

2023

INFORME MENSUAL DE ACTIVIDADES ABRIL

BOGOTÁ, MAYO 2023

CONTENIDO

1.	ANTE	CEDENTES Y GENERALIDADES	10
2.	GEST	ÓN FINANCIERA	11
2.1	ASIC	GNACIÓN PRESUPUESTAL	11
2.2	CO	STO MENSUAL TRATAMIENTO PTAR SALITRE	11
3.	GESTI	ÓN DE OPERACIÓN	12
3.1		A DE AGUA	
	3.1.1	Comportamiento Canal Salitre y Elevación de Agua Cruda	
	3.1.2	Cribado	16
	3.1.3	Grasas Materiales Flotantes y Arenas	
	3.1.4	Dosificación de Productos	
	3.1.5 3.1.6	Decantación Primaria	
	3.1.6	Calidad de Agua Tratada Sólidos Suspendidos Totales	
	3.1.8	Demanda Biológica de Oxígeno	
	3.1.9	Grasas y aceites	
	3.1.10	pH	
	3.1.11	Temperatura	
	3.1.12	Tratamiento de Agua - Fase I	
3.2		A DE LODOS	
	3.2.1	Mesas Espesadoras	
	3.2.2 3.2.3	DigestiónCentrifugas	
3.3		TAMIENTO DEL BIOGÁS - MOTOGENERACIÓN	
4.		ÓN DE MANTENIMIENTO ELECTROMECÁNICO	
4.1		NEACIÓN Y PROGRAMACIÓN	
4.2		NTENIMIENTO PREVENTIVO	
4.3		NTENIMIENTO CORRECTIVO	
4.4		ONIBILIDAD DE EQUIPOS	
4.5		STOS	
4.6		TIÓN DE ENERGÍA	
4.7	HEC	CHOS RELEVANTES EN EL MES DE ABRIL:	36
5 .	GEST	ÓN AMBIENTAL Y SOCIAL	46
5.1	PLA	N DE MANEJO FORESTAL Y PAISAJÍSTICO	46
	5.1.1	Actividades de Mantenimiento y Establecimiento	48
5.2	OPT	IMIZACIÓN DEL USO DEL AGUA	
5.3	CO	NTROL DEL TRANSPORTE DE BIOSÓLIDOS	55
5.4		n de uso benéfico de los lodos	
5.5		NTROL DEL MANEJO DE RESIDUOS	
5.6		NTROL DE RUIDOS	
		NTROL DE EMISIONES	

5.8	CC	NTROL DE OLORES	62
5.9	PLA	'N DE GESTIÓN SOCIAL	63
	5.9.1	Componente de Comunicación e Información	63
	5.9.2	Componente de Participación Comunitaria	
	5.9.3	Componente de Educación Ambiental	
	5.9.4	Componente de Relaciones Interinstitucionales	
	5.9.5	Componente de Investigación Social	
	5.9.6	Componente Generación de Empleo	
6.		IÓN DE CALIDAD	
6.1		RODUCCIÓN	
6.2	ATE	NCIÓN CLIENTE EXTERNO	78
6.3	PLA	N DE TRABAJO SGC	78
6.4	AUI	DITORÍA Y PLANES DE MEJORAMIENTO	81
6.5	GE:	STIÓN DE RIESGOS	81
6.6	IND	ICADORES	82
6.7	PRO	DDUCTO NO CONFORME	82
7.	SISTE	MA DE GESTIÓN DE SEGURIDAD Y SALUD EN EL TRABAJO	85
7.1	Ме	dicina Preventiva y del Trabajo	85
	7.1.1	Condiciones de salud:	
	7.1.2	Actividades de promoción y prevención:	
	7.1.3	Manejo integral de sustancias químicas:	
	7.1.4	Programa de fumigación:	89
	7.1.5	Sistemas de vigilancia epidemiológica:	90
7.2	Ind	cador de Accidentalidad y Ausentismo	90
	7.2.1	Ausentismo Laboral	91
7.3	Seg	juridad e Higiene Industrial	91
	7.3.1	Inducción en SST	92
	7.3.2	Programa de capacitación SST	
	7.3.3	Inspecciones de seguridad	
	7.3.4	Tareas de Alto Riesgo Autorizadas	95

LISTA DE GRAFICAS

Gráfica 3.1-1 Niveles en el Canal Salitre y río Bogotá – abril 2023 vs. Precipitación.	.14
Gráfica 3.1-2 Caudal Promedio diario Agua Cruda abril 2023	.15
Gráfica 3.1-3 Carga Eliminada de Sólidos y DBO5 (Ton/día) abril 2023	.19
Gráfica 3.1-4 Variación Concentraciones SST en Afluente y Efluente - abril 2023	
Gráfica 3.1-5 Variación Concentraciones DBO5 en Afluente y Efluente abril 2023.	21
Gráfica 3.2-1 Caudal WAS (m3/día) /Concentración SST (mg/l) / Consumo	
Polímero (Kg/día) abril 2023	.24
Gráfica 3.2-2 Producción de Biogás abril 2023	.27
Gráfica 3.2-3 Sequedad de Biosólido abril 2023	
Gráfica 3.3-1 Consumo Diario de Biogás - Gas natural abril 2023	.30
Gráfica 4.6-1 Consumo de ACPM en los generadores y calderas 2023	.35
Gráfica 4.6-2 Consumo de la energía eléctrica comprada en KWH desde enero	de
2020	.35
Gráfica 4.6-3 consumo de energía eléctrica de la Planta desde diciembre de 20	22
	.36
Gráfica 5.2-1 Consumo de agua potable por áreas de la PTAR Fase I abril de 202	3
	.54
Gráfica 5.2-2 Consumo de agua potable de la PTAR Fase I periodo (abr/2022 a	
301720207	.54
Gráfica 5.2-3 Consumo de agua potable de la PTAR Salitre Fase II (abr/2022 a a	br
/2023)	.55
Gráfica 5.6-1 Comparación de emisión de ruido horario diurno con la Resolución	
2006	.60
Gráfica 5.6-2 Comparación de emisión de ruido horario nocturno con la	
Resolución 2006	
Gráfica 5.9-1 Visitantes link PTAR el Salitre	
Gráfica 6.5-1 reportes de autocontroles de riesgo	.81

LISTA DE CUADROS

Cuadro 3.1-1 Caudales de entrada y salida de la PTAR Salitre registrados abril	
Cuadro 2.1.2 Cantidad do residuos retirados en trampa do recas, cribado fin	14
Cuadro 3.1-2 Cantidad de residuos retirados en trampa de rocas, cribado fin grueso.	
Cuadro 3.1-3 Cantidad de residuos retirados en sobrenadantes, grasas, areno	
basura interna	
Cuadro 3.1-4 Licor de mezcla de Reactores Biológicos abril 2023	
Cuadro 3.1-5 Carga removida y concentraciones para SST y DBO5 reportada	
2023	19
Cuadro 3.1-6 Relación de fechas y resultados asociados a valores de	
concentración de SST Que superan los 30 mg/L	20
Cuadro 3.1-7 Relación de fechas y resultados asociados a valores de	
concentración de DBO ₅ Que superan los 30 mg/L	
Cuadro 3.1-8 Concentración del parámetro Grasas y Aceites para el mes de 2023	
Cuadro 3.1-9 Estado de las telescopicas de Clarificadores Secundarios	
Cuadro 3.2-1 Datos línea de lodos abril 2023	
Cuadro 3.2-2 Datos generacion biogas y % remoción MV en los digestores	
Cuadro 4.4-1 Equipos Críticos abril 2023	
Cuadro 4.4-2 Equipos Fuera de Servicio o con Operación Restringida PTAR fas	
Cuadro 5.1-1 Barreras forestales y ambientales de la PTAR El Salitre	
Cuadro 5.1-2 Distribución de número de árboles por cada una de las barrera	
ambientales de la PTAR El Salitre	
Cuadro 5.1-3 Poda de ramas bajas por barrera	
Cuadro 5.1-4 Poda de ramas altas por barrera	
Cuadro 5.1-5 Cantidad de árboles fumigados por zona	
Cuadro 5.1-6 Área de mantenimiento de jardinería	
Cuadro 5.5-1 Residuos donados a la Asociación Pedro León Trabuchi	
Cuadro 5.6-1 Resultados del monitoreo diurno	
Cuadro 5.6-2 Resultados del monitoreo nocturno	
Cuadro 5.7-1 Resultados de monitoreo de Emisiones / junio de 2022	
Cuadro 5.9-1 Consolidado plegables generales y técnicos enviados mes de o	
de 2023	
Cuadro 5.9-2 Comunicaciones correo: ptar.salitre@acueducto.com.co	
Cuadro 5.9-3 Total de población informada en las diferentes actividades de	
divulgación mes de abril de 2023	65
Cuadro 5.9-4 Jornadas informativas y pedagógicas de PTAR al barrio efectua	ıdas
en el mes de abril de 2023	65
Cuadro 5.9-5 Visitas guiadas/recorridos pedagógicos solicitados por las	
comunidades - PTAR El Salitre Ampliada y Optimizada abril 2023	
Cuadro 5.9-6 Visitas guiadas/recorridos pedagógicos realizados con institucio	
educativas PTAR El Salitre Ampliada y Optimizada abril de 2023	
Cuadro 5.9-7 Estado de vinculación laboral PTAR El Salitre Ampliada y Optimiz	
en el mes de abril de 2023	
Cuadro 7.3-1 actividades de trabajos de alto riesgo	
Cuadro 7.3-2 actividades de trabajo en espacios confinados	
Cuadro 7.3-3 trabajos con energías peligrosas: riesgo eléctrico	70

LISTA DE IMAGENES

Imagen 5.1-1	Localización	de las barrera	s ambientales	en la PTAR Salitre	ə47
Imagen 5.3-1	Localización (Predios El Corz	o y La Magda	lena	56

LISTA DE FOTOGRAFIAS

Fotografía 1. Mantenimiento mesas espesadora 076DEP001F / 076DEP001G36
Fotografía 2. Mantenimiento bomba lodos digeridos a deshidratación 077P001A / 077P001B
Fotografía 3. Mantenimiento bomba lodo deshidratado a silos 073P002B38
Fotografía 4. Mantenimiento bombas polielectrolito deshidratación de lodos
074P202B / 074P202D39
Fotografía 5. Mantenimiento variador de velocidad 053VDF002C41
Fotografía 6. Mantenimiento tablero de control 069DCA001A41
Fotografía 7. Mantenimiento mesa espesadora 076DEP001A42
Fotografía 8. Mantenimiento sensor 060AIT001F-OD42
Fotografía 9. Mantenimiento variador de velocidad 053VDF002A43
Fotografía 10. Mantenimiento medidor 065FIT302B43
Fotografía 11. Mantenimiento skid de polímero 074QP201B44
Fotografía 12. Mantenimiento sensores de oxígeno061AIT001A/F44
Fotografía 13. Mantenimiento bomba agua lavado gbt's del N°5 al N°8
076P002A/E45
Fotografía 14. Registro fotográfico actividades de mantenimiento y
establecimiento50
Fotografía 15. Registro fotográfico patio de secado predio el Corzo y proceso de
mezcla predio la Magdalena abril 202358
Fotografía 16 Jornada informativa PTAR al barrio, Centro Comercial Bulevar Niza,
localidad de Suba Abril 04 de 2023
Fotografía 17 Jornada informativa PTAR al barrio, Alcaldía Local de Kennedy,
localidad de Kennedy Abril 20 de 2023
Fotografía 18 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fase II,
IDIGER Comisión Gestión del Riesgo y Cambio Climático localidad de
Fontibón Abril 13 de 2023
Fotografía 19 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fase II, Empresa Kenzo Jeans S.A.S Abril 27 de 2023
Fotografía 20 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fase II,
Subred Integrada de Servicios de Salud Norte E.S.E Abril 28 de 202368
Fotografía 21 Reunión Comité de Seguimiento de Obra – SEGO de la localidad de
Suba Abril 21 de 2023
Fotografía 22 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fase II
con estudiantes Instituto Técnico Cerros de Suba. Abril 21 de 2023 69
Fotografía 23 Taller pedagógico con estudiantes de grado 10° y 11°de bachillerato
Colegio Presentación Sans Facon - localidad de Usaquén Abril 12 de
2023
Fotografía 24 Taller pedagógico con estudiantes de grado sexto y noveno de
bachillerato Colegio Presentación Sans Facon - localidad de Suba Abril
12 de 202370
Fotografía 25 Taller pedagógico con estudiantes de grado 8B de bachillerato,
Colegio Gimnasio Moderno Summerhill, barrio Mortiño - localidad de
Engativá abril 02 de 202371
Fotografía 26 Taller pedagógico con estudiantes de grado 6°de Bachillerato
Colegio Presentación Sans Facon - localidad de Suba Abril 12 de 2023
71

Fotografía 27 Taller pedagógico con estudiantes Vigías Ambientales Colegio Centro de Integración Educativa del Norte – CIEN, localidad de Suba Abril 13 de 202371
Fotografía 28 Taller pedagógico con estudiantes Vigías Ambientales Colegio Agustiniano Norte, localidad de Suba Abril 17 de 202372
Fotografía 29 Taller pedagógico con estudiantes de grado 10B° de bachillerato Gimnasio Moderno Summerhill, localidad de Engativá Abril 19 de 2023 72
Fotografía 30 Taller pedagógico con estudiantes de grado 11° de bachillerato Gimnasio Moderno Summerhill, Localidad de Engativá Abril 19 de 2023 72
Fotografía 31 Taller pedagógico con estudiantes de grado 101°de primaria Colegio Gabriel Betancourt Mejía sede A - localidad de Kennedy Abril 25 de 202373
Fotografía 32 Taller pedagógico con estudiantes de grado 103 de primaria Colegio Gabriel Betancourt Mejía sede A - localidad de Kennedy Abril 25 de 202373
Fotografía 33 Taller pedagógico con estudiantes de grado 704° de bachillerato IED Colegio el Porvenir sede B - localidad de Bosa Abril 26 de 202373
Fotografía 34 Taller pedagógico con estudiantes de grado 705° de bachillerato IED - Colegio el Porvenir sede B - localidad de Bosa Abril 26 de 202374
Fotografía 35 Taller pedagógico con estudiantes de grado 604° de bachillerato IED - Colegio el Porvenir sede B - localidad de Bosa Abril 26 de 202374
Fotografía 36 Taller pedagógico Aula ambiental de la PTAR El Salitre Vigías Ambientales Instituto Técnico Cerros de Suba, localidad de Suba Abril 21 de 2023
Fotografía 37 Reunión Comisión Ambiental Local – CAL de la localidad de suba Casa de la Participación Alcaldía Local Abril 01 de 202376
Fotografía 38. Control acceso casino
Fotografía 40. Labores de apoyo por parte de la empresa de aseo Eminser en las áreas de la PTAR El Salitre
Fotografía 41. Programa fumigación áreas PTAR el Salitre
Fotografía 42. Actividades de entrega de dotación91 Fotografía 43. Actividades de capacitación SST92

LISTA DE ANEXOS

CAPITULO 3

Anexo Cap. 3_1 eficiencia de la planta	98
Anexo Cap. 3_2 Lluvias Cuenca Salitre – abril 2023	
Anexo Cap. 3_3 Niveles lámina de agua cotas a nivel del mar del Canal Salitre	
Lluvias Canal Aferente	
Anexo Cap. 3_ 4 Consumo polímero	
Anexo Cap. 3_5a balance consolidado de sólidos planta el salitre ampliada y	
optimizada – abril 2023	
Anexo Cap. 3_ 5b balance consolidado de sólidos planta el salitre ampliado	
optimizada – abril 2023	
Anexo Cap. 3_ 5c balance consolidado de sólidos planta el salitre ampliado	
optimizada – abril 2023	
Anexo Cap. 3_ 6 resumen deshidratación por centrifuga	.106
Anexo Cap. 3_7 Consumo Biogás	.107
Anexo Cap 3_8 Características fisicoquímicas del agua cruda	.108
Anexo Cap. 3_9 Características fisicoquímicas del agua tratada	.109
7 troke cap. e_ / caracronsheds haloequirheds dor aged harada	
CAPITULO 4	
CAPITULO 4 Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase	I
CAPITULO 4 Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase	l .111
CAPITULO 4 Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase Anexo Cap 4_ 2 Costo energía eléctrica comprada por KWH desde enero 2020	 .111
CAPITULO 4 Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase Anexo Cap 4_ 2 Costo energía eléctrica comprada por KWH desde enero 2020 PTAR fase I	I .111 I .112
CAPITULO 4 Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase Anexo Cap 4_ 2 Costo energía eléctrica comprada por KWH desde enero 2020 PTAR fase I Anexo Cap 4_ 3 Consumo de energía eléctrica desde diciembre de 2022 PTAR	I .111 I .112
CAPITULO 4 Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase Anexo Cap 4_ 2 Costo energía eléctrica comprada por KWH desde enero 2020 PTAR fase I Anexo Cap 4_ 3 Consumo de energía eléctrica desde diciembre de 2022 PTAR fase II	I .111 .112 .113
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase Anexo Cap 4_ 2 Costo energía eléctrica comprada por KWH desde enero 2020 PTAR fase I Anexo Cap 4_ 3 Consumo de energía eléctrica desde diciembre de 2022 PTAR fase II Anexo Cap 4_ 4 Costo energía eléctrica comprada por KWH desde diciembre de	I .111 .112 .113 de
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase Anexo Cap 4_ 2 Costo energía eléctrica comprada por KWH desde enero 2020 PTAR fase I Anexo Cap 4_ 3 Consumo de energía eléctrica desde diciembre de 2022 PTAR fase II Anexo Cap 4_ 4 Costo energía eléctrica comprada por KWH desde diciembre de 2022 PTAR fase II	I .111 .112 .113 de .114
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase Anexo Cap 4_ 2 Costo energía eléctrica comprada por KWH desde enero 2020 PTAR fase I Anexo Cap 4_ 3 Consumo de energía eléctrica desde diciembre de 2022 PTAR fase II Anexo Cap 4_ 4 Costo energía eléctrica comprada por KWH desde diciembre de 2022 PTAR fase II Anexo Cap 4_ 5 Descripción del mantenimiento por zonas	I .111 .112 .113 de .114
CAPITULO 4 Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase Anexo Cap 4_ 2 Costo energía eléctrica comprada por KWH desde enero 2020 PTAR fase I Anexo Cap 4_ 3 Consumo de energía eléctrica desde diciembre de 2022 PTAR fase II Anexo Cap 4_ 4 Costo energía eléctrica comprada por KWH desde diciembre de 2022 PTAR fase II Anexo Cap 4_ 5 Descripción del mantenimiento por zonas Anexo Cap 4_ 6 Consolidado costo total por áreas	I .111 .112 .113 de .114 .115
Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase Anexo Cap 4_ 2 Costo energía eléctrica comprada por KWH desde enero 2020 PTAR fase I Anexo Cap 4_ 3 Consumo de energía eléctrica desde diciembre de 2022 PTAR fase II Anexo Cap 4_ 4 Costo energía eléctrica comprada por KWH desde diciembre de 2022 PTAR fase II Anexo Cap 4_ 4 Costo energía eléctrica comprada por KWH desde diciembre de 2022 PTAR fase II Anexo Cap 4_ 5 Descripción del mantenimiento por zonas Anexo Cap 4_ 6 Consolidado costo total por áreas Anexo Cap 4_ 7 Órdenes de Trabajo por Zonas PTAR fase I	I .111 .112 .113 de .114 .115 .116
CAPITULO 4 Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase Anexo Cap 4_ 2 Costo energía eléctrica comprada por KWH desde enero 2020 PTAR fase I Anexo Cap 4_ 3 Consumo de energía eléctrica desde diciembre de 2022 PTAR fase II Anexo Cap 4_ 4 Costo energía eléctrica comprada por KWH desde diciembre de 2022 PTAR fase II Anexo Cap 4_ 5 Descripción del mantenimiento por zonas Anexo Cap 4_ 6 Consolidado costo total por áreas	I .111 .112 .113 de .114 .115 .116 .117

1. ANTECEDENTES Y GENERALIDADES

Según el decreto 043 de 2004, donde se efectúan unas asignaciones en relación con la operación, mantenimiento y administración de la PTAR El Salitre, el Alcalde Mayor de Bogotá, delegó en su artículo segundo, la función de operar, mantener y administrar la Planta de Tratamiento de Aguas Residuales El Salitre (PTAR El Salitre), de acuerdo con las condiciones que sean necesarias y oportunas, en criterio del entonces DAMA (hoy SDA) y de la Empresa de Acueducto y Alcantarillado de Bogotá ESP, para el correcto funcionamiento del sistema de alcantarillado de la ciudad. Por lo anterior, se asignaron a la EAAB las funciones descritas en el decreto, y, se suscribieron durante el lapso del 1 de Julio de 2004, hasta el 31 de diciembre de 2007, tres convenios con la Secretaria Distrital de Ambiente, (antiguo DAMA) a saber: convenio 05/2004 liquidado; convenio 01/2006 liquidado y el convenio 022/2007 liquidado.

El 23 de diciembre de 2008, se expidió el Decreto 454 de la Alcaldía Mayor de Bogotá por el cual se modificó el Artículo 4 del Decreto 626 del 28 de diciembre de 2007, quedando modificado en lo referido a la adecuada operación, administración y mantenimiento de la PTAR El Salitre, se realizará con los recursos propios del presupuesto de la Empresa de Acueducto y Alcantarillado de Bogotá, E.S.P. Es así, como desde diciembre de 2009, la Empresa incorporó en las tarifas que pagan los suscriptores en Bogotá en el servicio de Alcantarillado, los costos de operación y mantenimiento de la PTAR Salitre previa aprobación de la CRA mediante resolución 484 de 2009.

El 5 de octubre de 2010 mediante Resolución 1079 el Gerente General de la Empresa de Acueducto y Alcantarillado de Bogotá en ejercicio de sus facultades legales y estatutarias en especial las conferidas en el literal a) del artículo 15, de los Estatutos de la Empresa, Resuelve: Asignar a la Gerencia Corporativa Sistema Maestro, el proyecto de Saneamiento del Río Bogotá, y, Asignar a la Dirección Red Troncal Alcantarillado de la Gerencia Corporativa de Sistema Maestro, la Planta de Tratamiento de Aguas Residuales PTAR- El Salitre.

2. GESTIÓN FINANCIERA

PRESUPUESTO

2.1 ASIGNACIÓN PRESUPUESTAL.

Los recursos asignados a la Planta el Salitre para el Funcionamiento, Operación y Mantenimiento se detallan en el siguiente cuadro de acuerdo a su ejecución con corte al mes de abril de 2023.

Cuentas por pagar:

Etiquetas de fila	Presupuesto Vigente	Compromisos Acum	Liberaciones	PAC II Trimestre acum	Giros + Entradas	Saldo cxp	% Ejec Ptal	% Ejec PAC
■ FUNCIONAMIENTO	14.315.967.355	13.920.121.703	395.845.652	8.960.887.993	8.960.887.993	4.959.233.710	62,59%	100,00%
2020	5.567.782	767.782	4.800.000	0	0	767.782	0,00%	#¡DIV/0!
2021	438.803.561	47.757.959	391.045.602	0	0	47.757.959	0,00%	#¡DIV/0!
2022	13.871.596.012	13.871.595.962	50	8.960.887.993	8.960.887.993	4.910.707.969	64,60%	100,00%
■OPERACIÓN	7.208.990.421	7.208.570.946	419.475	748.084.217	748.084.217	6.460.486.729	10,38%	100,00%
2021	780.588.717	780.169.373	419.344	0	0	780.169.373	0,00%	#¡DIV/0!
2022	6.428.401.704	6.428.401.573	131	748.084.217	748.084.217	5.680.317.356	11,64%	100,00%
Total general	21.524.957.776	21.128.692.649	396.265.127	9.708.972.210	9.708.972.210	11.419.720.439	45,11%	100,00%

Ejecución de la Vigencia:

Etiquetas de fila	Presupuesto Vigente	Compromisos Acum	Giros Acum	Entradas_sin_giro	Giros + Entradas	% Ejec Ptal
■ 25596	70.480.365.034	8.666.060.877	1.631.500.480	0	1.631.500.480	2,31%
FUNCIONAMIENTO	24.123.677.730	2.427.063.722	8.953.330	0	8.953.330	0,04%
OPERACIÓN	46.356.687.304	6.238.997.155	1.622.547.150	0	1.622.547.150	3,50%

2.2 COSTO MENSUAL TRATAMIENTO PTAR SALITRE.

Los costos de ejecución con corte a abril de 2023 en la PTAR Salitre ascienden a la suma de **\$ 4.588.690.487.00**

3. GESTIÓN DE OPERACIÓN

Introducción

El fallo en segunda instancia a la sentencia del río Bogotá emitida por el Consejo de Estado en marzo de 2014, se ordenó la realización de diferentes acciones que garanticen la aplicación efectiva de los derechos colectivos a un ambiente sano, la salubridad pública y la eficiente prestación de los servicios públicos domiciliarios a todos los habitantes de la cuenca del río Bogotá; por lo cual se adelantó la adecuación de la PTAR SALITRE aumentando su capacidad a 7m3/s en procura de mejorar el tratamiento de los vertimientos generados en la zona norte de la ciudad.

