 6 6 7 2.20 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 1	403	91 9	18 122		0,44	0,33	09'0 85'0		0,0	
7.76 189.0 7.70 189.0 <t< td=""><td>303</td><td>7 14</td><td>19 116</td><td>87</td><td>0,79</td><td></td><td></td><td></td><td>0,0</td><td></td></t<>	303	7 14	19 116	87	0,79				0,0	
716 1180 7.50 2.50 7.51 8.77 10.70 8 0.00 8 6 0.05 9.30 13.00 <t< td=""><td>303</td><td>6 17</td><td>170</td><td></td><td>0,47</td><td></td><td>-</td><td></td><td>0,0</td><td></td></t<>	303	6 17	170		0,47		-		0,0	
7.92 2.02 7.7 8.02 7.7 8.02 7.7 8.02 7.7 8.02 9.7 7.0 8.0 9.7 7.0 8.0 9.7 9.7 7.7 8.0 9.0 9.7 9.0 9	330	6 16	17 96	-	0,63		Ч	0'0		
7.4.2 2.16.0 7.7.0 2.16.0 7.7.0 2.16.0 7.7.0 2.16.0 7.7.0 2.16.0 7.7.0 2.16.0 7.7.0 2.16.0 7.7.0 2.16.0	220	91 9	19 125	9/	0,44	0,32	4	_		•
75.2 25.0 6.05 2.0 6.0 5.0 6.0 5.0 1.0 4.0 1.0<	293	6 20		-	0,25	4	4	_		•
741 234.0 74.0 24.0 74.0 8.0 3 0.50 15.0 66.0 3.0 10.0 3.0 3.0 10.0 3.0 3.0 3.0 10.0 3.0 10.7 3.0 10.7 3.0 10.7 3.0 10.7 3.0 10.7 3.0	410	6 15			0,67	4	4	4		•
7.7.2 2.0.0 7.4.4 2.2.0.0 7.4.4 2.2.0.0 7.4.4 2.2.0.0 7.4.4 2.2.0.0 7.4.4 2.2.0.0 7.4.4 2.2.0.0 7.4.4 2.2.0.0 7.4.4 2.2.0.0 7.4.7 2.4.0.0 8.5. 8.6.<	363	8 20	19 74	82	0,30	-	4	0'0	0,0	
7.44 2.12.0 7.4 2.45.0 4.6 1.6 7.7 7.0 4.5 1.6 7.7 7.0 4.5 1.6 7.7 7.0 4.5 1.6 1.6 7.7 4.6 1.0 3.7 1.6 1.6 3.7 1.6 1.6 3.7 1.6 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.7 1.6 3.2 3.0 1.6 3.2 3.0	347	6 20	13 87		0,40	0,46	1,00 0,60	0'0	0,0	
751 824.00 7.32 286.00 853 9 4 40.44 14 6 0.40 337 787 7.38 184.00 7.33 184.00 822 184 823 14 8 0.40 337 243 307 7.45 184.00 7.33 184 84.0 5 3 0.60 3 0.60 33 243 307 7.48 2.20.0 7.41 8.40 5 3 0.60 33 113 307 7.48 2.41,0 1.85 189 8 5 0.63 5 0.66 33 0.66 33 113 307 7.48 2.41 2.42 8 5 0.63 5 0.66 33 0.66 33 113 307 7.53 2.13 2.13 2.13 2.13 2.13 1.13 2.13 1.13 307 34 1.15 308 1.24 <td< td=""><td>387</td><td>5 15</td><td>17 95</td><td></td><td>0,33</td><td></td><td>-</td><td>0'0</td><td>0,0</td><td></td></td<>	387	5 15	17 95		0,33		-	0'0	0,0	
7.58 194.0 7.53 194.0 7.53 194.0 7.53 194.0 3.0 2.9 3.0	327	8 16			0,38		-			
7.45 22.20 7.46 22.20 7.41 840 6 3 0.60 33 113 370 7.48 24.10 7.51 22.20 7.41 840 6 3 0.66 33 113 370 7.48 24.10 7.51 25.00 859 8 6 6 0.66 347 115 350 7.52 21.6 7.50 12.0 1 7 1 10 6 1 7 36 36 7.59 1.20 1.20 1 1 1 10 6 1 1 36 155 36 7.59 1.20 1.20 1	307	5 16			95'0	+	Ч			•
7.48 241.0 7.51 226.0 683 689 8 5 0.63 7 6 0.68 3.7 153 383 7.58 21 7.60 221 763 763 7 1 10 6 1 359 155 346 7.99 136 7.20 122 467 465 5 3 0 5 2 0 107 20 153	370	4 12	18 122		0,33		0,80 0,67	0'0	0,0	
7.55 2.15 7.60 2.21 7.63 7.63 7.6 7	393	6 17	18 60	64	0,29	0,33	0,63 0,86	0'0	0,0	•
7,55 215 7,60 221 765 76 10 7 1 10 6 1 539 155 345 7,59 136 7,20 122 467 465 5 3 0 5 5 2 0 107 20 153			-			H	000	-		_
	153	4	10 32	30	0.24	0.22	0.23 0.35	00'0	0.00	
277 8 02 282 673 656 30 27 2 23 15 1 1283 1000 530	430	11 21	ľ	ľ	0.05	t	+	H	ļ	


ANEXOS CAPÍTULO 4

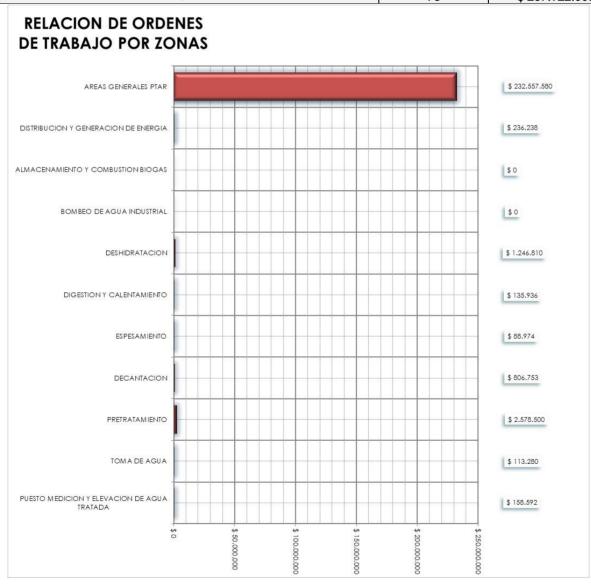
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I

AÑO	PERIODO FACTURACION	CONSUMO ACTIVA	CONSUMO REACTIVA	TOTAL CONSUMO EN KWH	COSTO FACTURA	VALOR KWH
	Ene \ 2020	667.691,00	0,00	667.691,00	267.812.122,00	398,6
	Feb \ 2020	650.550,00	0,00	650.550,00	249.609.330,00	374,9
	Mar \ 2020	693.080,00	0,00		264.334.540,00	379,4
	Abr \ 2020	691.660,00	0,00	691.660,00	264.741.730,00	382,7
	May \ 2020	709.170,00	0,00	709.170,00	281.469.240,00	387,6
2020	Jun \ 2020	696.440,00	0,00		270.102.340,00	393,3
2020	Jul \ 2020	685.570,00	0,00		283.845.770,00	417,8
	Ago \ 2020	547.870,00	0,00		238.101.930,00	420,4
	Sep \ 2020	626.760,00	0,00	626.760,00	274.065.290,00	426,7
	Oct \ 2020	694.950,00	0,00		308.019.680,00	430,2
	Nov \ 2020	650.150,00	0,00		285.339.150,00	430,2
	Dic \ 2020	693.260,00	17.975,00		297.557.770,00	418,9
Total 2020		8.007.151,00	17975		3.284.998.892,00	405,0
	Ene \ 2021	477.060,00	0,00		205.513.380,00	415,1
	Feb \ 2021	545.170,00	0,00	·	234.202.251,00	421,9
	Mar \ 2021	623.310,00	0,00		260.686.170,00	435,6
	Abr \ 2021	530.690,00	0,00		232.391.250,00	439,7
	May \ 2021	522.700,00	40,00	(232.643.280,00	437,3
2021	Jun \ 2021	480.310,00	30,00		223.131.160,00	456,7
2021	Jul \ 2021	476.900,00	5,00		218.143.070,00	449,4
	Ago \ 2021	430.470,00	20,00		196.958.750,00	452,8
	Sep \ 2021	153.380,00	900,00		69.705.640,00	452,1
	Oct \ 2021	123.190,00	1.980,00		58.084.080,00	462,5
	Nov \ 2021	128.610,00	2.970,00		60.758.120,00	465,7
	Dic \ 2021	107.260,00	2.700,00		50.461.570,00	457,1
Total 2021		4.599.050,00	8645		2.042.678.721,00	445,55
	Ene \ 2022	116.830,00	1.730,00		56.669.840,00	479,7
	Feb \ 2022	95.000,00	1.570,00		47.464.070,00	495,6
	Mar \ 2022	101.820,00	1.345,00		52.791.150,00	515,3
	Abr \ 2022	68.480,00	610,00		35.633.040,00	624,6
	May \ 2022	64.610,00	805,00		35.626.460,00	543,4
2022	Jun \ 2022	125.800,00	1.415,00		70.313.370,00	551,8
	Jul \ 2022	73.650,00	1.800,00		43.182.090,00	576,8
	Ago \ 2022	59.200,00	775,00		34.768.140,00	571,5
	Sep \ 2022	64.060,00	440,00		35.319.780,00	548,9
	Oct \ 2022	79.650,00	1.180,00		42.283.660,00	523,6
	Nov \ 2022	74.790,00	1.400,00		41.231.760,00	538,0
	Dic \ 2022	79.300,00	230,00		42.854.530,00	525,3
Total 2022		1.003.190,00	13300		538.137.890,00	541,20
	Ene \ 2023	76.820,00	685,00	76.820,00	39.869.120,00	511,7
	Feb \ 2023	37.550,00	2.050,00	37.550,00	20.007.270,00	517,7
	Mar \ 2023	55.640,00	1.835,00		32.444.910,00	541,4
	Abr \ 2023	0,00	0,00		0,00	
	May \ 2023	0,00	0,00		0,00	0,0
2023	Jun \ 2023	0,00	0,00		0,00	0,0
	Jul \ 2023	0,00	0,00		0,00	0,0
	Ago \ 2023	0,00	0,00		0,00	0,0
	Sep \ 2023	0,00	0,00		0,00	0,0
	Oct \ 2023	0,00	0,00		0,00	0,0
	Nov \ 2023	0,00	0,00		0,00	0,0
	Dic \ 2023	0,00	0,00		0,00	0,0
Total 2022		170.010,00	4570	170.010,00	92.321.300,00	142,81