Bajo este enfoque y de acuerdo a la planificación de cambios que viene realizando la EAAB desde el año 2019 y la medida cautelar proferida por la Magistrada Nelly Villamizar por el incidente 070, mediante auto del 1 de septiembre de 2021, proferido por su Despacho y en calidad de Magistrada del Tribunal Administrativo de Cundinamarca – Sección Cuarta, dentro del expediente 2001- 479, se ORDENÓ "(...) a la EMPRESA DE ACUEDUCTO Y ALCANTARILLADO DE BOGOTÁ que permita el ingreso de los lodos de la fase 2 de operación de tratamiento secundario de la PTAR SALITRE (...)", en el predio "LA MAGDALENA", cuya operación está a cargo de la empresa.

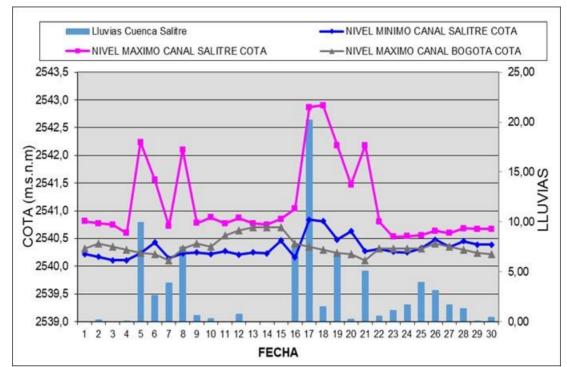
Así mismo, mediante auto del 15 de diciembre de 2021, el Despacho de la Magistrada Nelly Yolanda Villamizar, tiene por cumplida la orden por parte del Consorcio Interventor IVK, en lo que refiere a la expedición del certificado de aceptación de terminación del Hito 1. Así mismo, da por desacatada por parte de la representante legal de la "EMPRESA DE ACUEDUCTO Y ALCANTARILLADO doctora CRISTINA ARANGO OLAYA la medida cautelar decretada los días 10 y 13 de septiembre de 2021 mediante la cual se le ordenó procede a iniciar la operación de la PTAR SALITRE con la asistencia del CONSORCIO EXPANSIÓN PTAR SALITRE, no solo en relación con el inicio de la operación de la planta, sino con la medida cautelar de 1º de septiembre de 2021 en lo que refiere a la disposición de los biosólidos de la Fase II PTAR SALITRE en el Predio La Magdalena de conformidad con las razones expuestas en esta providencia.

La EAAB-ESP acatando las órdenes judiciales, entre ellos los autos proferidos por la honorable Magistrada del Tribunal Administrativo de Cundinamarca, en el marco de la Sentencia del saneamiento del Río Bogotá, inicia de manera inmediata, las actividades de Operación de la Planta de Tratamiento de Aguas Residuales El Salitre Ampliada y Optimizada.

Ahora bien, a partir del 16 de diciembre de 2021, la EAAB en compañía del CEPS, asumen un proceso de operación asistida durante un año. En el siguiente informe se detalla lo encontrado a lo largo del mes de abril 2023.

A continuación, se presenta un informe detallado de la operación en la PTAR El Salitre Fase 2 para el mes de abril 2023, en el cual se relacionan los aspectos más relevantes involucrados en el proceso de tratamiento de las aguas residuales.

3.1 LINEA DE AGUA


3.1.1 Comportamiento Canal Salitre y Elevación de Agua Cruda

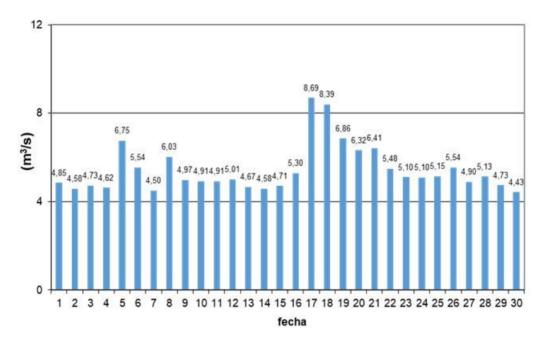
Durante el mes de abril de 2023, el nivel registrado sobre el canal receptor del interceptor Salitre tuvo una tendencia pronunciada alta a la llegada en el punto elevación de agua para fase II. Para el periodo reportado, el interceptor Salitre mantuvo intervalos de cotas ajustadas entre 2540,110 – 2542,900 m.s.n.m., cómo se puede observar en la Gráfica 3.1-1 Este reporte gráfico permite la interpretación de los niveles presentados a lo largo del mes con tendencia a estar en aproximadamente 3,33 metros, mientras que sobre el rio Bogotá se presentó un comportamiento normal con valores reportados sobre el intervalo generado entre la cota 2539,760 y 2540,700 m.s.n.m.

Por otro lado, se puede evidenciar que el canal salitre presentó nivel más bajo del mes alrededor de 3,11 m. para el presente mes la EAAB, ha iniciado la búsqueda de recursos que permitan desarrollar la actividad mediante personal y equipo calificado en inmersiones en aguas residuales. Con el objetivo de brindar cumplimiento a la obligación impartida mediante el AUTO del 16 de diciembre 2022 referente a la limpieza de las rejas de muy gruesos. Sin embargo, la EAAB en procura dar cumplimiento ha iniciado la búsqueda de los recursos que permitan desarrollar la actividad mediante personal y equipo calificado en inmersiones en aguas residuales.

El 29 de abril de 2023 el CEPS manifiesta que ingresaran a realizar la limpieza de las rejas de muy gruesos, suspendiendo una maquina en la trampa de rocas, solicitando se prolongue la consigna del nivel bajo en el FSI.

El reporte de lluvias en el canal para este mes exhibe una frecuencia mensual de ocurrencia igual al 77%, equivalente a 24 días en los cuales se presentó algún tipo de precipitación. Los valores de precipitación más alta se registraron el día 17 de abril con 7,00 mm en la estación de Bolivia, 25,00 mm en la estación de Ferias, 18,00 mm en la estación de Suba, 40,00 mm en la estación de Usaquén, 10,50 mm en la estación de PTAR, Cabe resaltar que todos los datos aquí reportados corresponden a precipitaciones de intensidad moderadas a altas.

Gráfica 3.1-1 Niveles en el Canal Salitre y río Bogotá – abril 2023 vs. Precipitación


En el cuadro 3.1-1, se muestra caudal promedio de entrada y salida registrado en la planta, así como los volúmenes totales tratados de agua.

Cuadro 3.1-1 Caudales de entrada y salida de la PTAR Salitre registrados abril 2023.

Parámetro	Afluente	Efluente	Diferencia
Caudal (m³/s)	5,43	5,41	1
Volumen (m³)	14.071.821,90	14.033.690,10	38.131,80

En registros de caudal se registró un promedio de operación de agua cruda igual 5,43 m³/s, fluctuando entre 4,43 m³/s y 8,69 m³/s, como se puede observar en la Grafica 2 - Caudal Promedio diario Agua Cruda. Este reporte gráfico permite la interpretación de los caudales captados a lo largo del mes.

Gráfica 3.1-2 Caudal Promedio diario Agua Cruda abril 2023

De acuerdo al análisis de la Gráfica 3.1-2, se establece que el volumen diario captados varían de acuerdo con el comportamiento de la población servida y a la influencia de la precipitación. Los valores de captación se incrementaron ocasionados por las lluvias para el 77% en las estaciones ubicadas en el área de influencia de la PTAR, (Bolivia, Ferias, Suba, Usaquén, PTAR) afectando de manera directa el manejo del régimen hidráulico. Para el mes reportado, el volumen total elevado de agua cruda fue de 14.071.821,90 m³.

LOGROS: Se ha garantizado el tratamiento del agua que llega a la planta a través de la infraestructura instalada, captando en su totalidad el flujo que presenta el canal salitre. De esta forma, se aseguró que el drenaje del alcantarillado de la ciudad para las zonas 1 y 2 del Acueducto de Bogotá, fueran tratados en su totalidad.

DIFICULTAD: Para el periodo analizado (abril de 2023) se presentaron lluvias con intensidades moderadas a altas durante los 24 días del mes, lo que provoco niveles altos en el canal de aducción a la planta.

A su vez se presentaron problemas en el sistema que antecede la captación (posterior a la trampa de rocas), el cual posee un sistema de cribado de difícil acceso, y sin mecanismos para su limpieza, lo que ha generado taponamientos en la zona, que han traído como consecuencia niveles altos en este foso. A su vez, este taponamiento influye en la operación de las bombas de elevación, debido a la necesidad de operar un mayor número de estas, con un caudal menor al requerido, generando problemas operativos en la elevación de agua y represamiento en el canal Salitre.

Adicionalmente, se reiteran los daños constantes de los rieles que soportan los carritos de desplazamiento longitudinal de los puentes desarenadores, los cuales se encuentran demasiado oxidados. Estos problemas han limitado de manera constante el caudal de captación.

A su vez para se inician las maniobras para alcanzar el nivel deseado, permitiendo el ingreso del personal para realizar la instalación de las compuertas provisionales en el tamiz ubicado en el canal de tormentas durante los primeros 15 días de abril. Sin embargo, debido a las lluvias esta actividad se logra realizar hasta el 22 de abril de 2023 iniciando limpieza manual con la canastilla por parte del CEPS actividades que generan que el sistema de cribado grueso trabaje a capacidad reducida limitando las rejas disponibles en el sistema.

ACCIONES DE MEJORA: Todas las acciones de mejora apuntan a que una vez se reciba la PTAR SALITRE ampliada y optimizada, se determine qué acciones de mejora se puedan adelantar, orientado en la optimización de equipos y procesos de la planta.

3.1.2 Cribado

El agua residual descargada sobre la estructura de pretratamiento a través de los colectores pertenecientes a la red troncal de EAAB ESP, ENCOR, MANCOR, I.R.B. y Lisboa, es conducida hasta la zona conocida como "trampa de rocas", en la cual, a través de la operación de una cuchara bivalva, se retira el material sobrenadante, retenido por un sistema de predesbaste de rejas con separación de 100 mm.

Posteriormente, el agua pasa por un sistema de rejas gruesas, el cual consta de 10 equipos instalados en paralelo con un espacio entre barrotes de 38 mm, el cual se encarga de retener los elementos gruesos que atravesaron el sistema de predesbaste. Este sistema es auto limpiante y dispone de un canal de entrega con compuertas que permiten bloquearlas para adelantar labores de mantenimiento.

Finalmente, el agua cruda es conducida a un proceso de cribado fino, conformado por sistema de 10 rejas finas, instaladas de la misma manera que las gruesas (en paralelo), pero con un sistema de malla perforada que retiene elementos con tamaños mayores a 6 mm. De la misma manera que el cribado grueso, el sistema es auto limpiante y dispone de un canal de entrega con compuertas que permiten bloquearlas para adelantar labores de mantenimiento.

Los residuos retirados en los procesos de la zona de trampa de rocas, cribado grueso y cribado fino son recogidos, transportados y dispuestos en el relleno Sanitario doña Juana – RSDJ por el operador BOGOTA LIMPIA SA ESP, de acuerdo con el esquema de operación de áreas de servicio exclusivo, estipulado en la Ley 142 de Servicios Públicos Domiciliarios.

En el cuadro 3.2- se muestra la cantidad de residuos retirados de trampa de roca, rejas gruesas y rejas finas para para el mes de abril 2023.

Cuadro 3.1-2 Cantidad de residuos retirados en trampa de rocas, cribado fino y grueso.

PUNTO DE TRATAMIENTO	Ton. Dispuestas en Relleno Sanitario Doña Juana		
Trampa de Rocas	14,1		
Rejas Gruesas	8,74		
Rejas Finas	39,32		
Total, dispuesto RSDJ	62,16		

3.1.3 Grasas Materiales Flotantes y Arenas.

La remoción de grasas, material flotante y arenas es realizado a través de un sistema de 5 puentes barredores longitudinales, equipados con 6 sopladores de inyección de burbujas gruesas. Para retirar la arena sedimentada en el fondo de cada desarenador, se dispone de dos bombas centrifugas instaladas en cada puente. El retiro del material flotante y grasas funciona a través de raspadores superficiales, que van arrastrando todo material que flote en el recorrido del puente.

Los residuos resultantes de este proceso son enviados al sitio autorizado para disposición final. Relleno Sanitario Doña Juana – RSDJ, a través del operador autorizado BOGOTA LIMPIA SA ESP.

En la siguiente tabla, se muestra la cantidad de residuos retirados para el mes de abril de 2023.

Cuadro 3.1-3 Cantidad de residuos retirados en sobrenadantes, grasas, arenas y basura interna.

RESIDUO	Ton. Dispuestas en Relleno Sanitario Doña Juana
Grasas	4,6
Arenas	6,32
Basura Interna	3,1

3.1.4 Dosificación de Productos

Para el presente mes no se tuvo la necesidad de dosificar, ya que se controlaron los microorganismos filamentosos, que se venían presentando en meses anteriores los cuales venían afectando el proceso.

Durante el mes de reporte, no se realizó tratamiento por las antiguas estructuras de la PTAR el Salitre, por lo cual no se tuvo la necesidad de dosificar Cloruro Férrico (FeCl₃) y polímero aniónico (FLOPAM AN 934).

3.1.5 Decantación Primaria

Desde la arqueta de regulación de caudal, se alimentan dos cámaras de reparto; una para cada tres decantadores, para un total de 6 decantadores primarios. Los lodos decantados son llevados al fondo del foso, por medio del puente raspador y enviados a los espesadores actuales de Fase 1, el puente rascador posee un rastrillo superficial que retira las grasas.

Producto del fenómeno físico de decantación y de las operaciones de tratamiento que la preceden, se extrajeron lodos con valor promedio en concentración de 20,96 gr/l. El volumen promedio mensual de extracción de los decantadores 57-1 y 57-2 fue de 1496,11 m³/d, para los decantadores 57-3 y 57-5 fue de 1435,35 m³/d, para los decantadores 57-4 y 57-6 fue de 1448,53 m³/d. Las extracciones de lodo manejaron un promedio de 1460.00 m³/día, y un total de 122.424,30 m³ de lodo primario bombeado hacia espesamiento.

3.1.6 Calidad de Agua Tratada.

En el desarrollo de la línea de tratamiento en la planta del agua residual, se establece como proceso previo a la decantación secundaria, el tratamiento biológico el cual consta de 6 reactores, con una capacidad de 25400 m³ por unidad y con un tipo de tratamiento de alta carga con aireación extendida.

En la siguiente tabla, se relaciona el valor promedio presentado para el mes de reporte, de acuerdo con las variables fisicoquímicas establecidas para el tratamiento biológico.

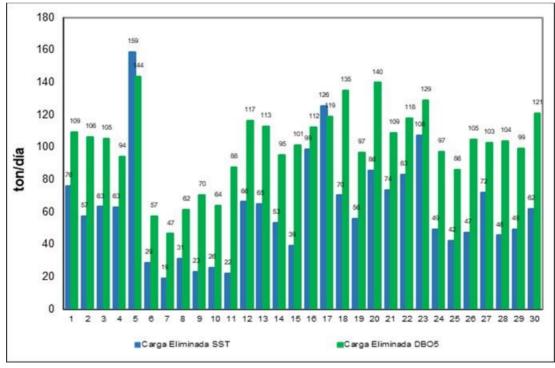
Reactor Biológico	рН	SST (mg/l)	SSV (mg/l)	Índice Volumétrico IVL (ml/g)
60,1	7,29	2809	2015	50
60,2	7,31	2873	2065	50
60,3	7,31	2970	2123	55
60,4	7,3	3251	2327	55
60,5	7,33	2992	2218	64
60,6	7,32	2852	2100	65

Cuadro 3.1-4 Licor de mezcla de Reactores Biológicos abril 2023.

De acuerdo con el cuadro, para alcanzar una buena sedimentación y compactación de la biomasa floculenta, los valores establecidos para el índice volumétrico deben estar dentro del rango de <80 ml/g, (compactación y sedimentación excelente) a <150 ml/g (compactación y sedimentación moderada), ya que valores >150 ml/g corresponde a una compactación y sedimentación pobre¹. En ese sentido, se evidencia la estabilización en los reactores, con una sedimentación excelente

En cuanto a los alcances operativos en cargas eliminadas, se obtuvo una eliminación de 1.861,93 Ton. de SST y 3.047,01 Ton. de DBO₅. En el siguiente cuadro se detallan los datos de carga removida:

¹ Grady, L., Daigger, G., Lim, H. (1999). Biological Wastewater Treatment. 2° Ed. Marcel Dekker, Inc. New York, 1075 pp


Cuadro 3.1-5 Carga removida y concentraciones para SST y DBO5 reportadas abril 2023

PARÁMETRO	Caudal Afluente (m3/s)	Concentración de entrada (mg/l)	Caudal Efluente (m3/s)	Concentración de salida (mg/l)	Carga Removida (Ton.)
SST	5,43	137,57	5,41	6,2	1.861,93
DBO ₅	5,43	235,27	5,41	14,97	3.047,01

Producto del tratamiento primario y secundario adelantado, se removieron en total 1.861,93 Ton. de SST en base seca, para un promedio diario de 62,06 Ton/día. En la Gráfica 3.1-3, se muestra que la menor carga removida sucedió durante el día 7 de abril de 2023, con valores reportados de 19,06 Ton/día respectivamente. El valor máximo alcanzado para el mes de reporte de carga removida se presentó el 5 de abril 2023, con un registro de 158,70 Ton/día.

En términos de DBO₅, la carga de materia orgánica removida fue de 3.047,01 Ton en base seca, para un promedio de 101,57 Ton/día. En la Gráfica 3.1-3 se muestra el comportamiento diario de la carga eliminada tanto para SST como para DBO₅, la cual permite establecer que el día de menor carga removida se ubica el 7 de abril 2023, con reporte de 46,67 Ton/día, y el día donde se obtuvo la mayor carga registrada fue el 5 de abril 2023, con reporte de 143,72 Ton/día respectivamente.

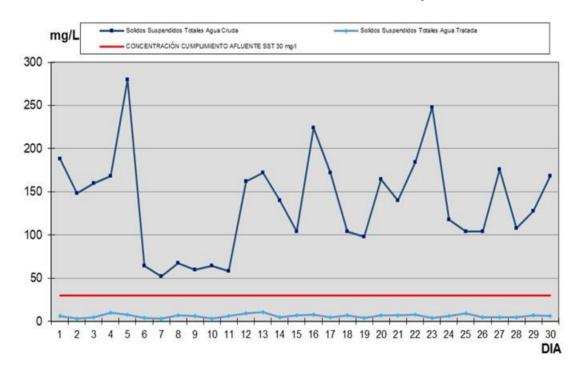
Gráfica 3.1-3 Carga Eliminada de Sólidos y DBO5 (Ton/día) abril 2023.

Para los parámetros de temperatura y pH medidos al agua vertida, se obtuvieron valores de 17,17 °C y 7,68 Und de pH respectivamente. Estos valores se consideran "normales" para el tratamiento adelantado en la PTAR EL SALITRE ampliada y optimizada.

3.1.7 Sólidos Suspendidos Totales

En La Gráfica 3.1-4 4 muestra las curvas de concentraciones ponderadas de SST en agua cruda y tratada para el mes del reporte. Durante este, las concentraciones de sólidos suspendidos totales presentaron un promedio de 137,57 mg/l en el agua cruda.

Respecto al valor de concentración promedio de sólidos suspendidos totales para el mes de abril en agua tratada, se obtuvo un resultado de 6,20 mg/l, con concentraciones de SST entre .3 mg/l, dato presenta el día 10 de abril de 2023, 11 mg/l como dato más alto presentado el día 13 de abril 2023.


A lo largo del mes se presentó no se presentó reporte de concentración por encima de los valores máximos definidos en la licencia ambiental, tal como se relaciona a continuación.

Cuadro 3.1-6 Relación de fechas y resultados asociados a valores de concentración de SST Que superan los 30 mg/L

Día	Concentración Efluente SST
Día	(mg/l)

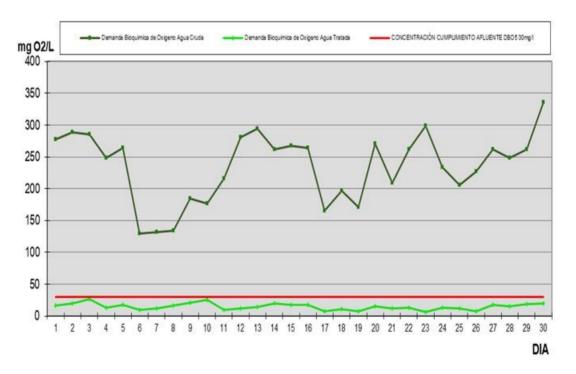
La siguiente gráfica muestra el comportamiento de las concentraciones del efluente durante el mes de abril 2023.

Gráfica 3.1-4 Variación Concentraciones SST en Afluente y Efluente - abril 2023.

3.1.8 Demanda Biológica de Oxígeno

El comportamiento de la DBO $_5$ durante el mes de abril arrojó un valor promedio en el afluente de 235,27 mg O $_2$ /l. El valor máximo de concentración registrado fue de 336 mg O $_2$ /l, presentado el día 30 y el valor más bajo alcanzado fue de 130 mgO $_2$ /l, reportado el 6 de abril. En la Gráfica 3.1-5 se observa el comportamiento de la DBO $_5$.

En el agua tratada, el comportamiento del citado parámetro registró valores que oscilan entre 6 mgO₂/l, reportado el día 23 de abril 2023, y un valor máximo registrado fue de 27 mgO₂/l, obtenido el día 3 de abril. La concentración promedio del efluente para el mes del reporte fue de 14,97 mgO₂/l.


Respecto al cumplimiento de la licencia ambiental para la DBO₅, no se reportaron días con la concentración por encima del valor máximo exigido por la misma, de 30 mg/l, tal como se relaciona en el cuadro 3.1-7.

Cuadro 3.1-7 Relación de fechas y resultados asociados a valores de concentración de DBO₅ Que superan los 30 mg/L

	Concentración
Día	Efluente DBO₅
	(mgO2/l)

La siguiente gráfica muestra el comportamiento de las concentraciones del efluente durante la operación de la planta para el mes de abril 2023.

Gráfica 3.1-5 Variación Concentraciones DBO5 en Afluente y Efluente abril 2023.

3.1.9 Grasas y aceites

El siguiente cuadro reporta los resultados obtenidos de la muestra mensual tomada por el laboratorio de la EAAB para el mes de abril 2023.

Cuadro 3.1-8 Concentración del parámetro Grasas y Aceites para el mes de abril 2023

ORIGEN DE MUESTRA	VALOR CONCENTRACIÓN (mg/l)
Afluente	59,66
Efluente	8,68

De acuerdo a la tabla anterior, el valor registrado en el efluente de 6,66 mg/L, se encuentra dentro del rango establecido en la resolución 631 de 2015 del MADS "Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones", la cual establece para prestadores del servicio de público de alcantarillado, con una carga mayor a 3000 ka/día DBO5, un valor máximo de 10 ma/L en el efluente.

3.1.10 pH

El valor promedio para pH en el efluente para el mes de abril, alcanzó un dato de 7,68 und., el cual sugiere un comportamiento normal para la operación de la planta, dando cumplimiento a la Resolución 631 del 2015, art. 8, la cual establece un rango permitido entre 6 a 9 unidades de potencial de hidrógeno.

3.1.11 Temperatura

El valor promedio para la temperatura en el efluente para el mes de abril, alcanzó un dato de 17,17 °C, el cual sugiere un comportamiento normal para la operación de la planta, dando cumplimiento a la Resolución 631 del 2015, art. 5, la cual refiere un valor máximo de 40 °C para cualquier tipo de vertimiento.

3.1.12 Tratamiento de Agua - Fase I

Para el presente mes evaluado, no se presentaron datos de remoción y cargas eliminadas en el tratamiento que se lleva a través de la infraestructura en PTAR El Salitre Fase I, dado que, en su totalidad, el caudal fue captado por la infraestructura de Fase II.

LOGROS: durante el mes de abril de 2023 se dejaron de verter al rio Bogotá, 1.861,93 Ton. de SST y 3.047,01 Ton. de DBO₅, correspondiente al cálculo de cargas contaminantes para cada parámetro.

DIFICULTAD: A lo largo del mes se reiteraron las dificultades en los puentes perimetrales de la línea de clarificadores secundarios, debido a los daños reiterativos en los rodamientos por los desgastes excesivos en los ejes de las llantas, que conducen a su vez, las válvulas pic que permiten eliminación de las grasas superficiales de los clarificadores.

Es importante mencionar y hacer énfasis, que se generando elevación de la masa de fangos en los clarificadores secundarios, estos limitantes en la actualidad genera lodos con viscosidades demasiado altas generando problemas en los sifones, presentando tiempos de detención altos, pérdidas de sifón y succión en las estructuras generaban señales de alto torque.

Respecto al clarificador 64-4 que se encontraba detenido en el mes pasado por falla en los Stroker fue puesto en operación nuevamente el 25 de abril de 2023, el clarificador 64-7 continúa detenido por falta de repuestos y mantenimiento que se encuentra a cargo de CEPS.

ACCIONES DE MEJORA: se adelantaron maniobras de vaciado de las estructuras, permitiendo así realizar un mantenimiento correctivo a los puentes y verificación de la estructura interna.

Se continúa realizando, la revisión y extracción de las válvulas cuando la operatividad lo permita.

En el cuadro a continuación continuación se relaciona la cantidad de telescópicas que se encuentran fuera de servicio por cada uno de los clarificadores, y un avance de las estructuras intervenidas por parte del área operativa y técnica.

Cuadro 3.1-9 Estado de las telescopicas de Clarificadores Secundarios

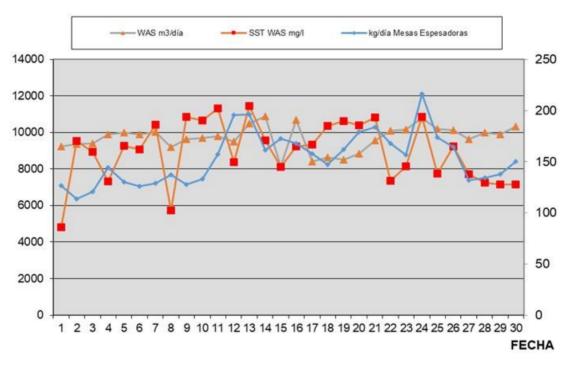
CLARIFICADOR	TELESCOPICAS	CLARIFICADOR	TELESCOPICAS
64-1	Extracción	64-7	5 averiadas
64-2	Extracción	64-8	12 averiadas
64-3	8 averiadas	64-9	Extracción
64-4	10 averiadas	64-10	Extracción
64-5	0 averiadas	64-11	9 averiadas
64-6	11 averiadas	64-12	9 averiadas

A su vez se continuará el seguimiento a la eficiencia de los reactores, para evitar desestabilización del proceso.

3.2 LINEA DE LODOS

Procedentes del área de Decantación primaria de Fase II, se extrajeron lodos con valor promedio de concentración de 18,43 gr/l en edificio 58-1, 22,10 gr/l en edificio 58-2 y para el edifico 58-3 un valor de 22,35 g/l. El volumen promedio mensual de extracción de los decantadores 57-1 al 57-6, fue de 1.460,00 m³/d y un total de 122.424,30 m³ de lodo primario bombeado hacia espesamiento.

En la siguiente tabla se presenta el resumen de la línea de lodos.


Cuadro 3.2-1 Datos línea de lodos abril 2023

Parámetro	Registro
Lodo primario Fase I	0 m ³
Lodo primario Fase II	122.424,30 m ³
Rechazado Reactores	291.118,30 m ³
Lodo Mesas espesadoras	284.048,12 m ³
Lodo espesadores por gravedad	32.983,00 m ³
Lodo digerido	70.001,50 m ³
Lodo deshidratado centrifugas	71.033,23 m ³
Lodo deshidratado filtrobanda	0 m ³
Lodo Bypass Mixto a digerido	0 m ³
Biosólido generado	8391,58 Ton.
Sequedad del biosólido	25,44%

3.2.1 Mesas Espesadoras

El lodo de rechazo (WAS) proveniente del proceso de lodos activados debe tener ciertas características específicas como la concentración antes de ingresar al proceso de digestión. Para alcanzar los valores requeridos de concentración (5-30 g/L)², se debe espesar este lodo, para lo cual, la PTAR El Salitre ampliada y optimizada, dispone de ocho (8) Mesas Espesadoras, en las cuales se lleva a cabo el proceso de separación de una fracción de agua al lodo, a través de la dosificación de una mezcla de polímero y agua al lodo. Esta mezcla es transportada por una cinta horizontal porosa en movimiento, de tal modo que se alcancen los valores de concentración requeridos.

Gráfica 3.2-1 Caudal WAS (m3/día) /Concentración SST (mg/l) / Consumo Polímero (Kg/día) abril 2023.

El volumen total tratado de lodo de rechazo WAS para este mes fue de 291.118,30 m³. Se obtuvo un valor de 8150,12 m³/día, como el menor valor desechado obtenido el día 15 abril 2023. Por su parte, el valor más alto fue de 10880,00 m³/día, presentado el día 14.

Las concentraciones promedio mensual de SST, para el lodo rechazado fue de 8,96 g/l. El día 1 abril 2023 se registró el menor valor 4,82 g/l, y por su parte, para el día 13 se registró el máximo valor obtenido de 11,45 g/l.

El consumo de polímero para el mes fue de 4601,41 Kg. Para el día 2 abril 2023 se presentó el menor consumo de producto con una cantidad de 113,82 Kg. Por su parte, el consumo más alto fue de 216 Kg presentado el 24 de abril. En el área se usó una referencia de polímero Catiónico de alta carga; FO 4490 VHM.

Con los datos obtenidos y el análisis de la Gráfica 3.2-1 se evidenció estabilización en las dosificaciones de polímero ya que con consumos estuvieron por debajo de los demás meses al comparar los rechazos realizados en el mes en curso, dejando

como referencia que el caudal tratado fue relativamente estable durante el mes sin evidenciar picos de caudal de lodo WAS.

LOGROS: durante este mes se trató el 100% del lodo de rechazo WAS, con una cantidad de 291.118,30 m³, obteniéndose las concentraciones deseadas para el lodo espesado por mesas hacia el tanque de lodos mixtos.

DIFICULTAD: durante este periodo de tiempo, se observaron formaciones de grumos de polímero en los tanques del skid de preparación de polímero, características negativas provenientes del mal funcionamiento del equipo generando una mala preparación del producto, lo que infiere un consumo mayor como se puede evidenciar en la Gráfica 3.2-1 Los Skid de preparación de polímero presentaron fallas en algunos de sus componentes, que no permitieron la utilización de algunos de ellos. La falla más recurrente es la rotura del tornillo sin fin de alimentación a la tolva de preparación (en la gran mayoría de Skid de preparación de polímero no se tienen todos los tornillos operativos), lo cual obliga a el personal operativo a realizar el cargue de esta tolva de forma manual, exponiendo al trabajador a riesgos físicos y químicos (manipulación y transporte del polímero), y locativos, al momento del cargue sobre el equipo, CEPS inicio para el día 18 de abril 2023 instalación del tornillo sin fin de alimentación a la tolva de preparación pendiente pruebas del sistema.

Dado que estos equipos en la actualidad se encuentran en garantía, se limita cualquier intervención que permita optimizar y mejorar la preparación del producto.

Por otro lado, para el día 17 abril 2023 CEPS, realizo pruebas de los equipos instalados en los nuevos espesadores por gravedad, evidenciando falencias en los tamices por lo cual la actividad se tuvo que detener.

ACCIONES DE MEJORA: Todas las acciones de mejora apuntan a que una vez se reciba la PTAR SALITRE ampliada y optimizada, se determinarán acciones de mejora en la planta, las cuales involucran en su mayoría, la optimización de diferentes equipos en la planta.

A lo largo del mes de abril, se continuaron labores para garantizar la adecuada deshidratación del lodo producto del rechazo del tratamiento biológico. actividades de cambio de las telas que se encuentran deterioradas y todos los ajustes necesarios para ampliar disponibilidad de equipos en el área.

3.2.2 Digestión

De acuerdo con el proceso de digestión adelantado, el cual recibe una mezcla de lodo espesado derivado de las purgas de los decantadores primarios, y el deshidratado en mesas espesadoras del rechazo proveniente de los reactores biológicos, se monitorean las variables necesarias para garantizar la estabilidad del tratamiento. En el anexo 6 se compilan los diferentes parámetros evaluados para el proceso.

El proceso de digestión anaerobia para el presente mes alcanzó un promedio de biogás de 33.676,35 nm³/día, de acuerdo con la sumatoria de las unidades de digestión disponibles, las cuales se comportan de acuerdo con el cargue de digestión y la producción de lodo En la Gráfica 3.2-2 se registra la producción de Biogás generado en cada uno de los biodigestores.

A partir del control de proceso adelantado; la operación registró lodos digeridos con las siguientes características: AGV's con valores promedio de 598 mg/L; pH entre 6,83 y 8,06 unidades, alcalinidades promedio cercanas a los 5465,39 mg CaCO₃/L, garantizando valores bajos de la relación AGV's / Alcalinidad para los digestores y un contenido de sólidos volátiles promedio de 21,66 mg/l.

La producción de biogás del mes fue de 911.281,71 nm³, con una generación promedio/día de biogás de 8.419,09 nm³. A continuación, en el cuadro 3.2-2 se relaciona las remociones promedio de material volátil, la generación promedio y total de biogás, por digestor .

Referente a Eficiencia de digestión se exige 38 % en remoción de MV. En el presente mes se presentó promedio de 47% remoción de MV.

Cuadro 3.2-2 Datos generacion biogas y % remoción MV en los digestores

DIGESTOR	Generación promedio de biogás [=] Nm3	Generación total de biogás [=] Nm3	% remoción promedio MV
72-1	7.377,66	221.329,70	47%
72-2	-	-	47%
72-3	6.862,14	205.864,10	51%
72-4	12.316,96	369.508,84	51%
72-5	7.119,59	113.913,50	43%
72-7	-	-	45%

Es importante precisar que para los digestores 72-2, no fue posible registrar la producción de biogás, por falta del instrumento de medición. A partir del 15 abril 2023 se realizó instalación instrumento de medición Para el 72-5 funcionando sin normalidad, para 72-7 se instaló instrumento de medición, pero no registra datos reales de producción posiblemente se encuentra dañado. la Gráfica 3.2-2 se muestra la tendencia en la producción de biogás para el mes de abril del 2023.

Gráfica 3.2-2 Producción de Biogás abril 2023.

A partir del control de proceso adelantado, se tienen en la actualidad seis estructuras en uso.

En cuanto a los AGV's se presentaron valores dentro de los rangos de operación normal del sistema de digestión anaerobia.

LOGROS: Durante el mes de abril de 2023, se obtuvo un promedio de remoción de material volátil de 47%, disminuyendo de manera considerable su carga, estabilizándolos para hacerlos de esta manera menos nocivos al medio ambiente.

DIFICULTAD: En el mes de abril se presentaron dificultades, específicamente en el 72-1, 72-5 ya que las tuberías de succión se encuentran al costado del lodo secundario y no reciben una homogenización completa con lodo primario, por lo cual estas dos estructuras no se permiten aumentar el cargue, ya que automáticamente se desestabilizaran comportamiento que se ve reflejado en la producción de biogás.

A su vez se posee problemas con los instrumentos de medición de la producción de biogás del digestor 72-7, los cuales no se encuentran instalados, limitando su cuantificación, que sumado al daño presentando en la instrumentación del digestor 72-2, no permiten tener lecturas fiables para la determinación del balance en la línea de Biogás.

Se presentaron dificultades con los equipos de bombeo a los digestores, los cuales generaron limitantes para alimentación de alguna estructura.

ACCIONES DE MEJORA: Para mejorar la eliminación de material orgánico y poder controlar la cantidad de lodo que se genera en los biológico, en la actualidad se están utilizando 6 digestores, y se está verificando constantemente las variables del proceso.

3.2.3 Centrifugas

Respecto a la operación de centrifugas, para para el mes de abril 2023, se registró una producción promedio diaria de 279,72 Ton. de biosólido, para un total de 8391,58 Ton/mes. El porcentaje de sequedad promedio obtenido en proceso del biosólido fue de 25,44%.

En la Gráfica 3.2-3, se muestra la sequedad de biosólido para el mes evaluado. El valor de dosis promedio demandada de polímero catiónico fue de 15,46 kg por tonelada de material seco, considerado como un consumo alto dado que en diseño se tiene contemplado 10 kg por tonelada de material seco, en el área se dio uso de polímero Catiónico de alta carga FO 4490 VHM.

Gráfica 3.2-3 Sequedad de Biosólido abril 2023

Es importante precisar, que el flujo total fue deshidratado por la centrifugas, se tuvo la necesidad de deshidratar el lodo a través de la infraestructura instalada en fase I (filtro bandas).

LOGROS: Durante el mes de abril de 2023, se registró una producción total de lodo deshidratado de 8391,58 Ton/mes. La sequedad asociada a esta producción de material alcanzó un promedio de 25,44%

DIFICULTAD: Se presentó en la preparación de polímero en fase II, por las fallas recurrentes en los skid de preparación de polímero, asociados a roturas de tornillos de alimentación a tolvas, generando una condición insegura para el personal operativo, debido a la modificación en la maniobra del cargue de polímero, pues el operador en procura de garantizar la continuidad del proceso debe cargar la tolva de forma manual generando riesgos físicos sobre el trabajador y locativos sobre el equipo.

ACCIONES DE MEJORA: Se continuaron intervenciones en los sistemas de preparación buscando la optimización en la preparación a su vez se realizaron pruebas con los índices de dosificación, para mejorar la calidad y preparación.

3.3 TRATAMIENTO DEL BIOGÁS - MOTOGENERACIÓN

El biogás producido en la planta se somete a un proceso de eliminación de impurezas para poder utilizarlo como combustible, tanto en los motogeneradores como en calderas. Al ser sometido a este tratamiento, se consigue mejorar sus características como combustible, y se protege los equipos de motogeneración, susceptibles a las impurezas.

La planta de tratamiento de biogás (PTG) tiene por objetivo la reducción/eliminación de componentes tales como humedad, H₂S, siloxanos, así como el ajuste de la temperatura del biogás a la entrada a motores. Para el mes analizado se realizó una recuperación de 1.117.878,43 nm³/mes para su posterior uso en los cogeneradores y calderas.

En el presente mes, para el proceso de cogeneración se reutilizó 1.117.878,43 nm³/día de biogás generando 2.914.710 Kw de energía eléctrica.

Por su parte, el calor recuperado del circuito de alta temperatura del motor (refrigeración de camisas) es utilizado en el proceso de calefacción de los lodos. Así mismo no fue necesario utilizar biogás en las calderas para mantener la temperatura óptima que requiere la digestión anaerobia mesofílica alrededor de 37°C.

Finalmente, la línea de gas se completa con las teas (antorchas), cuyo objeto es el quemado del biogás excedente en el proceso. Para el mes de abril se quemaron 14.615,94 nm³/día de biogás.

Para el presente mes no fue necesario dar uso de gas natural en ninguna parte del proceso.

A continuación, se detalla consumo diario de biogás - gas natural utilizado en el proceso.

Gráfica 3.3-1 Consumo Diario de Biogás - Gas natural abril 2023.

LOGROS: Durante el mes de abril de 2023, se aprovecharon 1.117.878,43 nm3 de biogás en el proceso a su vez se generaron 2.914.710 kw de energía eléctrica.

DIFICULTAD: Para el mes de abril se presentaron dificultades en el área, específicamente con el equipo analizador de H2S y siloxanos, que se encuentra en la línea de descarga del flujo de planta de recuperación de biogás, y no registra datos de calibración.

Se utilizó el biogás en las calderas, para poder mantener la temperatura interna en los digestores.

ACCIONES DE MEJORA: realizar verificaciones del sistema de cogeneración, generando mayor control de variables de producción referente a consumos de biogás, que permitieron incrementar la generación de energía eléctrica.

A su vez se realizó recepción del insumo para realizar el cambio del medio filtrante para los tanques de eliminación de H2S.

4. GESTIÓN DE MANTENIMIENTO ELECTROMECÁNICO INTRODUCCIÓN

El Departamento de Mantenimiento Electromecánico de la PTAR el Salitre tiene bajo su responsabilidad mantener los equipos operativos de la planta, crear las órdenes de mantenimiento que sean necesarias para las intervenciones de los equipos mecánicos, eléctricos, electrónicos y de instrumentación, velando por el manejo de la información y el stock de repuestos en almacén para cualquier tipo de intervención. Para cumplir con esta gestión del mantenimiento, la PTAR Salitre Cuenta Con El Siguiente Personal: 1 Profesional Especializado de Mantenimiento, 1 Profesional Mantenimiento Mecánico, 1 Profesional Mantenimiento Instrumentación, 1 Profesional Mantenimiento Eléctrico, 1 Auxiliar Administrativo Nivel 1, 3 Tecnólogo Coordinador, 22 Tecnólogo Nivel 2 Mantenimiento, 20 Técnico Nivel 2 Mantenimiento, Distribuidos en las Modalidades Mecánica, Eléctrica e Instrumentación.

Como soporte a la gestión administrativa de la PTAR el Salitre se continúa con la implementación del sistema de información de mantenimiento en SAP PM y el control de materiales utilizados de almacenes.

A partir del 16 de diciembre de 2021 se inicia la recepción de la PTAR fase II en conjunto con personal de CEPS EAAB, IVK & CAR. Por otro lado, se continúan realizando tareas de mantenimientos en conjunto con el personal de CEPS y AB para la PTAR Salitre fase II. Seguidamente se realizan también mantenimientos en PTAR Salitre fase I. Por otro lado, se organizan turnos de trabajo las 24 horas divididos en 3 grupos para suplir el apoyo de los respectivos mantenimientos para la PTAR salitre.

4.1 PLANEACIÓN Y PROGRAMACIÓN

De acuerdo a la reestructuración del área de mantenimiento se integró el plan de mantenimiento eléctrico, mecánico, esto con el fin de tener control en el seguimiento de los indicadores del área.

Se realizó una revisión a la programación del plan de mantenimiento, el cual se reevalúa, y reestructura; se generó una reducción en las de órdenes de trabajo preventivo de la PTAR fase I, con el fin de incrementar esfuerzos para la PTAR fase II de acuerdo a la recepción y entrenamiento en mantenimiento de estructuras y equipos se generan ordenes de trabajo tanto preventivas como correctivas.

El control de la ejecución tanto del mantenimiento preventivo como del mantenimiento correctivo se lleva en el formato MPML0301F04-01 Seguimiento de Solicitud Mantto.

Para los mantenimientos generados a los equipos de la PTAR fase II se realiza el seguimiento mediante listados generados en los formularios de Google forms llamado solicitud de mantenimiento, de igual manera el registro de solicitudes para el mantenimiento de equipos se lleva en el formulario llamado reporte de mantenimiento, desde mantenimiento se empieza plan piloto para control y manejo de indicadores desde 2023.

4.2 MANTENIMIENTO PREVENTIVO

El mantenimiento preventivo de la PTAR fase I se genera de acuerdo al formato MPML0302F19-01 - Plan de Mantenimiento Preventivo PTAR el Salitre en donde se especifican las frecuencias de mantenimiento para las Ubicaciones Técnicas y Equipos de la PTAR.

El plan de mantenimiento preventivo de los equipos de la PTAR fase II se ejecuta de acuerdo a la programación generada, en un archivo nombrado back log, el cual tiene la programación a realizar de los equipos montados en la PTAR fase II.

Se inicio él envió de programación semanal a operaciones, SST y calidad con el fin de que toda la operación tenga conocimiento de la labor del departamento de mantenimiento Electromecánico

4.3 MANTENIMIENTO CORRECTIVO

Las órdenes generadas bajo este tipo de mantenimiento, son las que provienen las rutas de inspección de las solicitudes de los usuarios de mantenimiento, o del personal que reporte una inconsistencia en un equipo. Estos trabajos en algunas ocasiones no son de ejecución inmediata y permiten realizar una planeación y programación de tareas a realizar y los recursos a utilizar.

La gestión del mantenimiento correctivo se realiza a través del programa SAP, para ello se están realizando ajustes en los procedimientos para el reporte de fallas y el trámite correspondiente de las órdenes.

El mantenimiento correctivo realizado en la PTAR fase II se registra en formularios de la herramienta de Google forms generando formatos de orden de trabajo donde se registran las actividades realizadas, acorde a las solicitudes realizadas por los técnicos operarios de la planta.

4.4 DISPONIBILIDAD DE EQUIPOS

En los cuadros 4.4-1 y 4.4-2 se relacionan los equipos críticos disponibles y los equipos que se encuentran fuera de servicio o con operación restringida.

El indicador de los equipos críticos se encuentra relacionados en el Anexo Cap. 4_9.

Cuadro 4.4-1 Equipos Críticos abril 2023

Sistema	Equipo critico	Equipos instalados (El)	Equipos disponibles (ED)
\$1	Equipos de supervisión sala de control	2	2
S2	Tomillos de elevación	5	5
\$3	Medidores de Caudal de agua cruda	10	10
\$4	Rejas finas	4	4
S5	Bombas dosificadoras de cloruro ferrico	4	4
\$6	Bombas de todas las aguas pretratamiento	2	2
S7	Celdas Subestación electrica principal	10	10
\$8	Bombas polimero	4	4
S9	Puentes desarenadores	3	3
\$10	Puentes decantadores	8	8
S11	Clasificador de hilazas	1	1
\$12	Bombas de lodos espesados	3	3
\$13	Bombas de todas las aguas 13	3	3
\$14	Medidores de Caudal de agua tratada	5	5
\$15	Compresores de biogás	4	4
\$16	Bombas de recirculación	4	4
S17	Calderas	2	2
\$18	Filtrobandas	5	5
S19	Bandas transportadoras 12	5	5
S20	Rastrillo Viajero	1	1
S21	Neveras Toma Muestras	2	2
S22	Bombas Descarga Cloruro Ferrico	2	2
S23	Compuertas PTAR Salitre	2	2