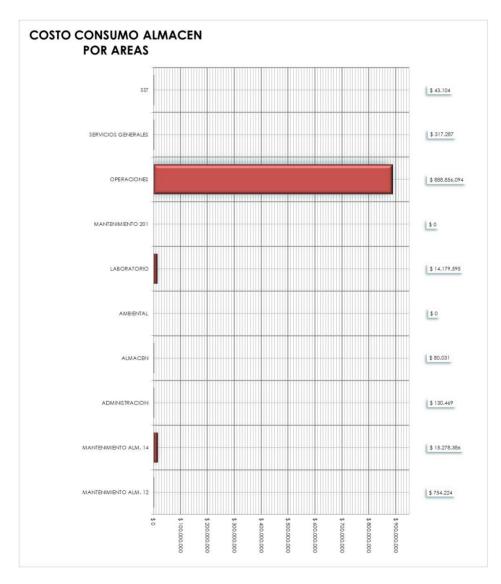
Anexo Cap 4_ 2 Costo energía eléctrica comprada por KWH desde enero 2020 PTAR fase I



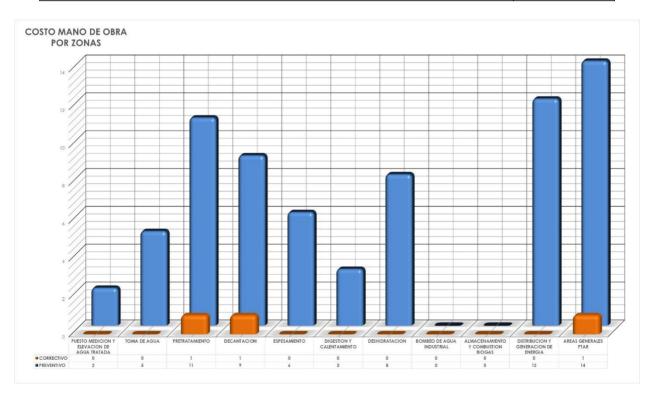
Anexo Cap 4_ 3 Consumo de energía eléctrica desde diciembre de 2022 PTAR fase II