PTAR fase I

CICHARA BIYAIBA	ITEM	Equipo critico	Equipos instalados (EI)	Equipos disponibles (ED)
3 PRENSAS DE RESIDUOS GRUESOS 3 2 4 BOMBAS DE AGUAL CRUDA 10 7 7 7 7 7 7 7 7 7	1	CUCHARA BIVALBA	1	1
BOMBAS DE AGUA CRUDA	2	REJAS DE GRUESOS	10	7
SELAS DE FINOS 10 10 10 10 10 10 10 1	3	PRENSAS DE RESIDUOS GRUESOS	3	
6 PRENSAS DE RESIDUOS FINOS 7 SOPLADORES DESARENADORES 8 PUENTES DESARENADORES 5 4 9 CLASIFICADORES DE SARENAS 9 CLASIFICADORES DE ARENAS 5 5 5 10 CONCENTRADORES DE GRASAS 2 2 2 21 BOMBAS DE ALIMENTACIÓN A LAUNDR CHANNEL 5 5 5 11 BOMBAS DE ALIMENTACIÓN A LAUNDR CHANNEL 5 5 5 12 PUENTES DECANTADORES PIMARIOS 13 BOMBAS DE LODOS PRIMARIOS 1 14 BOMBAS DE LODOS PRIMARIOS 1 15 BOMBAS DE LODOS PRIMARIOS 3 16 BOMBAS DE LODOS PRIMARIOS 3 16 BOMBAS DE LOTANTES 1 17 BOMBAS DE HOTANTES 1 18 BOMBAS DE FLOTANTES 1 19 COMPRESORES DE AIRE 6 6 5 19 SOPLADORES 10 CONCENSE BIOLOGICOS 6 6 6 6 20 REACTORES BIOLOGICOS 6 6 6 6 21 SOPLADORES 11 11 11 11 22 PUENTES DECANTADORES SECUNDARIOS 11 2 10 0 23 BOMBAS RAS 3 25 BOMBAS RAS 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4	BOMBAS DE AGUA CRUDA	10	7
T SOPLADORES DESARENADORES 6 6 6 8	5		10	10
B PUENTES DESARENA DORES 5 4	6	PRENSAS DE RESIDUOS FINOS	3	2
9 CLASIFICADORES DE ARENAS 10 CONCENTRADORES DE GRASAS 11 CONCENTRADORES DE GRASAS 12 CONCENTRADORES DE GRASAS 12 PUENTES DECANTADORES PRIMARIOS 5 5 5 12 PUENTES DECANTADORES PRIMARIOS 6 6 6 8 13 BOMBAS DE ALIMENTACIÓN A LAUNDR CHANNEL 5 5 5 5 14 BOMBAS DE ALIMENTACIÓN A LAUNDR CHANNEL 13 BOMBAS DE LODOS PRIMARIOS 1 3 3 3 14 BOMBAS DE LODOS PRIMARIOS 2 3 3 3 3 15 BOMBAS DE LODOS PRIMARIOS 2 2 2 2 17 BOMBAS DE LODOS PRIMARIOS 3 3 3 3 16 BOMBAS DE FLOTANTES 1 2 2 2 2 17 BOMBAS DE FLOTANTES 1 2 2 2 2 18 BOMBAS DE FLOTANTES 3 2 2 2 2 19 COMPRESORES DE AIRE 6 5 5 20 REACTORES BIOLOGICOS 6 6 6 21 SOPLADORES 22 PUENTES DECANTADORES SECUNDARIOS 11 11 11 11 11 11 11 11 11 11 11 11 11				
10 CONCENTRADORES DE GRASAS 2 2 2 2 1 1 8 OMBAS DE ALIMENTIACIÓN A LAUNDR CHANNEL 5 5 5 5 1 2 PUENTES DECANTIADORES PRIMARIOS 6 6 6 6 6 6 1 3 3 3 3 3 3 3 3 3				
11 BOMBAS DE ALIMENTACIÓN A LAUNDR CHANNEL 5 5 5 12 PUENTES DECANTADORES PRIMARIOS 6 6 6 6 6 6 6 6 6	9	CLASIFICADORES DE ARENAS		
12 PUENTES DECANTA DORES PRIMARIOS 6 6 6 13 80 MBAS DE LODOS PRIMARIOS 1 3 3 3 3 14 80 MBAS DE LODOS PRIMARIOS 2 3 3 3 3 3 3 3 15 80 MBAS DE LODOS PRIMARIOS 2 3 3 3 3 3 3 3 3 3	10	CONCENTRADORES DE GRASAS	2	2
3 3 3 3 3 3 3 3 3 3				
14 BOMBAS DE LODOS PRIMARIOS 2 3 3 3 3 3 3 3 3 3		PUENTES DECANTADORES PRIMARIOS		
15 BOMBAS DE LODOS PRIMARIOS 3 3 3 3 3 6 8 8 8 8 8 9 1 1 1 1 1 1 1 1 1			3	3
16 BOMBAS DE FLOTANTES 2 2 2 2 2 18 BOMBAS DE FLOTANTES 2 2 2 2 2 2 18 BOMBAS DE FLOTANTES 3 2 2 2 2 2 2 2 2 2				
17 BOMBAS DE FLOTENTES 2 2 2 2 2 2 2 2 2 2				
BOMBAS DE FLOTANTES 3				
19 COMPRESORES DE AIRE				
20				
22 PUENTES DECANTADORES SECUNDARIOS 12 10 12 10 23 BOMBAS RAS 3 3 3 3 3 3 3 24 BOMBAS RAS 3 3 3 3 3 3 3 3 3				
Question				
BOMBAS RAS 3 3 3 3 3 3 3 2 4 BOMBAS RAS 2 3 3 3 3 2 2 2 2 3 3				
24 BOMBAS RAS 2 3 3 2				
25 BOMBAS RAS 3 2 2 2 2 2 2 2 2 2				
26 BOMBAS WAS 1 2 2 2 27 BOMBAS WAS 2 2 2 2 28 BOMBAS WAS 3 2 2 2 29 ESTACIONES DE FLOTANTES 36 32 30 BOMBEO DE LODOS A MESAS 10 8 31 MESAS ESPESADORAS 8 6 32 CENTRIFUGAS DESHIDRATADORAS 4 3 33 SILOS DE ALMACENAMIENTO 6 5 34 PREPARACIÓN DE POLIMERO A MESAS ESPESADORAS 3 2 35 BOMBAS DE POLIMERO A MESAS ESPESADORAS 10 10 36 PREPARACIÓN DE POLIMERO A CENTRIFUGAS DESHIDRATADORAS 3 2 37 BOMBAS DE POLIMERO A CENTRIFUGAS DESHIDRATADORAS 4 3 38 DIGESTORES 8 8 39 BOMBAS DE POLIMERO A CENTRIFUGAS DESHIDRATADORAS 4 3 41 CASOMETROS 2 2 2 42 TEAS 8 8 8				
27 BOMBAS WAS 2 2 2 2 28 BOMBAS WAS 3 2 2 2 29 ESTA CIONES DE FLOTANTES 36 32 30 BOMBEO DE LODOS A MESAS 10 8 31 MESAS ESPESADORAS 8 6 32 CENTRIFUGAS DESHIDRATADORAS 4 3 33 SILOS DE ALMACENAMIENTO 6 5 34 PREPARACIÓN DE POLIMERO A MESAS ESPESADORAS 3 2 35 BOMBAS DE POLIMERO A MESAS ESPESADORAS 10 10 36 PREPARACIÓN DE POLIMERO A CENTRIFUGAS DESHIDRATADORAS 3 2 37 BOMBAS DE POLIMERO A CENTRIFUGAS DESHIDRATADORAS 4 3 38 DIGESTORES 8 8 39 BOMBAS DE POLIMERO A CENTRIFUGAS DESHIDRATADORAS 4 3 39 BOMBAS DE LODO MIXTO A DIGESTION 10 6 40 COMPRESORES DE BIOGÁS 10 10 41 GASOMETROS 2 2 42				
BOMBAS WAS 3 2 2 2 2 2 2 2 2 2				
PSTACCIONES DE FLOTANTES 36 32				
BOMBEO DE LODOS A MESAS 10 8				
MESAS ESPESADORAS				
32 CENTRIFUGAS DESHIDRATADORAS 4 3 3 3 3 3 3 3 SILOS DE ALIMACENAMIENTO 6 5 5 5 5 5 5 5 5 5				
33 SILOS DE ALIMACENAMIENTO 6 5 34 PREPARACIÓN DE POLIMERO A MESAS ESPESADORAS 3 2 35 BOMBAS DE POLIMERO A MESAS ESPESADORAS 10 10 36 PREPARACIÓN DE POLIMERO A CENTRIFUGAS DESHIDRATADORAS 3 2 37 BOMBAS DE POLIMERO A CENTRIFUGAS DESHIDRATADORAS 4 3 38 DIGESTORES 8 8 8 39 BOMBAS DE POLIMERO A CENTRIFUGAS DESHIDRATADORAS 10 10 6 40 COMPRESORES DE BIOGÁS 10 10 10 10 41 GASOMETROS 2 2 2 42 TEAS 2 2 2 43 CALDERAS 5 5 5 44 MOTOGENERADORES 5 5 5 45 BOMBAS DE PLUVIALES 16 16 16 46 BOMBAS DE PLUVIALES 16 16 16 47 SUBESTACIÓN ALTA TENSIÓN 115 KV 1 1 49 MEDIDORES DE CAUDAL DE AGUA CRUDA 10 10 50 MEDIDORES DE CAUDAL DE AGUA CRUDA 10 10 51 EQUIPOS DE SUPERVISIÓN SALA DE CONTROL 4 4 51 EQUIPOS DE SUPERVISIÓN SALA DE CONTROL 4 4 52 NEVERAS TOMA MUESTRAS 2 2 2 53 SISTEMAS DE DESODORIZACIÓN 3 0 54 MEDIDORES DE NIVEL CANAL SAUIRE 1 1 57 BOMBEO AGUA POTABLE 1 1 58 RED CONTRAINCENDIOS DETECCIÓN 19 19 58 RED CONTRAINCENDIOS DETECCIÓN 19 19				
34 PREPARACIÓN DE POLIMERO A MESAS ESPESADORAS 3 2 3 5 8 8 8 8 9 8 9 9 9 9				
35 BOMBAS DE POLIMERO A MESAS ESPESADORAS 10 10 10 10 10 10 10 1				
36 PREPARACIÓN DE POLIMERO A CENTRIFUGAS DESHIDRATADORAS 3 2 3 7 8 8 8 8 8 8 8 8 8				
37 BOMBAS DE POLIMERO A CENTRIFUGAS DESHIDRATADORAS 4 3 38 DIGESTORES 8 8 8 8 8 9 9 9 9 9				
BIGESTORES 8 8 8 8 8 8 3 9 8 8 8 8 9 8 8 9 9				
39 BOMBAS DE LODO MIXTO A DIGESTION 10 6				
40 COMPRESORES DE BIOGÁS 10 10 10 10 10 10 10 1				
A1 GASOMEROS 2 2 2 2 2 2 2 2 2				
1EAS				
3 CALDERAS 5 5 5 5 5 5 5 5 5				
44 MOTOGENERADORES 5 4 45 BOMBAS DE FLUENTE 6 5 46 BOMBAS DE PLUVIALES 116 16 47 SUBESTACIONES ELÉCTRICAS PRINCIPALES 3 3 3 48 SUBESTACIONES ELÉCTRICAS PRINCIPALES 1 1 1 MEDIDORES DE CAUDAL DE AGUA CRUDA 10 10 50 MEDIDORES DE CAUDAL DE AGUA CRUDA 10 10 50 MEDIDORES DE CAUDAL DE AGUA TRATADA 6 6 6 51 EQUIPOS DE SUPERVISIÓN SALA DE CONTROL 4 4 52 NEVERAS TOMA MUESTRAS 2 2 2 53 SISTEMAS DE DESODORIZACIÓN 3 3 0 54 MEDIDORES DE NIVEL CANAL SALITE 1 1 55 MEDIDOR NIVEL FOSO AGUA CRUDA 2 2 2 56 BOMBEO AGUA POTABLE 1 1 57 BOMBEO AGUA DE SERVICIO 1 1 58 RED CONTRAINCENDIOS DETECCIÓN 19 19				
45 BOMBAS DE FELUENTE				
46 BOMBAS DE PLUVIALES 16 16 16 17 17 18 18 18 19 19 19 19 19				
47 SUBESTACIONES ELÉCTRICAS PRINCIPALES 3 3 3 3 3 3 3 3 3				
88 SUBESTACIÓN ALTA TENSIÓN 115 KV				
49 MEDIDORES DE CAUDAL DE AGUA CRUDA 10 10 50 MEDIDORES DE CAUDAL DE AGUA TRATADA 6 6 51 EGUIPOS DE SUPERVISIÓN SALA DE CONTROL 4 4 52 NEVERAS TOMA MUESTRAS 2 2 53 SISTEMAS DE DESODORIZACIÓN 3 0 54 MEDIDORES DE NIVEL CANAL SALITRE 1 1 55 MEDIDOR NIVEL FOSO AGUA CRUDA 2 2 56 BOMBEO AGUA POTABLE 1 1 57 BOMBEO AGUA DE SERVICIO 1 1 58 RED CONTRAINCENDIOS DETECCIÓN 19 19				
SO MEDIDORES DE CAUDAL DE AGUA TRATADA 6 6 1				
STATE SUPERVISIÓN SALA DE CONTROL 4 4 4 5 5 2 NEVERAS TOMA MUESTRAS 2 2 2 5 3 SISTEMAS DE DESODORIZACIÓN 3 0 0 5 4 MEDIDORES DE NIVEL CANAL SALITRE 1 1 1 5 MEDIDOR NIVEL FOSO AGUA CRUDA 2 2 2 5 6 BOMBEO AGUA POTABLE 1 1 1 5 7 BOMBEO AGUA DE SERVICIO 1 1 1 5 8 RED CONTRAINCENDIOS DETECCIÓN 1 1 1 1 1 1 1 1 1				
52 NEVERAS TOMA MUESTRAS 2 2 53 SISTEMAS DE DESODORIZACIÓN 3 0 54 MEDIDORES DE NIVEL CANAL SAUTRE 1 1 55 MEDIDOR NIVEL FOSO AGUA CRUDA 2 2 56 BOMBEO AGUA POTABLE 1 1 57 BOMBEO AGUA DE SERVICIO 1 1 58 RED CONTRAINCENDIOS DETECCIÓN 19 19				
53 SISTEMAS DE DESODORIZACIÓN 3 0				
54 MEDIDORES DE NIVEL CANAL SALITRE 1 1 55 MEDIDOR NIVEL FOSO AGUA CRUDA 2 2 56 BOMBEO AGUA POTABLE 1 1 57 BOMBEO AGUA DE SERVICIO 1 1 58 RED CONTRAINCENDIOS DETECCIÓN 19 19				_
55 MEDIDOR NIVEL FOSO AGUA CRUDA 2 2 56 BOMBEO AGUA POTABLE 1 1 57 BOMBEO AGUA DE SERVICIO 1 1 58 RED CONTRAINCENDIOS DETECCIÓN 19 19				
56 BOMBEO AGUA POTABLE 1 1 57 BOMBEO AGUA POTABLE 1 1 1 1 1 1 1 1 1				
57 BOMBEO AGUA DE SERVICIO 1 1 58 RED CONTRAINCENDIOS DETECCIÓN 19 19				
58 RED CONTRAINCENDIOS DETECCIÓN 19 19				1
59 RED CONTRAINCENDIOS ROCIADORES 16 16	58	red contraincendios detección	19	19
	59	RED CONTRAINCENDIOS ROCIADORES	16	16

PTAR fase II

Cuadro 4.4-2 Equipos Fuera de Servicio o con Operación Restringida PTAR fase I

TAG	EQUIPO	DESCRIPCION	COMENTARIO	SOLUCION
018C02A	ISUMINISTRO ATRE ARRANGUE	Falla eléctrica, no comprime	cuenta con los repuestos para	El equipo se encuentra en la planta pendiente montaje en sitio

De acuerdo a los cuadros anteriores se garantizó la disponibilidad de los equipos críticos para la operación por parte de mantenimiento.

4.5 COSTOS

Como parte fundamental de la gestión de mantenimiento se relacionan los materiales utilizados durante el mes de abril, en las labores de mantenimiento y operación de la planta, igualmente se relacionan los costos de mano de obra.

- Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I
- Anexo Cap 4_ 2 Costo energía eléctrica comprada por KWH desde enero 2020 PTAR fase I
- Anexo Cap 4_ 3 Consumo de energía eléctrica desde diciembre de 2022 PTAR fase II
- Anexo Cap 4_ 4 Costo energía eléctrica comprada por KWH desde diciembre de 2022 PTAR fase II
- Anexo Cap 4_ 5 Descripción del mantenimiento por zonas
- Anexo Cap 4_ 6 Consolidado costo total por áreas
- Anexo Cap 4_7 Órdenes de Trabajo por zonas fase I
- Anexo Cap 4 8 Órdenes de Trabajo generadas PTAR fase II abril 2023
- Anexo Cap 4 9 Indicadores de Gestión

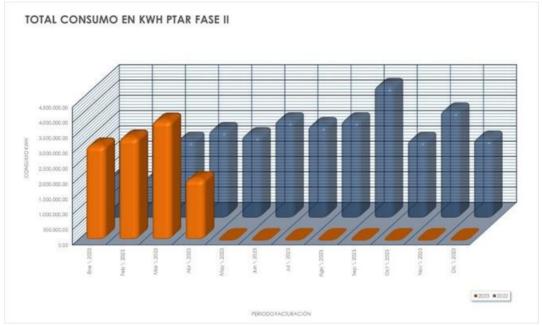
4.6 GESTIÓN DE ENERGÍA

La gráfica 4.6-1 incorpora el consumo total de ACPM de la Planta, discriminando este valor para cada uno de los generadores y de igual forma para calderas.

En la gráfica 4.6-2 se presenta el consumo de energía eléctrica de la Planta desde enero de 2020 para la PTAR fase I.

En la gráfica 4.6-3 se presenta el consumo de energía eléctrica de la Planta desde enero de 2020 para la PTAR fase II.

Gráfica 4.6-1 Consumo de ACPM en los generadores y calderas 2023


Fuente: Fuente propia.

Gráfica 4.6-2 Consumo de la energía eléctrica comprada en KWH desde enero de 2020

Fuente: Factura ENEL-Codensa

Gráfica 4.6-3 consumo de energía eléctrica de la Planta desde diciembre de 2022

Fuente: Factura ENEL-Codensa

4.7 HECHOS RELEVANTES EN EL MES DE ABRIL:

- 1. Se realizaron labores de mantenimiento preventivo a los diferentes equipos de la PTAR fase I programados para el mes de octubre según modulo PM de SAP.
- 2. Se realizan mantenimientos preventivos y correctivos los cuales son atendidos por las especialidades mecánicos, eléctricos e instrumentación del área de mantenimiento a los equipos de la PTAR fase II.
 - 2.1 Se realiza intervención a las mesas espesadora 076DEP001F y 076DEP001G a las cuales se les realiza el cambio total de telas y cambio de partes deterioradas, se dejan en funcionamiento.

Fotografía 1. Mantenimiento mesas espesadora 076DEP001F / 076DEP001G

mesas espesadora 076DEP001G

Fuente: Fuente propia.

2.2 Se realiza mantenimiento de las bomba lodos digeridos a deshidratación en la zona de lodos a centrifugas, se realiza cambio de estatores y rotores a las bombas lodo deshidratado a silos 077P001A y 077P001B, estos trabajos se realizan para mejorar la disponibilidad en el bombeo de lodo hacia centrifugas.

Fotografía 2. Mantenimiento bomba lodos digeridos a deshidratación 077P001A / 077P001B

bomba lodos digeridos a deshidratación 077P001A

bomba lodos digeridos a deshidratación 077P001B

Fuente: Fuente propia.

2.3 Se ejecuta mantenimiento en la bomba lodo deshidratado a silos 073P002B, habilitándose la centrifuga, posibilitando tener más disponibilidad de equipos en la zona de deshidratación de lodos, aunque está línea sigue parada a falta del modulo PLC que le hace falta al equipo

Fotografía 3. Mantenimiento bomba lodo deshidratado a silos 073P002B

Fuente: Fuente propia.

2.4 Por solicitud de operaciones se atiende la baja eficiencia de las bombas polielectrolito deshidratación de lodos 074P202B y 074P202D, se realiza el mantenimiento correctivo mejorando la eficiencia realizando el cambio de estatores y rotores.

Fotografía 4. Mantenimiento bombas polielectrolito deshidratación de lodos 074P202B / 074P202D

Fuente: Fuente propia.

- 2.5 Se realiza mantenimiento a la bomba agua lavado GBT'S del N°5 al N°8 076P002 para lavado de telas mesa espesadora, Esta bomba esta reportada por CEPS por el TESYST dañado al verificar se encuentra que los parámetros están alterados se normalizan y queda en normal funcionamiento
- 2.6 Se ejecuta el mantenimiento a la bomba polielectrolito espesadores de banda por gravedad 074P102I, al revisar estado de la gaveta todo está en normal funcionamiento, se encuentra que la fuente Schneider interna de 120VAC 24VDC en mal estado se procede a realizar cambio de la fuente y queda operativa
- 2.7 Se realiza mantenimiento al Concentrador de grasas 076DGR001A, se realiza combinó de borneras y secado bobinado del motor se le realiza pruebas quedando el motor en buen estado y operando
- 2.8 Se evidencia falla en el variador de velocidad 053VDF002C de la bomba centrífuga vertical C en el edificio de bombeo de agua cruda, la cual se encuentra en falla por sobre temperatura, cuándo se realiza el diagnostico al variador reporta falla en los ventiladores internos, es necesario remplazar el conector de uno de ellos ya que se encontró sulfatado el equipo queda operativo.

Fotografía 5. Mantenimiento variador de velocidad 053VDF002C

Fuente: Fuente propia.

- 2.9 Se ejecuta mantenimiento a la presa de finos 051DPR002C, la cual se observa que el motor se encuentra con bastante humedad, es necesario desmontarlo secarlo se realizan pruebas de aislamiento las cuales son aceptables, se entrega la prensa operativa al área de operaciones.
- 2.10 Se atiende solicitud de operaciones en apoyo en el rearme de los clasificadores de arenas por un paro de emergencia activado por personal contratista de Ceps. Se encontró que el HMI del tablero de control 069DCA001A no le funciona los puertos RJ45 y tampoco la pantalla táctil, ocasionando que este no tenga comunicación con PLC, se reinicia en 2 ocasiones y la falla persiste, se procede a dar stop y luego run al PLC solucionado el fallo, se debe realizar cambió de pantalla HMI.

Fotografía 6. Mantenimiento tablero de control 069DCA001A

Fuente: Fuente propia.

2.11 Se atiende solicitud de mantenimiento para la mesa espesadora 076DEP001A por falla general. Se evidencia un mal funcionamiento de las válvulas 5/2 vías neumáticas. Se realiza mantenimiento general a la válvula lado derecho y se cambia válvula del lado izquierdo por una nueva. Se deja operando y en seguimiento de operación.

Fotografía 7. Mantenimiento mesa espesadora 076DEP001A

Fuente: Fuente propia.

2.12 Se realiza la revisión del sensor 060AIT001F-OD por lecturas diferentes en SCADA (2,7mg/L) y en campo (1,8mg/L). Camilo Cuevas solicita retirar el sensor de la zona para revisar membrana, él realiza cambio por membrana de repuesto de CEPS, la cual ya presenta desgaste y quedará en pruebas. Giorgos Syrigos verifica los parámetros en el transmisor SC200 entre las balsas 60.5 y 60.6, se evidencia que para la balsa 60.6 los parámetros 0mA - 20mA estaban mal seteados. Se configuran parámetros de acuerdo a la balsa 5 quedando 0mA - 0mA / 20mA - 10mA. CEPS deja en pruebas el funcionamiento del instrumento con lectura en campo y SCADA de 0.43mg/L.

Fotografía 8. Mantenimiento sensor 060AIT001F-OD

Fuente: Fuente propia.

2.13 Se realiza revisión con acompañamiento de personal eléctrico se revisa falla de sobre temperatura en variador de velocidad 053VDF002A, se identifica que el conector de alimentación de ventilador 2 no está haciendo contactó y tiene las terminales carbonizadas, se desmonta se realiza limpieza y se cambia terminales de conexión rápida, se realiza pruebas de funcionamiento y test de ventiladores con resultado ok, continua en prueba junto a personal mecánico para descartar fallas de vibración.

Fotografía 9. Mantenimiento variador de velocidad 053VDF002A

Fuente: Fuente propia.

2.14 Se realiza mantenimiento correctivo al medidor 065FIT302B el cual lo reportan por dañó se encuentra la tarjeta sulfatada y con pistas rotas a lo cual se le corrigieron las pistas y se le realizó limpieza adicional a eso el flexiconduit de conexión del sensor se le aplicó silicona para evitar nuevas filtraciones de agua.

Fotografía 10. Mantenimiento medidor 065FIT302B

Fuente: Fuente propia.

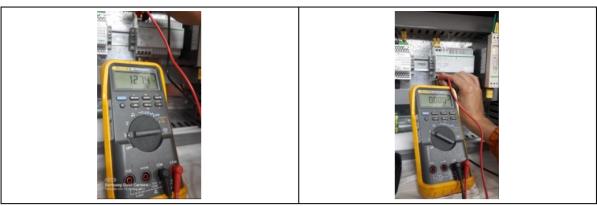
2.15 Operaciones reporta falla en el skid de polímero 074QP201B, personal del contratista instala Sensores de tolva, queda con falla. Se verifica tablero de control y se encontró breaker de alimentación 24VDC -F04 disparado por una mala conexión en la señal y la potencia del Sensor de tolva, ocasionado corto en las entradas digitales del PLC, alarmas en los instrumentos del skid que no se permite rearmar. Se modifican conexión se realiza pruebas de funcionamiento junto al operador, se reanuda operación sin novedad.

Fotografía 11. Mantenimiento skid de polímero 074QP201B

Fuente: Fuente propia.

2.16 Se realiza cambio de membrana nueva sumistridada por aguas de Bogotá de los sensores de oxígeno061AIT001A/F, se deja en seguimiento de operación.

Fotografía 12. Mantenimiento sensores de oxígeno061AIT001A/F



Fuente: Fuente propia.

2.17 Se atiende solicitud de mantenimiento para realizar mantenimiento a las bomba agua lavado gbt's del N°5 al N°8 076P002B y 076P002D por falla de comunicación. Se evidencia falla de comunicación en la zona de lavado de tela 076P002A/E, se evidencia fuente convertidora 110VAC/24VDC quemada, se toman tensiones de entrada, registra voltaje de 110VAC, se toman tensiones en salida, se evidencia 0VDC. Se reporta a CEPS la novedad para cambio, y queda fuera de comunicación las bombas asociadas.

Fotografía 13. Mantenimiento bomba agua lavado gbt's del N°5 al N°8 076P002A/E

Fuente: Fuente propia

5. GESTIÓN AMBIENTAL Y SOCIAL

ACTIVIDADES AMBIENTALES

En este capítulo se describen las actividades de gestión ambiental y social realizadas dentro del cumplimiento de los requisitos legales en la PTAR El Salitre (Plan de Manejo Ambiental, Licencia Ambiental y Resoluciones posteriores) y en la zona de recepción y secado de Biosólido del predio El Corzo (Resolución 3292 de diciembre de 2006, expedida por la CAR) y su aprovechamiento en el Predio La Magdalena autorizado por medio de la Resolución 13001 de 2016 y con la modificación menor bajo el comunicado de la ANLA 2020121983-2-000 del 29 de julio de 2020.

5.1 PLAN DE MANEJO FORESTAL Y PAISAJÍSTICO

El Plan de Manejo Forestal y Paisajístico, plantea una serie de medidas encaminadas a revegetalizar, embellecer y generar barreras ambientales, teniendo en cuenta no sólo las funciones y objetivos que debe cumplir la vegetación como elemento de adecuación y conformación paisajística, sino además como elemento de protección compuesto por franjas de aislamiento visual, sonoro, olfativo y conservación ambiental; buscando una combinación de tonos, texturas y formas adecuadas que realcen y caractericen cada área de manejo, e implementando acciones enfocadas a mitigar y compensar el impacto causado por la operación de la PTAR El Salitre.

Cuadro 5.1-1 Barreras forestales y ambientales de la PTAR El Salitre

Barrera	Área (m²)
Interna	12.104
B1	17.760
B2 y 3 antigua	12.767
B3 nueva	7.657
B5	2.557
В6	7.557
B1-6	3.654
TOTAL	61.499

Fuente: Elaboración propia

En la Imagen 5.1-1 se muestra la ubicación espacial de cada una de las barreras ambientales con las que cuenta la PTAR El Salitre.

Barrera 3

Barrera 3

Barrera 3

Barrera 3

Imagen 5.1-1 Localización de las barreras ambientales en la PTAR Salitre

Fuente: propia, tomada de: ArcGIS, 2021

La Planta de Tratamiento de Aguas Residuales El Salitre – PTAR, cuenta con barreras ambientales y zonas de jardines que requieren complementarse y desarrollar actividades de mantenimiento periódico y básico que faciliten el cumplimiento del propósito ambiental para el cual fueron establecidas.

En los predios de la PTAR, se encuentran ubicados 5540 árboles vivos y 666 m² de jardines.

En el siguiente cuadro se relaciona la distribución de los árboles por cada una de las barreras ambientales:

Cuadro 5.1-2 Distribución de número de árboles por cada una de las barreras ambientales de la PTAR El Salitre

Barrera	Número de árboles vivos
Interna	335
B1	1509
B2	625
В3	1410
B5	708
B6 +B1-6	953
TOTAL	5540

Fuente: Inventario Forestal-Consorcio Mantenimiento Forestales 2021

5.1.1 Actividades de Mantenimiento y Establecimiento

En el mes de abril se realizaron las siguientes actividades por parte del contratista Isaías Godoy bajo el contrato No 1-05-25596-1104-2022 para de esta manera dar cumplimiento al objeto del contrato "Mantenimiento de barreras forestales en la PTAR El Salitre y predios de aprovechamiento de los biosólidos de la PTAR El Salitre", el cual para el presente mes se encuentra con el 99% de cumplimiento del contrato.