AÑO	PERIODO FACTURACION	CONSUMO ACTIVA	CONSUMO REACTIVA	TOTAL CONSUMO EN KWH	COSTO FACTURA	VALOR KWH
	Ene \ 2022	1.423.040,00	0,00	1.423.040,00	575.978.286,08	404,75
	Feb \ 2022	1.280.000,00	0,00	1.280.000,00	525.853.824,00	410,82
	Mar \ 2022	2.560.517,00	0,00	2.560.517,00	1.070.854.554,76	418,22
	Abr \ 2022	2.880.000,00	0,00	2.880.000,00	1.226.148.480,00	425,75
	May \ 2022	2.710.000,00	0,00	2.710.000,00	1.174.539.474,00	433,41
2022	Jun \ 2022	3.200.000,00	0,00	3.200.000,00	1.414.648.320,00	442,08
2022	Jul \ 2022	3.040.000,00	0,00	3.040.000,00	1.370.794.368,00	450,92
	Ago \ 2022	3.200.000,00	0,00	3.200.000,00	1.429.923.602,00	459,94
	Sep \ 2022	4.320.000,00	0,00	4.320.000,00	1.998.851.904,00	462,70
	Oct \ 2022	2.560.000,00	0,00	2.560.000,00	1.184.504.832,00	462,70
	Nov \ 2022	3.520.000,00	0,00	3.520.000,00	1.628.694.140,00	462,70
	Dic \ 2022	2.600.592,00	0,00	2.600.592,00	1.043.636.770,00	397,34
Total 2022		33.294.149,00	0	33.294.149,00	14.644.428.554,84	435,94
	Ene \ 2023	3.066.288,00	0,00	3.066.288,00	1.170.663.990,00	377,83
	Feb \ 2023	3.324.672,00	0,00	3.324.672,00	1.416.216.230,00	425,08
	Mar \ 2023	3.879.376,00	0,00	3.879.376,00	1.623.525.530,00	411,69
	Abr \ 2023	0,00	0,00	0,00	0,00	
	May \ 2023	0,00	0,00	0,00	0,00	0,00
2023	Jun \ 2023	0,00	0,00	0,00	0,00	0,00
2023	Jul \ 2023	0,00	0,00	0,00	0,00	0,00
	Ago \ 2023	0,00	0,00	0,00	0,00	0,00
	Sep \ 2023	0,00	0,00	0,00	0,00	0,00
	Oct \ 2023	0,00	0,00	0,00	0,00	0,00
	Nov \ 2023	0,00	0,00	0,00	0,00	0,00
	Dic \ 2023	0,00	0,00	0,00	0,00	0,00

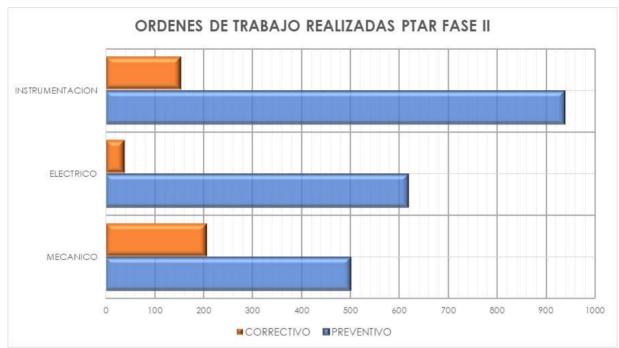
Anexo Cap 4_ 4 Costo energía eléctrica comprada por KWH desde diciembre de 2022 PTAR fase II


Anexo Cap 4_5 Descripción del mantenimiento por zonas

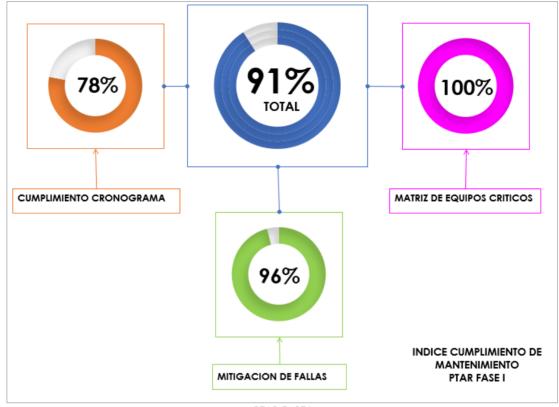
	DESCRIPCION DEL MANTENIMIENTO X 01 AL 31 DE MARZO DE 2023	(ZONAS	
ZONA	DESCRIPCION	ORDENES DE	TOTAL
		TRABAJO	MANTENIMIENTO
00	PUESTO MEDICION Y ELEVACION DE AGUA TRATADA	2	\$ 158.592
01	TOMA DE AGUA	5	\$ 113.280
02	PRETRATAMIENTO	12	\$ 2.578.500
05	DECANTACION	10	\$ 806.753
08	ESPESAMIENTO	6	\$ 88.974
10	DIGESTION Y CALENTAMIENTO	3	\$ 135.936
12	DESHIDRATACION	8	\$ 1.246.810
14	BOMBEO DE AGUA INDUSTRIAL	0	\$0
15	ALMACENAMIENTO Y COMBUSTION BIOGAS	0	\$0
18	DISTRIBUCION Y GENERACION DE ENERGIA	12	\$ 236.238
30	AREAS GENERALES PTAR	15	\$ 232.557.580
	TOTAL	73	\$ 237.922.663