5.1.1.1 Poda de mejoramiento de ramas bajas

Para el mes de abril se llevó a cabo la intervención de 54 individuos arbóreos a los cuales se les realizó cortes en secciones de la parte aérea inferior a 2m de altura o radicular de los árboles o arbustos para mejorar su aspecto, además para su optimo desarrollo se eliminan las ramas que se encuentren en deficiente estado sanitario. Esta actividad se desarrolló en las Barrera 1, Barrera 1-6, Barrera 2 y Barrera 3 Nueva.

Cuadro 5.1-3 Poda de ramas bajas por barrera

ACTIVIDAD	BARRERA	ESPECIE	CANTIDAD POR ESPECIE (UND)		
		Ficus soatensis Dugand	17		
		Lafoensia acuminata (Ruiz & Pav.) DC.	10		
	BARRERA 1	Sambucus nigra L	2	32	
	DAKKEKA I	Myrsine guianensis (Aubl.) Kuntze	1	32	
		Alnus acuminata Kunth	1		
		Oreopanax bogotensis Cuatrec	1		
De de de fermenión	BARRERA 1-6	ARRERA 1-6 Lafoensia acuminata (Ruiz & Pav.) DC.		1	
Poda de formación	Pittosporum	Pittosporum undulatum Vent	7		
Inferior a 2 m altura		Ficus soatensis Dugand	2		
Intelior a 2 m airora		Myrsine guianensis (Aubl.) Kuntze	1		
		Sambucus nigra L	5		
		Cotoneaster pannosus Franch	1	20	
		Pyracantha coccinea	1		
		Lafoensia acuminata (Ruiz & Pav.) DC.	1		
		Ligustrum lucidum W.T.Aiton	2		
	BARRERA 3 NUEV A Pittosporum undulatum Vent		1	1	
TOTAL			54		

Fuente: Isaías Godoy abril 2023

5.1.1.2 Poda de mejoramiento de ramas altas

Para el mes de abril se llevó a cabo la intervención a 96 individuos arbóreos a los cuales se les realizó la eliminación de ramas superiores a los 2 metros de altura con el fin de mejorar la arquitectura y desarrollo de los individuos, es decir cortar ramas muertas, enfermas, dañadas por los fuertes vientos, ayudar en la estabilización de este, generar un realce de la copa o aclarar el área para los individuos aledaños. Esta actividad se desarrolló en la Barrera 1, Barrera 1-6, Barrera 2, Barrera 3 Nueva y Barrera 5 de la PTAR El Salitre.

Cuadro 5.1-4 Poda de ramas altas por barrera

ACTIVIDAD	BARRERA	ESPECIE	CANTIDAD POR ESPECIE (UND)	TOTAL, POR BARRERA	
		Oreopanax bogotensis Cuatrec	3		
		Croton bogotanus Cuatrec	2		
		Sambucus nigra L	10		
	BARRERA 1	Myrsine guianensis (Aubl.) Kuntze	2	41	
		Lafoensia acuminata (Ruiz & Pav.) DC.	16		
		Alnus acuminata Kunth	1		
		Ficus soatensis Dugand	7		
	BARRERA 1-6	Salix humboldtiana Willd	2		
		Ligustrum lucidum W.T.Aiton	6		
		Sambucus nigra L	3	18	
	BARRERA 2	Lafoensia acuminata (Ruiz & Pav.) DC.	5	18	
Poda de		Schinus molle L.	1		
mejoramiento		Pinus radiata D.Don	1		
(ramas altas)		Pittosporum undulatum Vent	6		
Superior 2 m altura	BARRERA 3 NUEVA	Acacia melanoxylon R.BR.	1	10	
		Lafoensia acuminata (Ruiz & Pav.) DC.	3		
		Xylosma spiculifera (Tul.) Triana & Planch.	1		
		Salix humboldtiana Willd	8		
		Alnus acuminata Kunth	3		
	BARRERA 5	Senna viarum (Little) H.S.Irwin & Barneby	8	27	
		Escallonia paniculata (Ruiz & Pav.)	1		
		Oreopanax bogotensis Cuatrec	4		
		Tecoma stans (L.) Juss. Ex Kunth	1		
		Escallonia pendula (Ruiz & Pav) Pers.	1		
	T	OTAL	96		

Fuente: Isaías Godoy abril 2023

5.1.1.3 Manejo fitosanitario

Para el mes de abril se realizó la actividad de manejo fitosanitario a 193 individuos arbóreos de las diferentes barreras como se observa en el cuadro 5.1-5, Esta actividad se basa en el control, prevención, curación y eliminación de aquellas plagas y enfermedades que puedan estar afectando el estado sanitario del material vegetal presente en la Barrera 6 y la siembra realizada en la Barrera 1-6 y Barrera 1 de la PTAR El Salitre, se realiza mediante el uso de funguicidas e insecticidas.

Cuadro 5.1-5 Cantidad de árboles fumigados por zona

ACTIVIDAD	ZONA	ESPECIE	CANTIDAD POR SP(UND)	CANTIDAD (UND)	TOTAL (UND)
		Myrsine guianensis (Aubl.) Kuntze	43		
	Barrera 6	Oreopanax bogotensis Cuatrec	19	95	
	ballela 6	Alnus acuminata Kunth	10	73	
		Escallonia pendula (Ruiz & Pav.) Pers.	23		
	Siembra en barrera 1-6 y barrera 1	Alnus acuminata Kunth	12		
Manaia		Myrcianthes leucoxyla (Ortega) McV augh	12		
Manejo fitosanitario		Ficus tequendamae Dugand	9	98	193
IIIOSGIIIIGIIO		Prunus serotina Ehrh	11		
		Syzygium paniculatum Gaertn.	16		
		Schinus molle L.	12		
		Quercus humboldtii Bonpl.	11		
		Croton bogotanus Cuatrec	12		
		Lafoensia acuminata (Ruiz & Pav.) DC.	3		

Fuente: Isaías Godoy abril 2023

5.1.1.4 Mantenimiento de jardinería.

Durante el mes reportado se llevó a cabo el noveno ciclo de mantenimiento de jardinería. El desarrollo de esta actividad comprende la limpieza del terreno, la cual consiste en eliminación de pasto seco, maleza y residuos ordinarios de alrededor del jardín; poda de jardinería, en la cual mediante cortes con ayuda mecánica y manual se le da forma a los arbustos, se mejoran las flores y se brinda una regeneración de rebrotes; riego con el fin de suministrar hidratación necesaria para garantizar la supervivencia y respuesta ante los procesos de corte y fertilización, para aumentar los nutrientes de las plantas. Esta actividad se realizó en los jardines ubicados dentro de las áreas circundantes a las estructuras de la Fase I llevando a cabo un total de 2.536 m².

Cuadro 5.1-6 Área de mantenimiento de jardinería

MANTENIMIENTO DE JARDINERÍA	ÁREA M²
Limpieza de terreno	634
Poda	634
Fertilización	634
Riego	634
TOTAL	2.536

Fuente: Isaías Godoy abril 2023

5.1.1.5 Presencia de fauna silvestre

Durante las actividades de mantenimiento dentro de las barreras forestales para el mes de abril se pudo apreciar fauna silvestre que habita estas zonas, como por ejemplo, curies (Cavia porcellus), garza (Ardea alba), tinguas (Rallus semiplumbeus) y rana sabanera (Dendropsophus molitor), con el fin de contribuir a la protección de estas especies, previo a las actividades silviculturales que se ejecutaron, se realizó ahuyentamiento de fauna, adicionalmente se diligencio un formato de registro de fauna, debido a que estas especies son de vital importancia para restauración ecológica de la zona, así como los beneficios ecológicos que aportan a las barreras.

Todas las actividades descritas anteriormente se pueden apreciar en el siguiente registro fotográfico.

Fotografía 14. Registro fotográfico actividades de mantenimiento y establecimiento

Fuente: Isaías Godoy abril 2023

5.2 OPTIMIZACIÓN DEL USO DEL AGUA

El programa de ahorro y uso eficiente del agua tiene como objetivo mantener el consumo de agua en los mínimos posibles durante cada actividad identificada en la PTAR El Salitre.

Durante el presente mes se continuaron las medidas de control y seguimiento sobre el consumo de agua potable al interior de la PTAR Fase I, estas se realizaron por medio de inspecciones visuales donde se verificó que los puntos de suministro hidráulico se encontraran en buen estado. Así mismo se tomó lectura de los medidores internos instalados con el objeto de determinar el consumo total y en cada área de la PTAR El Salitre Fase I.

En el Cuadro 5.2-1 se muestra el registro del consumo de agua potable en cada área de la PTAR durante el mes de abril de 2023.

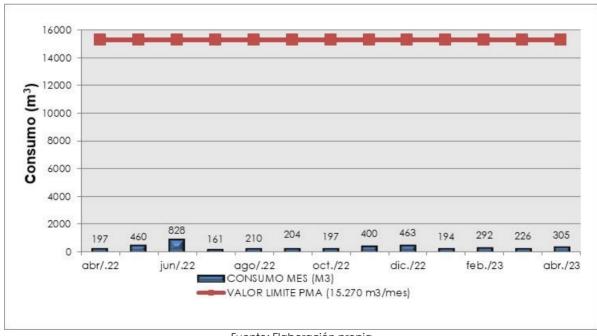
Cuadro 5.2-1 Cantidades Consumo de agua potable abril 2023 en la Fase I.

UBICACIÓN DEL MEDIDOR	CONSUMO m ³
CASINO	188
RED C.I.	27
DECANTADORES 5.1	0
DECANTADORES 5.2	0
DECANTADORES 5.3	0
DECANTADORES 5.4	0,1
REJAS GRUESAS	0
REJAS FINAS	0,3
PRETRATAMIENTO	0
DESHIDRATACION	0
CONT. TRANSP	5,3
EDIF ADMIN	74
ESPESA DORES	0
GALERIA ORIENTAL	0
GALERIA OCCIDENTAL	0
JARDINERIA	10,2
PORTERIA	0

Fuente: Elaboración propia

Tal como se observa en la Grafica 5.2-1 los principales consumos de agua potable se dieron para el área del Casino en la cual se hace la preparación de los alimentos para el personal de la planta y que actualmente esta en proceso de remodelación, por esto el alto consumo para el mes de abril, el segundo consumo se registró en el área del Edificio Administrativo, donde se encuentra el laboratorio de la planta, las oficinas de la División Social y los baños y vestuarios para el personal femenino de la planta, consumo que se encuentra en el promedio de consumo para esta área. Los consumos durante el mes de abril en las diferentes zonas han disminuido debido a que actualmente el caudal de ingreso se está tratando en su totalidad por la PTAR El Salitre Fase II..

CONSUMO DE AGUA POTABLE POR ZONAS PTAR EL SALITRE ABRIL 2023 100000,0 10000.0 Consumo (m3) 1000,0 188.0 100.0 270 10,0 0,0 0,0 0,0 Town or Belle AS RELASTINAS PRETRATAMENTO Jernous ACON EDIF ADMIN TO ALBRA ORBITAL Southern South of Colorada


Gráfica 5.2-1 Consumo de agua potable por áreas de la PTAR Fase I abril de 2023

Fuente: Elaboración propia

Ubicación medido

el comportamiento del consumo mensual total, incluyendo las pérdidas del sistema, deducidas de los registros del macromedidor registrando 305 m³ de consumo en el mes de abril, cumpliendo así con el límite máximo fijado en el PMA el cual debe ser <15240m³/mes (línea roja).

Gráfica 5.2-2 Consumo de agua potable de la PTAR Fase I periodo (abr/2022 a abr/2023)

Fuente: Elaboración propia

En la Grafica 5.2-3 se presenta el consumo mensual que se registra de la PTAR Salitre Fase II desde el mes de abril del 2022. El consumo de agua potable para el mes de abril fue de 8501 m³, consumo que se da por actividades operativas y de revisión en el macromedidor en la Fase II.

CONSUMO DE AGUA POTABLE PTAR SALITRE FASE II 20000 16352 14342 13268 15000 11313 Consumo (m3) 9027 10000 8634 7894 6170 3662 5000 1290 Mes

Gráfica 5.2-3 Consumo de agua potable de la PTAR Salitre Fase II (abr/2022 a abr/2023)

Fuente: Elaboración propia

Nota: dado a las diferentes variaciones que se presenta en los consumos en la PTAR El Salitre, la División Ambiental y Social solicitó revisión y evaluación al Acueducto del macromedidor ubicado en Fase II, el día 9 de febrero de 2023 se realizaron las diferentes pruebas por parte del Laboratorio del Acueducto evidenciándose un desgaste en el medidor, motivo por el cual se debe cambiar, actualmente continuamos a la espera del cambio de medidor.

5.3 CONTROL DEL TRANSPORTE DE BIOSÓLIDOS

La ruta de transporte se realizó conforme a lo establecido en el Plan de Manejo Ambiental para el predio El Corzo I: "Aprovechamiento del biosólido en mezcla con suelo para la cobertura del predio El Corzo I", aprobado por la Resolución CAR 3292 de diciembre de 2006, en diciembre del 2017 se culminó el aprovechamiento y desde ese mismo mes se inicia el aprovechamiento en el predio La Magdalena el cual fue autorizado por medio de la Resolución 1301 de 2016 emitido por la Autoridad Nacional Licencias Ambientales y con la modificación menor bajo el comunicado de la ANLA 2020121983-2-000 del 29 de julio de 2020. Este predio está ubicado a 4 km del predio El Corzo el cual es usado para la recepción y secado del biosólido proveniente de la PTAR El Salitre, y el cual posteriormente es llevado hasta el predio La Magdalena para su aprovechamiento.

Durante este mes el transporte de biosólido desde la PTAR El Salitre hasta el predio El Corzo y posteriormente hasta el predio La Magdalena se realizó a través de volquetas con capacidad de 15 m³ las cuales cumplieron con las especificaciones establecidas por la Licencia Ambiental y las normas de tránsito.

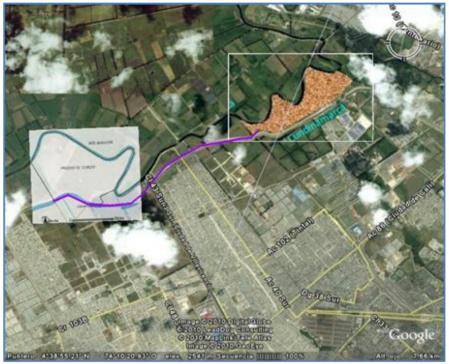


Imagen 5.3-1 Localización Predios El Corzo y La Magdalena

Fuente: Google Earth

5.4 PLAN DE USO BENÉFICO DE LOS LODOS

El biosólido de la PTAR El Salitre generado para el mes de septiembre es proveniente de la Fase II, por parte de la Fase I desde el día 25 de septiembre de 2021 no se está generando biosólido. Para la PTAR El Salitre el biosólido es clasificado según el Decreto 1287 del 10 de julio de 2014 establecido por el Ministerio de Vivienda, Ciudad y Territorio "Por el cual se establecen criterios para el uso de los biosólidos generados en plantas de tratamiento de aguas residuales municipales" que incorporó gran parte de las disposiciones contenidas en la norma US EPA 40 CFR part 503, e incluyó algunos requerimientos adicionales, de igual manera al aplicar esta regulación al biosólido obtenido en la PTAR El Salitre se evidencia que los parámetros fisicoquímicos se encuentran dentro del límite de biosólido Tipo B.

Con base en los criterios para el aprovechamiento de las distintas clases de biosólido, establecidos en el Decreto 1287 de 2014, la PTAR El Salitre realiza aprovechamiento del biosólido con mezcla de suelo como cobertura final para el restablecimiento de la cobertura vegetal del predio La Magdalena.

Esta actividad fue autorizada por la Autoridad Nacional de Licencias Ambientales – ANLA a través de la Resolución 1301 de 2016 y con la modificación menor bajo el comunicado de la ANLA 2020121983-2-000 del 29 de julio de 2020; es así como desde el mes de diciembre de 2017 se inició al aprovechamiento del biosólido en este predio propiedad de la EAAB –ESP, el cual se encuentra localizado al suroccidente de la ciudad en los límites de las localidades de Kennedy y Bosa el cual fue empleado para la disposición de los sobrantes de excavación de las obras de alcantarillado del Tintal y del Canal Cundinamarca.

Las características fisicoquímicas del biosólido de la PTAR El Salitre presentan concentraciones típicas de enmiendas orgánicas en cuanto a sus formas nitrógeno, fósforo y sólidos volátiles que hacen de este material muy útil en aplicaciones agrícolas y no agrícolas, como es el caso del aprovechamiento actual llevado a cabo en el predio La Magdalena donde se ha generado la cobertura vegetal de manera rápida y con una buena estructura, textura y apariencia de los pastos (lo cual se comprueba mediante muestreos y análisis fisicoquímicos y microbiológicos realizados en diferentes puntos del predio con periodicidad anual).

El área de Gestión Ambiental de la planta realiza seguimiento al aprovechamiento del biosólido en el predio La Magdalena, en concordancia con el PMA, aprobado por la Resolución 1301 de 2016 y con la modificación menor bajo el comunicado de la ANLA 2020121983-2-000 del 29 de julio de 2020, a través de inspecciones planeadas el día 5 de abril del 2023 el aprovechamiento del biosólido se está realizando de manera efectiva en la celda 11; se ha evidenciado un aumento debido a la puesta en marcha de la Fase II de la PTAR el Salitre, incrementando el flujo de volquetas y material para aprovechamiento, de igual manera en las celdas intervenidas se evidencia que han presentado un crecimiento gradual del pasto kikuyo en las diferentes celdas de aprovechamiento, así como el seguimiento a la disposición de los residuos sólidos, vectores, olores, limpieza de canaletas, vías, higiene y seguridad industrial, señalización y demarcación, máquinas y herramientas, evidenciando el cumplimiento de cada una de las actividades de seguimiento en el predio La Magdalena.

En el siguiente registro fotográfico se presenta el patio de secado y progreso del aprovechamiento en el predio.

Fotografía 15. Registro fotográfico patio de secado predio el Corzo y proceso de mezcla predio la Magdalena abril 2023

Vista general del área de secado

Disposición de secado en módulos en la cubierta tipo invernadero

Descargue de biosólido en celda 11 La Magdalena, metodología 3:1

Labores de mezcla Aprovechamiento predio La Magdalena celda 11, metodología 3:1

Fuente: Fuente propia.

5.5 CONTROL DEL MANEJO DE RESIDUOS

La gestión de residuos en la PTAR se realiza de acuerdo con el tipo de residuos, su impacto y los requisitos normativos asociados al mismo; esta gestión se divide en residuos provenientes del sistema de tratamiento, residuos convencionales no aprovechables, residuos convencionales aprovechables y residuos peligrosos.

El almacenamiento temporal de los residuos provenientes del sistema de tratamiento (residuos de cribado, desarenado y desengrasado que no son aprovechables), se realiza en diferentes contenedores, mientras la fracción de residuos No aprovechables generados por el personal de la planta, visitantes y casino, son recogidos en bolsas negras, y posteriormente todos estos residuos son unidos y transportados hasta el relleno sanitario Doña Juana para su disposición final.

La fracción de residuos convencionales reciclables (papel, cartón, plásticos y vidrio principalmente) se separa en recipientes provistos de bolsa blanca y son posteriormente acopiados y donados a una Asociación de Recicladores sin ánimo de lucro en convenio con la EAAB.

Para el mes de abril se realizó la recolección el día 04 del material aprovechable, por parte de la Asociación Pedro León Trabuchi.

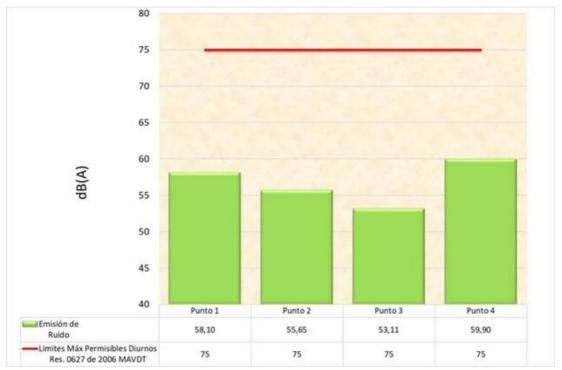
Cuadro 5.5-1 Residuos donados a la Asociación Pedro León Trabuchi

		Cantidad (Kg)		
Periodo	Tipo de residuo	Fase I	Fase II	PTAR SALITRE
	Cartón	14	60	
	Archivo	3	10	
	Plegadiza	8	20	
	Plástico	0	10	
	PET	6	10	
3/03/2023	PET V erde	0	3	
а	Tatuco	2	3	
4/04/2023	Galones (Ud)	3	0	
	Poliboard	0	2	
	Plástico policolor	8	0	
	Revoltura	3	2	
	Globos	0	56	
	Total:	44	176	220+3 galones

Fuente: Elaboración propia

5.6 CONTROL DE RUIDOS

Debido a la puesta en marcha de la Fase II de la PTAR El Salitre a partir del 24 de septiembre de 2021 fueron saliendo de operación de manera gradual estructuras y equipos como Tea, Gasómetro, Digestores 9.1, 9.2 y 9.3, Calderas A y B, Tanque almacenador de lodos y zona de deshidratación de lodos y que a la fecha se encuentran inoperativos, las cuales aportaban en la generación de ruido es por esto que a continuación se muestra información referente al último estudio realizado para el año 2022.

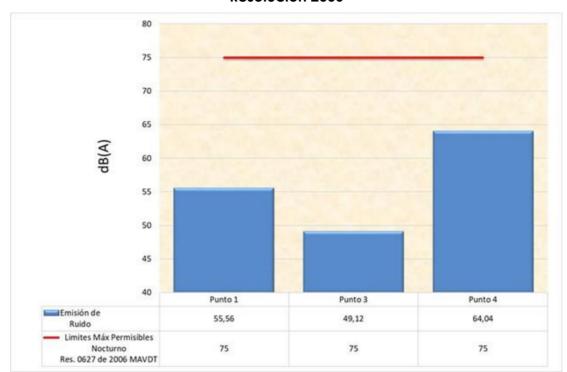

Anualmente se realiza un monitoreo de ruido por intermedio de una firma acreditada por el IDEAM, que para el año 2022 fue Ingeniería y Consultoría Global S.A.S (ICG). Los resultados del último monitoreo, realizado el día 01 de abril del 2022, demuestran que las emisiones de ruido de la planta permanecen por debajo del límite máximo establecido por la normatividad nacional, Resolución 627 de 2006 del Ministerio de Ambiente (Sector C – Ruido intermedio restringido, subsector zonas con usos industriales permitidos, Estándar máximo < 75 dB (A) jornada diurna y nocturna). En la siguiente tabla y graficas se pueden observar los resultados obtenidos.

Cuadro 5.6-1 Resultados del monitoreo diurno

Punto	LRAeq,1h (dBA)	LRAeq,1h, _{Residual} (L90, dBA)	Leq _{Emisión} (dBA)
P1	58.2	41.7	58.10
P2	56.0	44.9	55.65
Р3	54.4	48.5	53.11
P4	62.1	58.1	59.90

Fuente: Estudio de Ruido PTAR El Salitre. ICG - abril 2022

Gráfica 5.6-1 Comparación de emisión de ruido horario diurno con la Resolución 2006


Fuente: Estudio de Ruido PTAR El Salitre. ICG - abril 2022

Cuadro 5.6-2 Resultados del monitoreo nocturno

Punto	LRAeq,1h (dBA)	LRAeq,1h, _{Residual} (L90, dBA)	Leq _{Emisión} (dBA)
P1	55.7	40.7	55.56
P2	42.7	40.0	*
Р3	51.2	47.0	49.12
P4	65.3	59.3	64.04

*En el punto 2 no fue posible calcular la emisión de ruido ya que la diferencia aritmética entre LRAeq,1h y nivel percentil L90I es igual o inferior a 3 dB(A), por lo cual el nivel de ruido de emisión (LRAeq,1h, Residual) es del orden igual o inferior al ruido residual.

Fuente: Estudio de Ruido PTAR El Salitre. ICG - abril 2022

Gráfica 5.6-2 Comparación de emisión de ruido horario nocturno con la Resolución 2006

Fuente: Estudio de Ruido PTAR El Salitre. ICG - abril 2022

5.7 CONTROL DE EMISIONES

Debido a la puesta en marcha de la Fase II de la PTAR El Salitre a partir del 24 de septiembre de 2021 fueron saliendo de operación de manera gradual estructuras y equipos como Tea, Gasómetro, Digestores 9.1, 9.2 y 9.3, Calderas A y B, Tanque almacenador de lodos y zona de deshidratación de lodos y que a la fecha se encuentran inoperativos, las cuales aportaban con la emisión atmosférica, es por esto que a continuación se muestra información referente al último estudio realizado, el cual fue de carácter anual en el mes de junio del 2022 por la firma acreditada por el IDEAM, Ingeniería y Consultoría Global S.A.S (ICG).

Para cuantificar las emisiones atmosféricas generadas por los equipos de electrógeneradores se realiza un monitoreo cumpliendo los requisitos establecidos en la Resolución 2153 de 2010 del Ministerio de Ambiente, la Resolución 6982 del 2011 de la Secretaría Distrital de Ambiente y la Resolución 1309 de 2010 del MAVDT. Resultando todos los parámetros por debajo de los límites máximos de emisión contemplados en las citadas normas.