Anexo Cap 4_ 6 Consolidado costo total por áreas

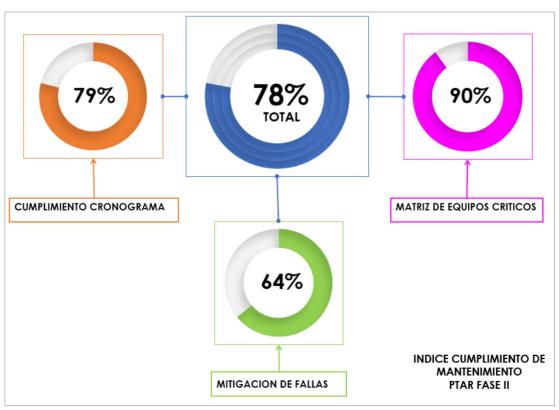
DESCRIPCION DEL MANTE 01 AL 31 DE MAR	
DESCRIPCION	SALIDA ALMACEN
MANTENIMIENTO ALM. 12	\$ 754.224
MANTENIMIENTO ALM. 14	\$ 15.278.386
ADMINISTRACION	\$ 130.469
ALMACEN	\$ 80.031
AMBIENTAL	\$ 0
LABORATORIO	\$ 14.179.595
MANTENIMIENTO 201	\$ 0
OPERA CIONES	\$ 888.856.094
SERVICIOS GENERALES	\$ 317.287
SST	\$ 43.104
TOTAL	\$ 919.639.190


Anexo Cap 4_7 Órdenes de Trabajo por Zonas PTAR fase I

	DESCRIPCION DEL MANTENIMIENTO X ZONAS 01 AL 31 DE MARZO DE 2023		
ZONA	DESCRIPCION	_	ENES ZADAS
		PTR1	PTR2
00	PUESTO MEDICION Y ELEVACION DE AGUA TRATADA	0	2
01	TOMA DE AGUA	0	5
02	PRETRATAMIENTO	1	11
05	DECANTACION	1	9
08	ESPESA MIENTO	0	6
10	DIGESTION Y CALENTAMIENTO	0	3
12	DESHIDRATACION	0	8
14	BOMBEO DE AGUA INDUSTRIAL	0	0
15	ALMACENAMIENTO Y COMBUSTION BIOGAS	0	0
18	DISTRIBUCION Y GENERACION DE ENERGIA	0	12
30	AREAS GENERALES PTAR	1	14
	TOTALES	3	70
	IOIALES	7	' 3


Anexo Cap 4_8 Órdenes de Trabajo generadas PTAR fase II marzo 2023

	ORDENES DE TRABAJ	IO REALIZADAS PTAR F	ASE II
	MECANICO	ELECTRICO	INSTRUMENTACION
PREVENTIVO	500	618	937
CORRECTIVO	205	39	153



Fuente: Elaboración propia formato Google Forms

Anexo Cap 4_ 9 Indicadores de Gestión

PTAR FASE I

PTAR FASE II

PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES " EL SALITRE"

Versión	Α
Código	
Página	

CONTROL DE DOCUMENTOS

Documento	Nombre documento	Responsable
	Gestión Financiera Capítulo 2.	Ancizar Ramírez Mosquera
	Informe de Operaciones Capítulo 3 y anexos Cap. 3	Hader Fabián Gómez Montenegro
	Informe Electromecánico Capítulo 4 y anexos Cap. 4	Gilson Raul Alfonso Maldonado
Informe Mensual	Informe Ambiental Capítulo 5	Catalina Del Mar López Pinto
marzo 2023	Informe Gestión Social Capítulo 5	Alexandra Barriga Suarez
	Informe Calidad Capítulo 6	Angie Katherine Acuña Gomez
	Informe Salud Ocupacional Capítulo 7	Jennifer Andrea Torres Parra
	Recopilación / edición informe Anexos Cap. 4	Juan Pablo Méndez Peña

Control de modificaciones

Página, numeral o capítulo modificado	Revisión No.	Fecha de la modificación	Descripción de la modificación

Emisor:	Aprobado por:	Fecha elaboración del formato:
PTAR EL SALITRE	Yamid Garcia Zuñiga	abril 2023