Cuadro 5.7-1 Resultados de monitoreo de Emisiones / junio de 2022

Fuente Fija	Contaminante (mg/ m³)	Concentración corregida con O ₂ al 15% (mg/m3)	Resolución 1309 de 2010 MAVDT (mg/m³)
	MP	9.23	100
Electrógenerador	SO ₂	0.0086	400
1	NO_X	131.27	1800
	CO	0.028	N.A
	MP	8.61	100
Electrógenerador 2	SO ₂	0.0081	400
	NO _X	122.54	1800
	CO	0.026	N.A

Fuente: Estudio de Emisiones Atmosféricas PTAR El Salitre. ICG - junio 2022

5.8 CONTROL DE OLORES

Los olores generados por los procesos de tratamiento de las aguas residuales y los lodos generados son prevenidos, mitigados y estimada su influencia sobre los barrios circunvecinos.

Son varias las medidas aplicadas que confluyen hacia la disminución de la perceptibilidad de olor dentro de las comunidades aledañas a la planta, dentro de los más importantes se cuentan:

- Mantenimiento de distancias mayores a 300 metros entre los focos de olor (estación elevadora, Espesadores, decantadores) y las áreas residenciales
- Establecimiento de barreras forestales y ambientales perimetrales
- Monitoreo constante de la eficiencia de la digestión de lodos (reducción de sólidos volátiles)
- Uso de cal para elevación de pH en caso de ser necesario (inestabilidad de lodos)

A partir del año 2021 se realizó la metodología de olores dispuesta en la Resolución 1541 de 2013 de olores ofensivos mediante la medición del parámetro Azufre Total Reducido – TRS. en cumplimiento de la Resolución No 00667 de 2021 emitido por la ANLA, dicha información se encontrará consignada en los informes de Cumplimiento Ambiental - ICA de la PTAR Salitre Fase I.

5.9 PLAN DE GESTIÓN SOCIAL

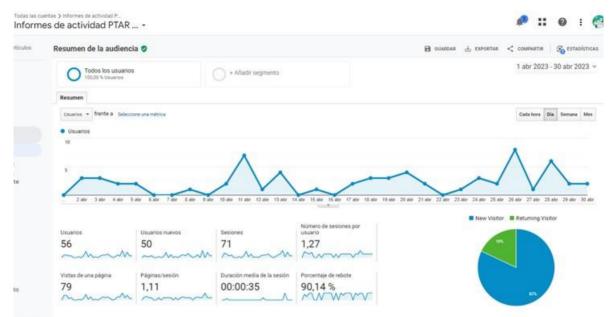
5.9.1 Componente de Comunicación e Información.

5.9.1.1 Divulgación de información por medio de plegables.

En el mes de abril de 2023, se dio continuidad a la divulgación de información por medio de los plegables técnico y general de la PTAR El Salitre, los cuales fueron enviados mediante correo electrónico.

En total durante el mes, se envió a ciento tres (103) personas el plegable técnico y el plegable con información general de la planta. Teniendo en cuenta que a cada persona le fueron remitidos los plegables, en total se logró difundir mediante correo electrónico doscientos seis (206) plegables informativos.

A continuación, se presenta el consolidado del material informativo (plegables) enviados.


Cuadro 5.9-1 Consolidado plegables generales y técnicos enviados mes de abril de 2023

Comunidad informada	Ejemplares enviados plegable general	Ejemplares enviados plegable técnico
Docentes y estudiantes Servicio Nacional de Aprendizaje – SENA.	51	51
Docente y estudiantes Universidad Nacional de Colombia – UN.	20	20
Administradores y funcionarios Kenzo Jeans SAS	20	20
Docentes y estudiantes Instituto Técnico Comercial Cerros de Suba.	12	12
Subtotal material difundido	103	103
Total, piezas informativas enviadas.	20	6

Así mismo, se continuó realizando el seguimiento al contador de mensajes ubicado en la página Web de la empresa de Acueducto y Alcantarillado de Bogotá - EAAB, a través del cual se reporta la cantidad de veces que se visita el link, el cual contiene la información de la PTAR El Salitre.

En el mes de abril de 2023, el reporte del link de las visitas correspondió a cincuenta y seis (56) personas.

A continuación, se presenta la gráfica con el número de accesos al link de la PTAR El Salitre durante el mes.

Gráfica 5.9-1 Visitantes link PTAR el Salitre

Cuadro 5.9-2 Comunicaciones correo: ptar.salitre@acueducto.com.co

Comunicaciones entrantes			
Tema	Cantidad		
Solicitud visitas presenciales	5		
Solicitud información y varios	6		
Quejas	0		
Respuesta y/o asignación visitas presenciales o virtuales	5		
Respuesta a solicitudes de información y varios	6		
Respuestas a quejas	0		

Las solicitudes de información y varios, correspondieron a: Información acerca de vacantes laborales en la PTAR El Salitre, invitación a participar en campaña informativa en el centro comercial Plaza Imperial mediante las maquetas interactivas de la PTAR El Salitre, programación de charlas pedagógicas con los estudiantes del Colegio Presentación Sans Facon, programación de taller pedagógico en el aula ambiental y visita guiada en la planta con los estudiantes del Colegio Instituto Técnico Cerros de Suba e información acerca de realización de mantenimiento de canales en la ciudad.

En el cuadro 5.9-3, se especifica el número de personas cubiertas por cada actividad realizada. En la categoría "Entrega de material informativo por solicitud" se incluyen los plegables, herramientas pedagógicas y videos enviados o socializados durante el mes de abril. En la categoría "Total piezas comunicativas entregadas" se incluyen el total de las mismas en todas las actividades desarrolladas.

Cuadro 5.9-3 Total de población informada en las diferentes actividades de divulgación mes de abril de 2023

	Tipo de actividad	Cantidad de personas informadas por medio de cada pieza comunicativa y/o actividad de divulgación	
Α	Visitas guiadas/recorridos pedagógicos.	53	
В	Envío/entrega de material informativo por solicitud.	vo por 103	
С	Talleres, charlas y otras actividades externas.	432	
D	Actividad institucional.	39	
Е	Comunicaciones entrantes a los correos electrónicos.	11	
F	Comunicaciones salientes de los correos electrónicos.	11	
Total	Total, personas informadas directamente (a+b+c+d+f) = 638	Total, piezas comunicativas enviadas (plegables, videos, herramientas y otras formas de comunicación): 309	

5.9.1.2 Difusión del video institucional de la PTAR El Salitre fase I.

Durante el mes de abril de 2023, se continuó informando mediante correo electrónico a las comunidades y ciudadanía en general, acerca de la ruta de acceso al link del video institucional de la página web de la empresa de Acueducto y Alcantarillado de Bogotá – EAAB: **www.acueducto.com.co.**

En total durante el mes, la información y/o socialización del video institucional se dirigió a ciento tres (103) personas.

5.9.1.3 Participación en seminarios, ferias ambientales o congresos.

En el mes de abril de 2023, se realizaron dos (2) jornadas informativas de PTAR al barrio con la participación total de treinta y nueve (39) personas.

En el cuadro 5.9-4 se relacionan las jornadas de PTAR al barrio realizadas durante el mes de abril de 2023.

Cuadro 5.9-4 Jornadas informativas y pedagógicas de PTAR al barrio efectuadas en el mes de abril de 2023.

Fecha	Comunidad	Localidad	N° de participantes
4/04/2023	Centro Comercial Bulevar	Suba	32
20/04/2023	Alcaldía Local de Kennedy	Kennedy	7
	39		

A continuación, se presenta el registro fotográfico de las jornadas de PTAR al barrio ejecutadas durante el mes de abril de 2023.

Fotografía 16 Jornada informativa PTAR al barrio, Centro Comercial Bulevar Niza, localidad de Suba Abril 04 de 2023

Fotografía 17 Jornada informativa PTAR al barrio, Alcaldía Local de Kennedy, localidad de Kennedy Abril 20 de 2023

5.9.1.4 Difusión de información por correo electrónico.

Con la finalidad de brindar información de la PTAR El Salitre, relacionada con la ubicación geográfica, historia, tratamiento, actividades de educación ambiental y gestión realizada para el tratamiento de las aguas residuales, en el mes de abril de 2023, se enviaron ciento tres (103) correos electrónicos dirigidos a Docentes y estudiantes Servicio Nacional de Aprendizaje – SENA, docente y estudiantes Universidad Nacional de Colombia – UN, administradores y funcionarios de la empresa Kenzo Jeans SAS y docentes y estudiantes Instituto Técnico Comercial Cerros de Suba.

5.9.2 Componente de Participación Comunitaria

5.9.2.1 Atención de visitas guiadas/recorridos pedagógicos solicitados por las comunidades - PTAR El Salitre Ampliada y optimizada.

Durante el mes de abril, se efectuaron tres (3) visitas guiadas con la participación de cuarenta y seis (46) personas como se relaciona en el cuadro 5.9-5.

A través del recorrido, los participantes conocieron el proceso de tratamiento realizado en la PTAR El Salitre Ampliada y Optimizada y los beneficios del mismo en el proceso de descontaminación y recuperación del río Bogotá.

Cuadro 5.9-5 Visitas guiadas/recorridos pedagógicos solicitados por las comunidades - PTAR El Salitre Ampliada y Optimizada abril 2023.

Fecha	Comunidad	Localidad	N° de participantes	
13-04 2023	3-04 2023 IDIGER Comisión Gestión del Riesgo y Cambio	Fontibón	11	
10 0 1 2020	Climático de la localidad de Fontibón			
27-04 2023	Empresa Kenzo Jeans S.A.S	Fontibón	19	
28-04 2023	Subred Integrada de Servicios de Salud Norte	Zona Norte Ciudad	16	
20-04 2023	E.S.E	Bogotá		
_	46			

Fotografía 18 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fase II, IDIGER Comisión Gestión del Riesgo y Cambio Climático localidad de Fontibón Abril 13 de 2023

Fotografía 19 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fase II, Empresa Kenzo Jeans S.A.S Abril 27 de 2023

Fotografía 20 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fase II, Subred Integrada de Servicios de Salud Norte E.S.E Abril 28 de 2023

5.9.2.2 Conformación grupo de seguimiento de las obras PTAR El Salitre Fase II Participación en reuniones, comités de seguimiento, entre otras actividades. requeridas por el grupo de seguimiento o veeduría de la obra de ampliación y optimización de la PTAR El Salitre fase I.

El día 21 de abril de 2023, se participó en la reunión con el Comité de Seguimiento de Obra – SEGO de la localidad de Suba, la cual se llevó a cabo en el aula ambiental de la PTAR El Salitre.

En la reunión, el consorcio Expansión PTAR El Salitre, presentó el avance de las obras de rehabilitación adelantadas a la fecha en la PTAR El Salitre fase I. Así mismo, brindó explicación a los integrantes del comité en el laboratorio del Consorcio, acerca de los muestreos que se llevan a cabo durante el proceso de tratamiento efectuado diariamente.

Fotografía 21 Reunión Comité de Seguimiento de Obra – SEGO de la localidad de Suba Abril 21 de 2023

5.9.3 Componente de Educación Ambiental

5.9.3.1 Atención de visitas guiadas/recorridos pedagógicos solicitados por las instituciones educativas (colegios y universidades) en la PTAR El Salitre Ampliada y optimizada..

En el mes de abril de 2023, se ejecutó una (1) visita guiada/recorrido pedagógico presencial en la PTAR El Salitre Ampliada y Optimizada con la participación de seis (6) estudiantes y un (1) docente del Instituto Técnico Cerros de Suba de la localidad de Suba.

Cuadro 5.9-6 Visitas guiadas/recorridos pedagógicos realizados con instituciones educativas PTAR El Salitre Ampliada y Optimizada abril de 2023.

Fecha	Comunidad	Localidad	N° de participantes
21-04 2023	Colegio Instituto Técnico Cerros de Suba	Suba	7
	7		

Mediante los recorridos efectuados, los estudiantes conocieron el proceso de tratamiento realizado en la PTAR El Salitre Ampliada y Optimizada, los beneficios del mismo para la descontaminación y recuperación del río Bogotá y la importancia de modificar hábitos en los lugares de residencia, trabajo o estudio asociados con el uso inteligente del alcantarillado, adecuada disposición de los residuos y reciclaje.

Fotografía 22 Visita guiada/ recorrido pedagógico presencial PTAR El Salitre fase II con estudiantes Instituto Técnico Cerros de Suba. Abril 21 de 2023

5.9.3.2 Ejecución de charlas/talleres en los colegios y universidades.

En el mes de abril de 2023, se ejecutaron trece (13) talleres pedagógicos con la participación de cuatrocientos veinte (420) niños(as) de básica primaria y secundaria de los colegios Gimnasio Moderno Summerhill perteneciente a la localidad de Engativá, Colegio Presentación Sans Facon, ubicado en la localidad de Usaquén, Centro de Integración Educativa del Norte – CIEN y Colegio Agustiniano Norte de la localidad de Suba, Colegio Gabriel Betancourt Mejía sede A, de la localidad de Kennedy y Colegio el Porvenir sede B perteneciente a la localidad de Bosa.

Cuadro 5.9-7 Talleres pedagógicos con niños(as) mes de abril de 2023..

Fecha	Localidad	Barrio	Institución Educativa/Grado	Nivel	N° de participantes
12/04/2023	Suba	Toberín	Colegio Presentación Sans Facon	10°y 11°	61
12/04/2023	Suba	Toberín	Colegio Presentación Sans Facon	6°y 9°	40
12/04/2023	Suba	Toberín	Colegio Presentación Sans Facon	1°	20
13/04/2023	Suba	Costa Azul	Centro de Integración Educativa del Norte	Vigías Ambientales	18
18/04/2023	Suba	Potosí	Colegio Agustiniano Norte	Vigías Ambientales	44
19/04/2023	Engativá	Mortiño	Gimnasio Moderno Summerhill	10°A	15
19/04/2023	Engativá	Mortiño	Gimnasio Moderno Summerhill	10°B	18
19/04/2023	Engativá	Mortiño	Gimnasio Moderno Summerhill	11°	27
25/04/2023	Kennedy	Ciudad Tintal	Colegio Gabriel Betancourt Mejía Sede A	101°	34
25/04/2023	Kennedy	Ciudad Tintal	Colegio Gabriel Betancourt Mejía Sede A	103°	36
26/04/2023	Bosa	Porvenir	Colegio el Porvenir sede B	704°	35
26/04/2023	Bosa	Porvenir	Colegio el Porvenir sede B	705°	36
26/04/2023	Bosa	Porvenir	Colegio el Porvenir sede B	604°	36
Total, Participantes				420	

A continuación, se presenta el registro fotográfico de los talleres efectuados en el mes de abril de 2023.

Fotografía 23 Taller pedagógico con estudiantes de grado 10° y 11°de bachillerato Colegio Presentación Sans Facon - localidad de Usaquén Abril 12 de 2023

Fotografía 24 Taller pedagógico con estudiantes de grado sexto y noveno de bachillerato Colegio Presentación Sans Facon - localidad de Suba Abril 12 de 2023

Fotografía 25 Taller pedagógico con estudiantes de grado 8B de bachillerato, Colegio Gimnasio Moderno Summerhill, barrio Mortiño - localidad de Engativá abril 02 de 2023

Fotografía 26 Taller pedagógico con estudiantes de grado 6°de Bachillerato Colegio Presentación Sans Facon - localidad de Suba Abril 12 de 2023

Fotografía 27 Taller pedagógico con estudiantes Vigías Ambientales Colegio Centro de Integración Educativa del Norte – CIEN, localidad de Suba Abril 13 de 2023

Fotografía 28 Taller pedagógico con estudiantes Vigías Ambientales Colegio Agustiniano Norte, localidad de Suba Abril 17 de 2023

Fotografía 29 Taller pedagógico con estudiantes de grado 10B° de bachillerato Gimnasio Moderno Summerhill, localidad de Engativá Abril 19 de 2023

Fotografía 30 Taller pedagógico con estudiantes de grado 11° de bachillerato Gimnasio Moderno Summerhill, Localidad de Engativá Abril 19 de 2023

Fotografía 31 Taller pedagógico con estudiantes de grado 101°de primaria Colegio Gabriel Betancourt Mejía sede A - localidad de Kennedy Abril 25 de 2023

Fotografía 32 Taller pedagógico con estudiantes de grado 103 de primaria Colegio Gabriel Betancourt Mejía sede A - localidad de Kennedy Abril 25 de 2023

Fotografía 33 Taller pedagógico con estudiantes de grado 704° de bachillerato IED - Colegio el Porvenir sede B - localidad de Bosa Abril 26 de 2023

Fotografía 34 Taller pedagógico con estudiantes de grado 705° de bachillerato IED - Colegio el Porvenir sede B - localidad de Bosa Abril 26 de 2023

Fotografía 35 Taller pedagógico con estudiantes de grado 604° de bachillerato IED - Colegio el Porvenir sede B - localidad de Bosa Abril 26 de 2023

5.9.3.3 Realización de talleres dirigidos a niños menores de doce años y/o según requerimiento.

Durante el mes de abril, se desarrolló un (1) taller pedagógico en el aula ambiental/casa del Curí, ubicada en la PTAR El Salitre con la participación de doce (12) estudiantes Vigías Ambientales del colegio Instituto Técnico Cerros de Suba, perteneciente a la localidad Suba.

Cuadro 5. 9-7. Talleres pedagógicos Aula Ambiental de la PTAR El Salitre.

Fecha	Localidad	Barrio	Institución Educativa/Grado	Nivel	N° de participantes
21/04/2023	Suba	Suba	Instituto Técnico Cerros de Suba	Vigías Ambientales	12
		To	otal participantes		12

Mediante el taller, los estudiantes conocieron la ruta del desagüe, uso inteligente del alcantarillado, proceso, importancia y beneficios del tratamiento de las aguas residuales realizado en la PTAR El Salitre Ampliada y Optimizada en el marco del Plan de Saneamiento del Río Bogotá - PSRB.

Para tal fin, se efectuó presentación en power point acerca de la temática en mención y se proyectó el video institucional del proceso de tratamiento realizado en la PTAR El Salitre. Al finalizar los talleres, los estudiantes participaron en el juego de la maqueta de la planta diseñada en un banner de piso (interactivo) con fichas didácticas que simulan las estructuras de la PTAR El Salitre Ampliada y Optimizada.

Es de aclarar, que en el aula ambiental es posible realizar talleres dirigidos a diferentes grupos etáreos (no únicamente niños(as) menores de doce años); razón por la cual, los talleres se desarrollan también con estudiantes de bachillerato.

A continuación, se presenta el registro fotográfico de los talleres ejecutados durante el mes de abril.

Fotografía 36 Taller pedagógico Aula ambiental de la PTAR El Salitre Vigías Ambientales Instituto Técnico Cerros de Suba, localidad de Suba Abril 21 de 2023

5.9.3.4 Socialización de la herramienta pedagógica participativa.

Durante el mes de abril de 2023, se enviaron mediante correo electrónico ciento tres (103) cartillas pedagógicas denominadas: El Saneamiento del río Bogotá, las cuales fueron remitidas a los participantes de las visitas guiadas/recorridos pedagógicos realizados durante el mes de abril de 2023.

A continuación, se relacionan las cartillas enviadas en el mes de abril de 2023.

Cuadro 5.9-7 Consolidado cartillas pedagógicas El Saneamiento del río Bogotá enviadas en el mes de abril de 2023.

Comunidad informada	Cartillas enviadas
Docentes y estudiantes Servicio Nacional de Aprendizaje – SENA.	51
Docente y estudiantes Universidad Nacional de Colombia – UN.	20
Administradores y funcionarios Kenzo Jeans SAS	20
Docentes y estudiantes Instituto Técnico Comercial Cerros de Suba.	12
Total cartillas enviadas	103

5.9.4 Componente de Relaciones Interinstitucionales

5.9.4.1 Comité Ambiental Local- CAL de las localidades de Suba y Engativá.

El día 01 de abril de 2023, se participó en la reunión presencial extraordinaria de la Comisión Ambiental Local – CAL de la localidad de Suba.

Mediante la reunión, la Corporación Autónoma Regional de Cundinamarca – CAR, dio a conocer las generalidades del proyecto de Ampliación y Optimización de la PTAR El Salitre fase II, obras de Rehabilitación de la PTAR El Salitre fase I efectuadas a la fecha e informe financiero.

Fotografía 37 Reunión Comisión Ambiental Local – CAL de la localidad de suba Casa de la Participación Alcaldía Local Abril 01 de 2023

5.9.5 Componente de Investigación Social

5.9.5.1 Realización de encuestas de percepción de la comunidad.

En el mes de abril de 2023, se aplicaron cincuenta y nueve (59) encuestas de percepción a comunidades residentes en la localidad de Engativá.

5.9.5.2 Análisis de las encuestas de percepción de la comunidad.

El análisis de las encuestas de percepción que se diligencien entre los meses de enero a junio de 2023 con las comunidades, se llevará a cabo en el segundo semestre del año 2023.

5.9.5.3 Realización de encuestas de percepción a los visitantes.

Durante el mes de abril de 2023, se aplicaron diez (10) encuestas de percepción con los participantes de las visitas guiadas/recorridos pedagógicos realizados durante el mes de abril en la PTAR El Salitre, los cuales correspondieron a: funcionarios de la Comisión de Gestión del Riesgo y Cambio Climático de la localidad de Fontibón, Vigías Ambientales pertenecientes al colegio Instituto Técnico Cerros de Suba, colaboradores de la empresa Kenzo Jeans y funcionarios de la Subred Integrada de Servicios de Salud Norte E.S.E.

5.9.5.4 Análisis de las encuestas de percepción a los visitantes.

El análisis de las encuestas de percepción que se diligencien entre los meses de enero a junio de 2023 con los visitantes, se llevará a cabo en el segundo semestre del año 2023.

5.9.5.5 Realización de encuestas de satisfacción en eventos y con niños.

El día 14 de enero de 2022, se ejecutó una reunión virtual con funcionarios del Sistema de Gestión de Calidad y la Dirección de Gestión Comunitaria de la empresa de Acueducto y Alcantarillado de Bogotá- EAAB, mediante la cual se eliminó el uso de los formatos correspondientes a la encuesta de satisfacción en eventos y con niños(as).

Acorde a lo expuesto, a partir del mes de enero de 2022, únicamente se aplica la encuesta de percepción dirigida a las comunidades y a las visitas guiadas.

5.9.6 Componente Generación de Empleo

En el mes de abril de 2023, se cuenta con un consolidado de 142 empleados vinculados, de los cuales veintiocho (28) residen en la localidad de Suba y veinticinco (25) en la localidad de Engativá para un total de cincuenta y tres (53) colaboradores que habitan en las localidades del área de influencia de la PTAR El Salitre Ampliada y Optimizada.

Teniendo en cuenta lo anterior, el porcentaje de empleados residentes en las localidades de Suba y Engativá y que se encuentran vinculados a la PTAR El Salitre Ampliada y Optimizada hasta el mes de abril de 2023 corresponde a 37%.

El consolidado de trabajadores vinculados a la PTAR El Salitre, se relaciona a continuación:

Cuadro 5.9-7 Estado de vinculación laboral PTAR El Salitre Ampliada y Optimizada en el mes de abril de 2023

DIVISIÓN	TOTAL EMPLEADOS	SUBA	ENGATIVÁ	% EMPLEADOS DE LA ZONA VINCULADOS
DIVISIÓN ADMINISTRATIVA Y FINANCIERA	18	4	3	5%
DIVISION OPERATIVA Y TECNICA	67	19	11	21%
DIVISION MANTENIMIENTO ELECTROMECÁNICO	46	3	8	8%
DIVISION AMBIENTAL Y GESTIÓN SOCIAL	11	2	3	3%
TOTAL EMPLEADOS VINCULADOS	142	28	25	37%

6. GESTIÓN DE CALIDAD

6.1 INTRODUCCIÓN

A continuación, se describen las actividades desarrolladas en el marco del Sistema de Gestión de Calidad de la EAAB en la PTAR El Salitre durante el mes de ABRIL 2023, así como el avance con respecto a las actividades programadas en el plan de trabajo de calidad de la PTAR Salitre 2023.

6.2 ATENCIÓN CLIENTE EXTERNO

Se recibieron 12 comunicaciones mediante el correo institucional para la planta Ptar el Salitre las cuales fueron respondidas.

En el Informe de Cumplimiento Ambiental - ICA 30 se reporta la gestión realizada entre el 01/07/2022 y el 31/12/2022 para los autos y requerimientos abiertos por parte de la Autoridad Nacional de Licencias Ambientales – ANLA, este ICA fue radicado el 14/03/2023 a la Dirección de Saneamiento Ambiental mediante radicado 25510-22023-00279.

6.3 PLAN DE TRABAJO SGC

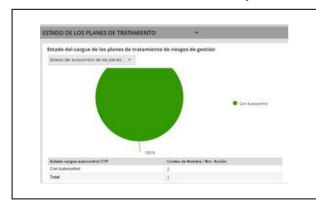
Durante el mes de ABRIL 2023 se resaltan las siguientes actividades del SGC:

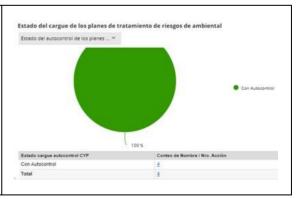
- Se realizó actualización en la plataforma Archer de los activos de información para PTAR Salitre.
 - Especificaciones técnicas de los proyectos.
 - Información de conceptos técnicos.
 - Información de contratos con procesos judiciales.
 - Información resultante de interventoría, consultoría y obra.
 - Informes con solicitudes de entes de control.
 - Informes de gestión del área.
 - Plan de saneamiento y manejo de vertimientos Dirección Red Troncal de Alcantarillado.
 - Plan Maestro de Alcantarillado.
 - Planes y registros de mantenimiento, laboratorio, operación y administración de las plantas de aguas residuales
 - Planificación de funcionamiento, inversión y mantenimiento de la DRTA y PTAR el Salitre.
 - Procedimientos Confidenciales de la Dirección Red Troncal de Alcantarillado
 - Procedimientos Públicos de la Dirección Red Troncal de Alcantarillado
 - Seguimiento Información Confidencial del Sistema Único de Gestión aplicable a la DRTA.
 - Seguimiento Información Pública del Sistema Único de Gestión aplicable a la DRTA
 - Registros con datos personales de las visitas de sensibilización a la PTAR El Salitre

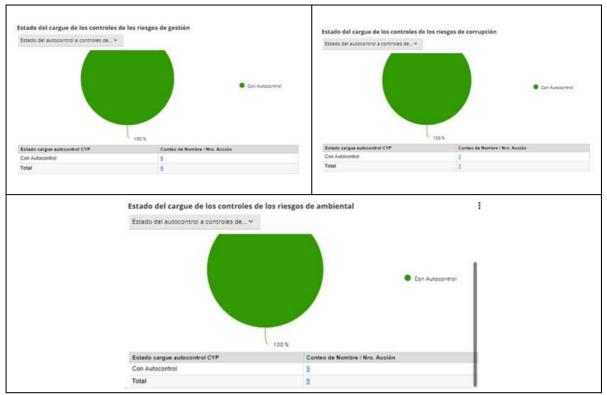
- Se realiza reunión con el área ambiental de EAAB con el objetivo de articular la Ptar Salitre con el procedimiento de vertimientos de EAAB.
- Mesas de trabajo y seguimiento sobre la Gestión Ambiental de la PTAR El Salitre Fase I y Fase II.
- Se realiza revisión documental del proceso de biosólidos.
- Se realiza actualización del instructivo de Gestión Integral del Biosólido para posterior publicación en mapa de procesos de EAAB.
- Se realiza revisión documental del proceso de mantenimiento Ptar Salitre.
- Se realiza plan de trabajo y cronograma con los cambios en el mapa de procesos.
- Se realiza actualización de Revisión por la Dirección.
- Se realiza evaluación de proveedores de los procesos involucrados para el primer trimestre del año 2023.
- Se actualiza y se sube la información a la intranet de EAAB de los indicadores para el año 2023, de los resultados del mes de abril:
 - Oportunidad en la entrega de los resultados.
 - Índice de cumplimiento de mantenimiento fase I y fase II.
 - índice de cumplimiento de plan de manejo ambiental.
 - Costo xm3.
 - Índice de cumplimiento operativo propuesto.
- Seguimiento al plan de capacitación propuesto por las áreas con el fin que sean llevadas a cabo o reprogramadas según sea el caso.
- Se realiza cargue de información en la pagina del SUI y Archer con el tema de:
 - Instructivo para el diligenciamiento de los costos de energía eléctrica, acpm y fuel oil en tratamiento.
- Se realizo revisión en el área de operaciones verificando idoneidad en el diligenciamiento documental.
- Se realiza revisión de los instructivos actualizados por el área operativa.
 - Sistemas de Cribados.
 - Operación de tornillos de elevación agua cruda.
- Se realiza revisión de los instructivos actualizados por el área control de calidad.
 - Medición de conductividad.
 - Solidos suspendidos totales.
- Se realiza actualización de la matriz legal de Ptar Salitre.
- Seguimiento a planes de mejoramiento del SUG, de autocontroles de riesgos y oportunidades y de implementación de cambios de alto impacto.
- Inducción Sistema Único de Gestión EAAB a los colaboradores de la PTAR Salitre (Contexto, política, riesgos, indicadores, PHVA, planificación del cambio, etc.), personal que ingresa nuevo a la organización.
- Archivo, gestión documental y cargue digital a Lottus de la documentación de la PTAR El Salitre.

- Seguimiento a los oficios externos, internos de Fase II, organización digital (Drive y Lottus) y física de las comunicaciones relacionadas.
- Se realiza revisión de seguimiento a los procedimientos y procesos de las diferentes áreas de la PTAR EL SALITRE, para dar seguimiento a los compromisos adquiridos, al Sistema Único de Gestión de la EAAB y al cumplimiento de la NTC-ISO ISO 9001 2015, con el identificar el cumplimiento de los requisitos de la misma.
- Transferencia documental PTAR El Salitre 2014-2017.
- Seguimiento y compilación de soportes del Plan Anticorrupción y Atención Al Ciudadano – PAAC y del Modelo Integrado de Planeación y Gestión – MIPG para la PTAR El Salitre.
- Apoyo a la gestión pre-contractual y revisión de solicitudes de contratación.
- Se complementa la información en la página de Aquarating de:
 - *Capacitaciones.
 - *Fotos de equipos, laboratorio y planta.
 - *Resoluciones aplicables.
 - *Documentos año 2021 y 2022.

6.4 AUDITORÍA Y PLANES DE MEJORAMIENTO


No se presentaron auditorías en este periodo. Se realizaron todos los reportes de planes de mejoramiento requeridos en el periodo.




6.5 GESTIÓN DE RIESGOS

Se realizaron todos los reportes de autocontroles de riesgo requeridos en el periodo:

Gráfica 6.5-1 reportes de autocontroles de riesgo

Fuente: Sistema Archer EAAB, 2023

6.6 INDICADORES

Se realiza la compilación y verificación de indicadores de la Ptar el salitre del mes de marzo 2023.

6.7 PRODUCTO NO CONFORME

Para el mes de ABRIL no se presentó producto no conforme, dando cumplimiento a los requisitos internos de la EAAB y de la licencia ambiental del programa de saneamiento del Río Bogotá.

La licencia ambiental en mención exige como concentración de salida para SST y DBO5 que sea igual o menor (≤) a 30 mg/L, por lo que estamos cumpliendo con lo requerido. Así mismo, a partir de la literatura (Metcalf & Eddy, 2003)³ y el RAS 2017 (Res. 330 de 2017) se confirma que el tratamiento secundario de aguas residuales remueve entre el 80% y el 95% en DBO₅ y SST, es decir, que también se cumple con el promedio establecido por la literatura y el RAS 2017.

Se autoriza la liberación del producto (agua residual tratada) con restricción de uso, informando todas las características del agua tratada a las partes interesadas de la EAAB a través del Informe mensual de la PTAR El Salitre en la página web, y semestralmente a la Autoridad Nacional del Licencias Ambientales -ANLA mediante el Informe de Cumplimiento Ambiental -ICA.

En caso de que se requiera que el agua tratada por la PTAR El Salitre sea utilizada para consumo humano y doméstico, preservación de flora y fauna, uso agrícola, pecuario, recreativo, industrial u otro, el interesado deberá caracterizar el agua y dar cumplimiento a lo establecido en el Decreto 1594 de 1984, la Resolución 1207 de 2014 y demás normatividad vigente.

La FAO (1999)⁴, la OMS (2006)⁵ y la EPA (2012)⁶ establecen que, para el reúso del agua residual en actividades agrícolas o industriales, es necesario un tratamiento secundario con desinfección que obtenga valores por debajo de 10 mg/L para la DBO₅.

En conclusión, la PTAR El Salitre contribuye considerablemente a la reducción de la carga contaminante del Río Bogotá, tratando las aguas residuales que provienen de la Cuenca Torca-Salitre, que corresponde a cerca del 30% de las aguas residuales de la ciudad de Bogotá⁷ y actualmente se encuentran en desarrollo los otros componentes del Programa de Descontaminación del Río Bogotá con esfuerzo y coordinación interinstitucional entre la EAAB, la CAR Cundinamarca, la SDA y demás entidades involucradas.

³ Metcalf & Eddy (2003) Wastewater Engineering: Treatment and Reuse. 4th Edition, McGraw-Hill, New York ⁴ FAO. (1999). Wastewater treatment and use in agriculture..

⁵ OMS. (2006). Guidelines for the Safe Use of Wastewater. Excreta and Greywater in Agriculture. 2006, ed., Francia. ⁶ U.S. Environmental Protection Agency (EPA). (2012). Guidelines for Water Reuse. Washington D.C., Municipal Support Division Office of Wastewater Management Office of Water

^{7 2.564,655} habitantes asentados en la cuenca Salitre – Torca (Según Censo DANE 2018).

Por otro lado, es necesario aclarar que por orden de la honorable magistrada Nelly Villamizar y en razón del incidente 070, la EAAB inició la operación de la PTAR El Salitre Fase II desde el 16/12/2021, motivo por el cual la EAAB se encuentra ejecutando la Planificación de cambios de la Ampliación y Optimización de la PTAR El Salitre (Fase II) que se encontraba formulando desde el año 2019. Sin embargo, la planta aún no ha sido terminada ni estabilizada todavía por parte de la CAR Cundinamarca. La ampliación y optimización de la PTAR El Salitre se encuentra en desarrollo mediante el Contrato 803 de 2016 entre la CAR y el Consorcio Expansión PTAR Salitre – CEPS, este último aún no entrega la totalidad de los planos as-built aprobados, dossiers, manuales, pólizas, inventario de equipos, repuestos, garantías de los fabricantes, expertos para la operación asistida y demás requerimientos del Contrato 803 de 2016 necesarios para la adecuada operación, mantenimiento y administración de la PTAR El Salitre.

7. SISTEMA DE GESTIÓN DE SEGURIDAD Y SALUD EN EL TRABAJO

El Sistema de Gestión de Seguridad y Salud en el Trabajo desarrollado en la PTAR El Salitre, consiste en la planeación, organización, ejecución y evaluación de las actividades de medicina preventiva, higiene y seguridad industrial; enfocado en preservar, mantener y mejorar la salud de los colaboradores, estimulando la formación de una cultura en seguridad y auto cuidado, garantizando conductas, condiciones, procesos seguros y saludables en el logro de los objetivos de la empresa.

A través de este Sistema de Gestión se establece el alcance de las actividades de Seguridad y Salud en el Trabajo con relación al proceso de la PTAR El Salitre, que propende la preservación, mantenimiento y mejoramiento de la salud individual y colectiva de los trabajadores para el desarrollo de sus funciones en un ambiente laboral seguro.

En la PTAR El Salitre se desarrollan actividades con el fin de prevenir o mitigar los efectos causados por los accidentes de trabajo y enfermedades laborales, dando cumplimiento a los requisitos legales y contractuales del funcionamiento de la planta.

7.1 Medicina Preventiva y del Trabajo

En el programa de medicina preventiva y del trabajo se tiene como finalidad la promoción y prevención de la salud frente a los factores de riesgo laborales. Adicionalmente, se recomienda tener lugares de trabajo óptimos, de acuerdo a las condiciones psico-fisiológicas del colaborador para que pueda desarrollar sus actividades.

7.1.1 Condiciones de salud:

Se realiza seguimiento a las recomendaciones médicas por accidentes laborales e incapacidades por enfermedad común, se mantiene las actividades contempladas en el protocolo de Bioseguridad para prevenir posibles contagios por virus o bacterias; para minimizar la incidencia de EDAs y otras infecciones.

7.1.2 Actividades de promoción y prevención:

En la PTAR el Salitre se trabaja en la conservación de la salud de los trabajadores y juega un papel muy importante en la prevención de las enfermedades gastrointestinales cuyo origen podría estar en la contaminación cruzada, para tal fin se implementaron las siguientes medidas preventivas:

Se mantiene el uso del tapabocas constantemente en todas las áreas de la planta, en el casino, se realiza control en el acceso, los colaboradores deben retirarse el overol de trabajo, la chaqueta y el casco para poder ingresar; una vez adentro, se debe aplicar gel antibacterial, mantener el distanciamiento social y consumir los alimentos en el lugar establecido para tal fin. Adicionalmente, el personal no manipula los alimentos, esto lo hace personal especializado y con los recursos suficientes para garantizar la bioseguridad y las buenas prácticas de manejo.

Fotografía 38. Control acceso casino

Ingreso condiciones de higiene en el casino

Asepsia en el casino.

Diariamente se realiza la supervisión del uso adecuado de los elementos de protección personal (EPP's), en las actividades que se realizan en todas las áreas de la planta, para ello se utiliza el formato de inspección establecido.

En el área de pretratamiento es necesario que los colaboradores utilicen la mascarilla media cara para gases y vapores, teniendo presente que se han realizado mediciones diarias para el control del ácido sulfhídrico (H2S), por parte del área de seguridad y salud en el trabajo de la PTAR El Salitre, ya que se han presentado altos niveles del mismo generando afectación a los colaboradores que permanecen en el área o realizan algún tipo de actividad y/o desplazamiento en la zona; es por ello que se requiere de la supervisión constante y entrega oportuna de los elementos necesarios para la protección del trabajador.

Fotografía 39. Control de gases y vapores

Mediciones en el área de pretratamiento. Rejas gruesas.

Mediciones en puentes desarenadores.

Mediciones en pretratamiento separadores de grasas y arenas.

Mediciones en Rejas Finas.

En el área de los cuartos eléctricos o CCM, se debe tener un control más específico, ya que el colaborador encargado de la zona es quien debe brindar el acompañamiento al personal que requiera ingresar a estas áreas, permitiendo que no se genere un peligro directo al trabajador y sea posible mitigar los riesgos asociados en los cuartos eléctricos.

La planta de desodorización no se encuentra en funcionamiento tanto en el área de pretratamiento como en el área de deshidratación, por lo cual se evidencia una disminución considerable de gases y H2S en ambas zonas, sin embargo, es importante el uso de protección respiratoria.

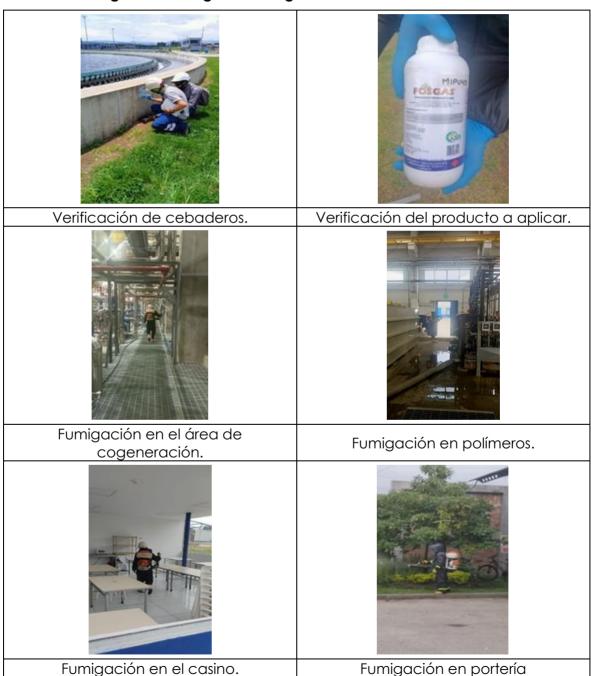
7.1.3 Manejo integral de sustancias químicas:

En la PTAR el Salitre se manejan sustancias químicas para el mantenimiento y operación de la planta, las cuales se encuentran almacenadas en contenedores de acuerdo con la matriz de compatibilidad de sustancias químicas, y se cuenta con el apoyo del personal de laboratorio para el manejo de estas.

Se siguen ejecutando y con mayor frecuencia las actividades de limpieza y desinfección de las zonas comunes de la Planta de Tratamiento El Salitre: taller, laboratorio, sala de control, edificio administrativo, cafetería y casino, esto con el apoyo del personal de servicios generales y la empresa Eminser.

Fotografía 40. Labores de apoyo por parte de la empresa de aseo Eminser en las áreas de la PTAR El Salitre.

Se mantienen las jornadas de sensibilización con el personal a fin de generar conciencia y entender la importancia del lavado de manos constante, el auto cuidado para evitar el contagio de virus, bacterias, el orden y aseo en las diferentes zonas de la Planta.


Se continúa el seguimiento de vacunación al personal según lo establecido por el gobierno nacional; así mismo, se promueve la vacunación como método de autocuidado y cuidado colectivo, teniendo en cuenta que la presencialidad es del 100% de los trabajadores, esto nos permite cumplir con las metas establecidas por el ministerio de salud.

7.1.4 Programa de fumigación:

La fumigación, consiste en la desinfección e instalación de trampas para roedores en todas las áreas de la planta y casino con el fin de evitar la proliferación de insectos y roedores; esta actividad se realiza con el apoyo del contratista Fumigación Sanidad Ambiental y Equipos S.A.S, los días viernes en horas de la tarde para evitar contaminación en las áreas de trabajo.

El uso del tapabocas en la PTAR el Salitre es de carácter obligatorio como medida de prevención.

Fotografía 41. Programa fumigación áreas PTAR el Salitre.

Fumigación en los alrededores de PTAR Salitre

Fumigación en edificio administrativo.

Fumigación en el área rejas de gruesos.

Fumigación en el área de trampa de rocas.

7.1.5 Sistemas de vigilancia epidemiológica:

En el programa de vigilancia epidemiológica se realiza seguimiento a los casos por enfermedad común los cuales son atendidos por la EPS de cada trabajador.

7.1.5.1 Fomento de estilo de trabajo y vida saludable:

Durante el periodo se implementan jornadas de pausas activas al personal operativo, permitiendo al personal salir de su rutina y evitando que a futuro existan enfermedades laborales, reduciendo el ausentismo laboral.

Inmunización al personal: Durante el periodo del presente informe se realizó la actualización de esquemas de vacunación del personal que se vinculó al proyecto, se aplicaron dosis de tétano, fiebre tifoidea y hepatitis A + B.

7.2 Indicador de Accidentalidad y Ausentismo

En el procedimiento de reporte e investigación de incidentes y accidentes laborales en el formato establecido por la empresa, de conformidad al Decreto 1072 de 2015, Resolución 312 de 2019 y los parámetros dados por la Resolución 1401 de 2007, se establecen los siguientes formatos, para dar cumplimiento a la normatividad vigente:

- Formato reporte de incidente o accidente de trabajo
- Formato entrevista de incidente o accidente de trabajo
- Formato investigación de incidente o accidente de trabajo
- Formato Acta de asistencia
- Lección aprendida A.T.

7.2.1 Ausentismo Laboral.

En el mes de abril, Para el mes de abril se presentó un total de treinta y tres (33) días perdidos por causa médica, correspondientes a: Fractura del pie, no especificada; Contusión de la pared abdominal; Síndrome de colon irritable con predominio de diarrea [IBS-D]. Las novedades que se pueden presentar son:

Las novedades que se pueden presentar son:

- Enfermedad general E.G
- Enfermedad laboral E.L
- Accidente de trabajo A.T
- Accidente común A.C
- Permiso personal PP
- Permiso Médico PM

7.3 Seguridad e Higiene Industrial

El programa de Higiene y Seguridad Industrial tiene como objetivo la identificación, reconocimiento, evaluación y control de los factores que se originan en los lugares de trabajo y que pueden afectar la salud de los trabajadores.

En el presente periodo se continúan desarrollando actividades como la entrega de elementos de protección personal, entrega de dotación al personal nuevo que ingresa al proyecto, cambio o reposición de elementos por daño o pérdida.

Fotografía 42. Actividades de entrega de dotación

Adicionalmente se da continuidad a las actividades de prevención en los siguientes temas:

7.3.1 Inducción en SST.

Con el propósito de dar cumplimiento a los lineamientos del Decreto 1072 de 2015, se realizan las inducciones correspondientes a contratistas que laboran en la PTAR El Salitre y personal nuevo que ingresa a la operación, En esta inducción se especifican las aeneralidades del SG-SST, las políticas que rigen en la empresa, reglamento de higiene y seguridad industrial, responsabilidades del trabajador frente al SG-SST, plan de prevención, preparación y respuesta ante emergencias, reporte e investigación de accidentes e incidentes laborales, identificación de diferentes conceptos referentes a seguridad y salud en el trabajo, la importancia del reporte de actos y condiciones inseguras, entre otros.

7.3.2 Programa de capacitación SST

El plan de capacitación de la PTAR El Salitre, está enfocado en todos los colaboradores y temas relacionados con la operación, mantenimiento y control de la planta, generando diferentes capacitaciones como lo son: riesgo químico, uso cuidado y mantenimiento de elementos de protección personal y la socialización de lecciones aprendidas, control de peliaros en las actividades diarias y la importancia de solicitar permisos de trabajo para tareas de alto riesgo al área de SST.

Fotografía 43. Actividades de capacitación SST

Capacitación en riesgo químico.

Capacitación en riesgo químico.

Pausas activas

Socialización lecciones aprendidas.

Socialización lecciones aprendidas.

Capacitación en riesgo quimico.

Inducción SST a personal nuevo.

Inducción SST al personal nuevo.

Diligenciamiento de lecciones aprendidas.

7.3.3 Inspecciones de seguridad

Para el año 2023, se definió el plan de inspecciones SST mediante el formato establecido, esta metodología de inspecciones ha permitido la identificación de peligros reales o potenciales que pueden afectar la infraestructura, salud y/o seguridad de los colaboradores; todo ello permite la aplicación de controles en cada uno de los peligros asociados a las actividades diarias.

En este plan se encuentran las siguientes inspecciones:

Inspección de seguridad en campo: Se realiza evaluando las diferentes áreas de la planta teniendo como objetivo mantener las buenas prácticas de orden y aseo en los diferentes puestos de trabajo, Evaluar el estado de Herramientas y áreas locativas quedando registrada en el formato establecido.

Inspección de guadañadora: Herramienta para realizar cortes de pasto a ras de tierra, formado por un juego de cuchillas o de cintas, sujetas a un mango que forma ángulo con el plano de la hoja y es accionada por un motor. El objeto de la inspección es verificar el estado del equipo el cual queda registrado en el formato establecido.

Inspección de los elementos de protección personal: Se realiza la inspección en cada una de las actividades con el fin de concientizar a los trabajadores del buen uso y mantenimiento de estos elementos, dejando registro en el formato establecido. Se mantiene control estricto frente al uso de sus elementos de protección personal.

Inspección de elementos de protección contra caídas: se realiza la inspección para garantizar que el trabajador cuente con un elemento de protección contra caídas para el trabajo de tareas en alto riesgo (trabajo en alturas, espacios confinados, trabajos en caliente); quedando registrada en el formato establecido.

Inspección de equipos para atención de emergencias: Se realiza la inspección para garantizar la disponibilidad de elementos para la atención de emergencias en la PTAR el salitre, dando cumplimiento en el sistema de gestión de seguridad y salud en el trabajo, dejando registro en el formato establecido.

Inspección de equipos de trabajo en Espacios Confinados: Trabajar en un espacio confinado es peligroso debido al riesgo de inhalar gases nocivos, los niveles bajos de oxígeno, o el riesgo de incendio y/o explosión. Otros peligros incluyen el ahogamiento o la asfixia por otras fuentes como Ácido sulfhídrico H2S u otros gases contaminantes, es por ello que la inspección de los equipos es importante para garantizar la ejecución de la tarea y quedando registrada en el formato establecido.

Inspección de vehículos livianos: es la aplicable a los vehículos que, en función de la naturaleza del servicio que realizan y/o al elemento transportado y/o en los casos en que su normatividad específica lo exija, requieren de una verificación adicional de sus características técnicas y/o mecánicas no considerada en las inspecciones técnicas ordinarias. La inspección técnica vehicular se realiza conjuntamente con el conductor. Dejando registrada la información en el formato establecido.

Inspección de mini cargador: Los mini cargadores de dirección deslizante pueden ser peligrosos si no se observan ciertas precauciones de seguridad. Las lesiones y muertes pueden prevenirse. El objetivo de la inspección es verificar el estado actual del equipo el cual queda registrado en el formato establecido.

Inspecciones control de atmósferas: Con el fin de garantizar un control en el manejo de gases y vapores se realizan mediciones en diferentes áreas de la planta en oxigeno O2, Monóxido de carbono CO, Gases explosivos, y Ácido sulfhídrico H2S. Quedando registro en el formato establecido..

7.3.4 Tareas de Alto Riesgo Autorizadas

Las actividades que representen alto riesgo al colaborador, son supervisadas y acompañadas por el área de Seguridad y Salud en el Trabajo quien determina las medidas de seguridad necesarias para el inicio de las tareas asignadas; se requiere de la medición y control de atmósferas peligrosas en espacios confinados y dotar al colaborador de todos los elementos de protección contra caídas, para el desarrollo adecuado de la actividad. Adicionalmente, se entregan todos los elementos de protección personal necesarios y se firma el permiso correspondiente según la evaluación del área de seguridad y salud en el trabajo para la actividad.

En el mes de abril se realizaron las siguientes actividades críticas.

Cuadro 7.3-1 actividades de trabajos de alto riesgo

FECHA	UBICACIÓN	ACTIVIDAD	DEPENDENCIA
1/04/2023	Clarificador 57-5	Revisar sifón	Operaciones
3/04/2023	Desarenadores	Mantenimiento preventivo de puentes desarenadores	mantenimiento
3/04/2023	Cogeneración	Flusching circuitos de refrigeración moto generador 4	mantenimiento
4/04/2023	Cogeneración	Mantenimiento correctivo Flechas al circuito de alta moto aenerador 2	mantenimiento
4/05/2023	Puentes desarenadores	Mantenimiento preventivo decantador primario	mantenimiento
	Edificios 58	Limpieza de hilaza en las telescópicas de los edificios 58.1, 58.2 y 58.3	Operaciones
7/04/2023	Puente desarenador 54-3 pretratamiento	Mantenimiento correctivo a motor del puente	Mantenimiento
	Bombas de afluentes	Mantenimiento preventivo bomba de centrifugas	Mantenimiento
9/04/2023	Trampa de rocas	Corrección de sensor puente grúa pretratamiento trampa de rocas	instrumentación
10/04/2023	Clarificador secundarios	Retiro de pértiga del clarificador 64- 4	operación
10/04/2023	Rejas gruesas	Limpieza de hilaza de rejas gruesas	operación
10/04/2023	Cogeneración	Flusching de los circuitos de refrigeración	Mantenimiento
	Rejas gruesas	Posible descarrilamiento de cadena	Mantenimiento
4/10/2023	Bombas afluentes	Limpieza de telescópicas de los edificios 58. 1, 2 y 3	operación
4/12/2023	Almacenamiento de lodos fase 1	Mantenimiento preventivo a sensor de nivel	Mantenimiento
4/12/2023		Limpieza de hilaza telescópicas 58:1-2-3	Operación
4/12/2023	Almacenamiento de lodos fase 1	Mantenimiento preventivo a sensor de nivel	Mantenimiento
	Edificios 58	Limpieza de hilaza telescópicas 58:1-2-3	Operación
	Clarificadores secundarios	Ajustar raqueta clarificador 64,12	Mantenimiento
14/04/2023	Clarificadores secundarios	Mantenimiento preventivo decantación secundarios	Mantenimiento
14/04/2023		Preventivo a motor de tajadera	Mantenimiento Electromecánico
17/04/2023	Lodos deshidratados	Revisión del sensor de la 093LT002C	Operaciones
	Bombas de carga silos	Mantenimiento correctivo y traslado de repuestos	Mantenimiento
	Pretratamiento	Desatascar las rejas gruesas	Mantenimiento
17/04/2023		Limpieza de telescópico edificio 58	Operaciones
	Cogeneración	Flushing circuitos de refrigeración	Mantenimiento
	Edificio 58.2	Limpieza de fosa de grasa del 58.2	Operación
	Pretratamiento	Limpieza de hilaza de rejas gruesas	Operación
	Edificio 58,3	Revisión de medidor de nivel	Operación
	Rejas gruesas	Limpieza de fosa reja G	Operación
	Decantador primario 57,6	Corrección de rueda por freno o rose	Mantenimiento
	Pretratamiento	Desatascar las rejas de gruesas	Mantenimiento
	Cogeneración	Mantenimiento correctivo a flushing en los circuitos de refrigeración	Mantenimiento
24/04/2023	Cuarto de bombas silos	Mantenimiento correctivo y ajuste d tomillería que soporta tolva de descarga	Mantenimiento
24/04/2023	Edificios 58 -1-2-3	Retiro de hilaza de los telescópicos de los edificios 58	Operación
	Puentes desarenadores	Mantenimiento correctivo rasqueta de grasas desarenador 54.5	Mantenimiento
25/04/2023	Clarificadores	Extracción de perdiga clarificador 64.12	Operación
	Puentes desarenadores	Retiro de residuos de los puentes desarenadores	Operación
	Edificio agua de servicio	Mantenimiento preventivo caudalímetro.	Mantenimiento
	Cogeneración	Revisión de los filtros del recinto.	Mantenimiento

Cuadro 7.3-2 actividades de trabajo en espacios confinados

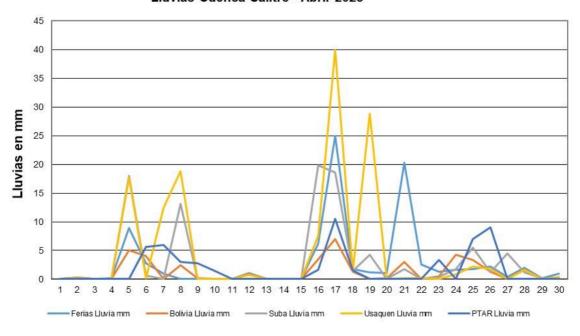
FECHA	UBICACIÓN	ACTIVIDAD	ÁREA
10/04/2023	Rejas gruesas	Limpieza de hilaza en rejas gruesas	Operaciones
10/04/2023	Rejas gruesas	Mantenimiento correctivo de rejas gruesas	Mantenimiento
17/04/2023	Pretratamiento	Desatascar cadena rejas de gruesos	Mantenimiento
18/04/2023	Rejas gruesas	Limpieza de hilaza en rejas gruesas	Operaciones
24/04/2023	Rejas Gruesas	Limpieza de fosa reja G	Mantenimiento
24/04/2023	Rejas gruesas	Desatascar la cadena rejas gruesas	Mantenimiento

Cuadro 7.3-3 trabajos con energías peligrosas: riesgo eléctrico

FECHA	UBICACIÓN	ACTIVIDAD	ÁREA
10/04/2023	Rejas gruesas	Limpieza de hilaza en rejas gruesas	Operaciones
10/04/2023	Rejas gruesas	Mantenimiento correctivo de rejas gruesas	Mantenimiento
17/04/2023	Pretratamiento	Desatascar cadena rejas de gruesos	Mantenimiento
18/04/2023	Rejas gruesas	Limpieza de hilaza en rejas gruesas	Operaciones
24/04/2023	Rejas Gruesas	Limpieza de fosa reja G	Mantenimiento
24/04/2023	Rejas gruesas	Desatascar la cadena rejas gruesas	Mantenimiento

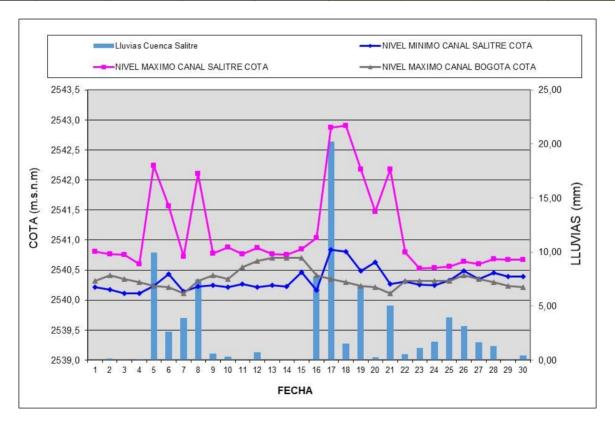
ANEXOS CAPÍTULO 3

Anexo Cap. 3_ 1 eficiencia de la planta


						٥	ATM	TPATAM	IENTO DE	AGIIAA	PESIDI	A I ES EI 6	PI ANTA DE TRATAMIENTO DE AGIJAS BESIDIJAI ES EL SAJ ITRE EASE II BOGOTA	SE II BOG	ATO:						
MES:	ABRIL	2023				1			RESULTA	DOSLA	BORAT	ORIO EAA	RESULTADOS LABORATORIO EAAB-LABORATORIO PTAR	TORIO PI	TAR						
						AN	EXO 1 -	EFICIENC	IA DE LA P	LANTA	- MUES	TRASCON	ANEXO 1 - EFICIENCIA DE LA PLANTA - MUESTRAS COMPUESTAS: (2) * 12 Horas	(2) * 12 H	oras						
	TOI	FOTALES	TOT	FOTALES			LAB	ORATORIO EMP	ABORATORIO EMPRESA ACUEDUCTO ALCANTARILLADO DE BOGOTA	TO ALCANT	TARILLADO E	ЭЕ ВОВОТА				LABO	LABORATORIO INTERNO PTAR SALITRE	RNO PTAR S.	ALITRE		
						S	OLIDOS SU	SOLIDOS SUSPENDIDO TOTALES	ALES	ā	EMANDABIC	DEMANDA BIOQUIMICA DE OXIGENO	XIGENO	SO	LIDOS SUSF	SOLIDOS SUSPENDIDO TOTALES	VLES	DE	MANDABIO	DEMANDA BIOQUIMICA DE OXIGENO	IGENO
DIA	AGUA	AGUACRUDA	AGUAT	AGUATRATADA	DIFERENCIA	AC	AT	CARGA	CARGA	AC	AT	CARGA	CARGA	AC	ΤΑ	CARGA	CARGA	AC	AT	CARGA	CARGA
	m³/s	m³/d	m³/s	p/ _E m	%	l/gm	l/gm	t/d	t/d	l/²O 6⁄u	mg O ₂ /I	t/d	t O ₂ /d	l/gm	l/gm	t/d	t/d	mg O ₂ /I	l/²O gm	t/d	t O ₂ /d
-	4,85	418673	4,86	419496	-0,20	188	9	78,71	76,19	278	17	116,39	109,26	162	12	67,82	62,79	243	20	101,53	93,14
2	4,58	395324	4,61	397970	-0,67	148	3	58,51	57,31	588	20	114,25	106,29	161	10	63,65	59,87	235	17	92,70	86,14
3	4,73	408408	4,73	408890	-0,12	160	2	65,35	63,30	285	27	116,40	105,36	177	14	72,08	66,36	228	20	93,12	85,14
4	4,62	399514	4,63	399607	-0,02	168	9	67,12	63,12	249	13	99,48	94,28	163	7	65,12	62,52	238	22	94,88	86,29
9	6,75	582928	6,54	565069	3,06	280	ω <	163,22	158,70	130	80 5	153,89	143,72	301	9 5	175,46	169,81	252	23 9	146,90	134,75
^	4.50	388965	4.51	389510	-0.14	25	r m	20.23	19.06	132	2 2	51.34	46.67	95	2 60	37.34	34.42	162	17	63.01	46,42
8	6,03	520884	5,96	515116	1,11	29	7	34,90	31,29	134	16	08'69	61,56	106	11	54,95	49,29	144	17	75,01	66,51
6	4,97	429138	4,94	426940	0,51	09	9	25,75	23,19	185	21	79,39	70,42	143	11	61,15	56,67	182	18	77,89	70,42
10	4,91	424524	5,03	435007	-2,47	99	က	27,17	25,86	177	25	75,14	64,27	138	2	58,37	56,41	225	17	95,31	88,13
= ;	4,91	424188	4,76	411065	3,09	28	9	24,60	22,14	216	9	91,62	87,51	172	_	72,75	69,87	240	12	101,81	95,64
12	5,01	432864	4,90	422966	2,29	162	o ;	70,12	66,32	281	5 :	121,63	116,56	147	80 1	63,41	60,03	212	4	91,77	84,79
13	4,67	403131	4,72	407737	-1,14	172	ξ.	69,34	64,85	294	14	118,52	112,81	163	,	65,71	62,86	241	16	96,95	90,43
4 1	4,58	395577	4,78	413164	-4,45	140	1 22	55,38	53,32	262	500	103,64	95,38	157		61,91	59,02	242	φ,	95,53	88,09
2 5	4,71	400905	4,85	418000	687-	104	\	42,32	38,39	/97	8 9	108,64	11,101	35	8 5	55,34	81,78	C\$7	20 8	35,42	84,88
16	5,30	457613	5,37	724639	-1,36	224	ω и	102,51	98,79	264	8 9	120,81	112,46	194	0 5	88,78	84,37	268	20 4	122,64	113,36
18	0,08	724555	8.20	716068	1,17	27 20	0 1	75.35	20,30 70 34	107	0 5	142.74	134.86	106	= «	76.90	72 86	100	- 4	78 98	38,07
19	98'9	592529	6,62	571932	3,48	86	4	58,07	55,78	171	8	101,32	96,75	152	12	89,77	83,19	173	8	102,51	92,50
20	6,32	545618	6,17	533114	2,29	164	7	89,48	85,75	271	15	147,86	139,87	132	10	72,02	66,96	168	15	91,66	83,67
21	6,41	553790	6,40	990255	0,13	140	7	77,53	73,66	500	12	115,74	109,11	147	9	81,13	78,09	177	12	97,74	91,38
3 53	5,48	473765	5,43	468941	1,02	184	ω σ	10028	107 53	262	£ 4	124,13	178,03	174	9	82,44	75,64	237	÷ ÷	112,28	105,48
24	5.10	440263	5,15	444702	-1.01	118	. 9	51.95	49.28	234	13	103.02	97.24	159	_	70.00	66.89	224	13	98.40	92.84
25	5,15	444677	5,16	445620	-0,21	104	6	46,25	42,24	206	12	91,60	86,26	169	7	74,93	71,81	214	14	95,16	88,92
26	5,54	478902	5,60	483866	-1,04	104	9	49,81	47,39	227	8	108,71	104,84	162	6	77,58	73,47	191	16	91,47	83,73
27	4,90	423116	5,03	434687	-2,73	176	5	74,47	72,29	262	18	110,86	103,03	172	7	72,56	69,52	227	17	95,84	88,45
28	5,13	443614	5,16	445544	-0,44	108	2	47,91	45,68	249	15	110,46	103,78	190	6	84,06	80,28	235	19	104,25	96,01
29	4,73	408912	4,77	412467	-0,87	128	_	52,34	49,45	262	6	107,13	99,30	172	7	70,33	67,45	254	8 8	103,86	96,44
34 30	4,43	382004	4,52	380380	-2,02	80	٥	64,29	G6'10	330	NZ	128,58	140,77	çç.	0	65,20	28,83	677	Ø	96,10	6,49
5																					
TOTAL		14071821,90		14033690,10				1948,97	1861,93			3251,82	3047,01			2178,85	2050,69			2861,07	2628,28
																!					
MAXIMO	8,69	751206,10	8,39	724592,50	3,54	280,00	11,00	163,22	158,70	336,00	27,00	153,89	143,72	301,00	19,50	175,46	169,81	268,00	21,50	146,90	134,75
MEDIO	5,43	4690eu,73	5,41	467789,07	0,04	137,57	6,20	16,97	62,06	735,27	14,97	108,39	76,101	11,061	9,13	72,63	68,36	208,22	16,72	95,37	19'/8
MINIMO	4,43	382663,70	4,51	389509,90	-4,45	52,00	3,00	20,23	19,06	130,00	00'9	51,34	46,67	77,50	4,50	37,12	31,64	109,00	11,00	56,75	48,42

Anexo Cap. 3_2 Lluvias Cuenca Salitre – abril 2023

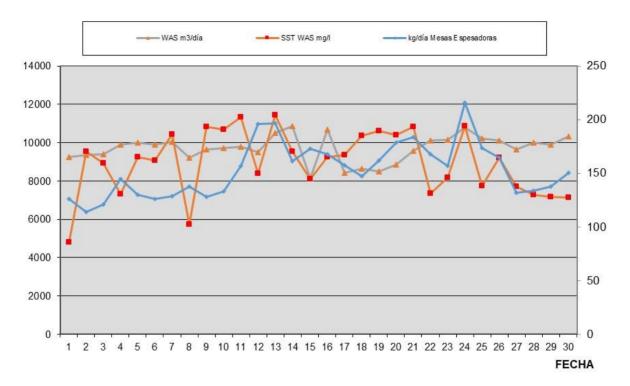
Tipo de Reporte : Lluvias Cuenca Salitre - Abril 2023


		Ferias	Bolivia	Suba	Usaquen	PTAR	PROMEDIO
Fecha	Tiempo	Lluvia	Lluvia	Lluvia	Lluvia	Lluvia	Lluvia
	•	mm	mm	mm	mm	mm	mm
1	24:00:00	0,00	0,00	0,00	0,00	0,00	0,00
2	24:00:00	0,30	0,30	0,00	0,10	0,00	0,14
3	24:00:00	0,00	0,00	0,00	0,00	0,00	0,00
4	24:00:00	0,20	0,00	0,00	0,00	0,00	0,04
5	24:00:00	8,90	5,00	18,00	17,70	0,00	9,92
6	24:00:00	2,80	4,00	0,60	0,10	5,60	2,62
7	24:00:00	1,00	0,00	0,00	12,40	6,00	3,88
8	24:00:00	0,00	2,40	13,10	18,80	3,00	7,46
9	24:00:00	0,00	0,20	0,00	0,00	2,80	0,60
10	24:00:00	0,00	0,00	0,00	0,00	1,40	0,28
11	24:00:00	0,00	0,00	0,00	0,00	0,00	0,00
12	24:00:00	1,10	0,90	0,80	0,70	0,00	0,70
13	24:00:00	0,00	0,00	0,00	0,00	0,00	0,00
14	24:00:00	0,00	0,00	0,00	0,00	0,00	0,00
15	24:00:00	0,00	0,00	0,00	0,00	0,00	0,00
16	24:00:00	6,20	3,50	19,80	7,60	1,60	7,74
17	24:00:00	25,00	7,00	18,60	40,00	10,50	20,22
18	24:00:00	1,80	1,30	1,40	1,40	1,50	1,48
19	24:00:00	1,20	0,00	4,20	28,80	0,00	6,84
20	24:00:00	1,10	0,10	0,00	0,00	0,00	0,24
21	24:00:00	20,30	3,00	1,80	0,10	0,00	5,04
22	24:00:00	2,50	0,00	0,00	0,10	0,00	0,52
23	24:00:00	1,30	0,50	0,40	0,00	3,40	1,12
24	24:00:00	1,60	4,30	1,70	0,80	0,00	1,68
25	24:00:00	1,70	3,30	5,50	2,20	7,00	3,94
26	24:00:00	2,20	1,30	1,20	1,80	9,00	3,10
27	24:00:00			4,50		0,00	1,63
28	24:00:00	2,00	1,60	1,20	1,60	0,00	1,28
29	24:00:00	0,10	0,00	0,20	0,00	0,00	0,06
30	24:00:00	0,90	0,30	0,30	0,40	0,00	0,38

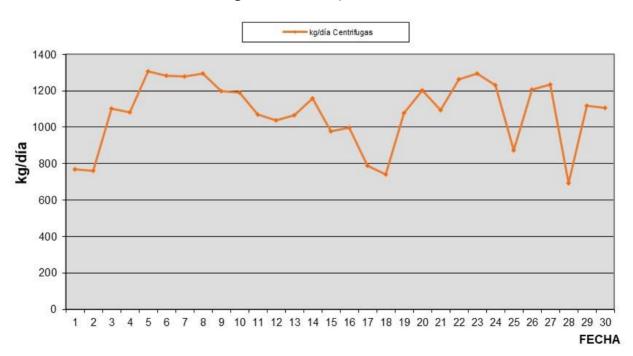
Lluvias Cuenca Salitre - Abril 2023

Anexo Cap. 3_3 Niveles lámina de agua cotas a nivel del mar del Canal Salitre Vs Lluvias Canal Aferente

		SALITRE	fase 2			BOGOT	A fase 2	
DÍA	NIVEL MINIMO	NIVEL MAXIMO	NIVEL MINIMO CANAL SALITRE	NIVEL MAXIMO CANAL SALITRE	NIVEL MINIMO CANAL BOGOTA	NIVEL MAXIMO CANAL BOGOTA	NIVEL MINIMO BOGOTA LAMINA DE	NIVEL MAXIMO BOGOTA LAMINA DE
	CANAL SALITRE COTA	CANAL SALITRE COTA	LAMINA DE AGUA	LAMINA DE AGUA	COTA	COTA	AGUA	AGUA
1/04/2022	2540,22	2540,81	3,22	3,81	2540,17	2540,32	1,87	2,02
2/04/2022	2540,17	2540,77	3,17	3,77	2540,07	2540,41	1,77	2,11
3/04/2022	2540,11	2540,75	3,11	3,75	2540,04	2540,35	1,74	2,05
4/04/2022	2540,11	2540,60	3,11	3,60	2540,10	2540,30	1,80	2,00
5/04/2022	2540,24	2542,24	3,24	5,24	2539,90	2540,24	1,60	1,94
6/04/2022	2540,43	2541,56	3,43	4,56	2539,95	2540,22	1,65	1,92
7/04/2022	2540,14	2540,72	3,14	3,72	2539,90	2540,11	1,60	1,81
8/04/2022	2540,23	2542,10	3,23	5,10	2539,90	2540,32	1,60	2,02
9/04/2022	2540,25	2540,78	3,25	3,78	2539,80	2540,41	1,50	2,11
10/04/2022	2540,22	2540,88	3,22	3,88	2540,00	2540,35	1,70	2,05
11/04/2022	2540,27	2540,77	3,27	3,77	2539,80	2540,55	1,50	2,25
12/04/2022	2540,21	2540,87	3,21	3,87	2539,80	2540,65	1,50	2,35
13/04/2022	2540,25	2540,77	3,25	3,77	2539,80	2540,70	1,50	2,40
14/04/2022	2540,23	2540,75	3,23	3,75	2539,87	2540,70	1,57	2,50
15/04/2022	2540,46	2540,85	3,46	3,85	2539,80	2540,70	1,50	2,40
16/04/2022	2540,16	2541,04	3,16	4,04	2539,76	2540,41	1,46	2,11
17/04/2022	2540,84	2542,87	3,84	5,87	2539,80	2540,35	1,50	2,05
18/04/2022	2540,81	2542,90	3,81	5,90	2539,94	2540,30	1,64	2,00
19/04/2022	2540,48	2542,18	3,48	5,18	2540,20	2540,24	1,90	1,94
20/04/2022	2540,63	2541,47	3,63	4,47	2540,10	2540,22	1,80	1,92
21/04/2022	2540,27	2542,18	3,27	5,18	2540,10	2540,11	1,80	1,81
22/04/2022	2540,31	2540,80	3,31	3,80	2540,20	2540,32	1,90	2,02
23/04/2022	2540,26	2540,53	3,26	3,53	2540,20	2540,32	1,90	2,02
24/04/2022	2540,25	2540,54	3,25	3,54	2540,20	2540,32	1,90	2,02
25/04/2022	2540,33	2540,56	3,33	3,56	2539,99	2540,32	1,69	2,02
26/04/2022	2540,48	2540,64	3,48	3,64	2539,98	2540,41	1,68	2,11
27/04/2022	2540,35	2540,60	3,35	3,60	2539,96	2540,35	1,66	2,05
28/04/2022	2540,45	2540,68	3,45	3,68	2540,08	2540,30	1,78	2,00
29/04/2022	2540,39	2540,67	3,39	3,67	2540,20	2540,24	1,90	1,94
30/04/2022	2540,39	2540,67	3,39	3,67	2540,25	2540,22	1,95	1,92


Anexo Cap. 3_4 Consumo polímero

EAAB


PLANTA DE TRATAMIENTO EL SALITRE BOGOTA

DÍA Kg/día Mesas Espesadoras REFERENCIA kg/día Centrifugas REFERENCIA 1 126 FO 4490 VHM 769 FO 4490 VHM 2 114 FO 4490 VHM 762 FO 4490 VHM 3 121 FO 4490 VHM 1102 FO 4490 VHM 4 144 FO 4490 VHM 1082 FO 4490 VHM 5 130 FO 4490 VHM 1308 FO 4490 VHM 6 126 FO 4490 VHM 1285 FO 4490 VHM 7 129 FO 4490 VHM 1279 FO 4490 VHM 8 137 FO 4490 VHM 1296 FO 4490 VHM 9 128 FO 4490 VHM 1198 FO 4490 VHM 10 133 FO 4490 VHM 1198 FO 4490 VHM 11 157 FO 4490 VHM 1191 FO 4490 VHM 12 196 FO 4490 VHM 1071 FO 4490 VHM 13 196 FO 4490 VHM 1037 FO 4490 VHM 14 161 <td< th=""><th></th><th></th><th>CONSUMOS FASE 2</th><th>2 ABRIL 2023</th><th></th></td<>			CONSUMOS FASE 2	2 ABRIL 2023	
REFERENCIA Ref		POLIMERO MESA	AS ESPESADORAS	POLIMERO C	ENTRIFUGAS
2 114 FO 4490 VHM 762 FO 4490 VHM 3 121 FO 4490 VHM 1102 FO 4490 VHM 4 144 FO 4490 VHM 1082 FO 4490 VHM 5 130 FO 4490 VHM 1308 FO 4490 VHM 6 126 FO 4490 VHM 1285 FO 4490 VHM 7 129 FO 4490 VHM 1285 FO 4490 VHM 8 137 FO 4490 VHM 1296 FO 4490 VHM 9 128 FO 4490 VHM 1198 FO 4490 VHM 10 133 FO 4490 VHM 1191 FO 4490 VHM 11 157 FO 4490 VHM 1071 FO 4490 VHM 12 196 FO 4490 VHM 1037 FO 4490 VHM 13 196 FO 4490 VHM 1037 FO 4490 VHM 14 161 FO 4490 VHM 1157 FO 4490 VHM 15 173 FO 4490 VHM 1157 FO 4490 VHM 16 168 FO 4490 VHM 976 FO 4490 VHM 17 158 FO 4490 VHM 976 FO 4490 VHM 18 147 FO 4490 VHM 743 FO 4490 VHM 19 162 FO 4490 VHM 743 FO 4490 VHM 19 162 FO 4490 VHM 1076 FO 4490 VHM 20 179 FO 4490 VHM 1076 FO 4490 VHM 21 184 FO 4490 VHM 1076 FO 4490 VHM 22 168 FO 4490 VHM 1094 FO 4490 VHM 23 157 FO 4490 VHM 1094 FO 4490 VHM 24 216 FO 4490 VHM 1297 FO 4490 VHM 25 174 FO 4490 VHM 1297 FO 4490 VHM 26 164 FO 4490 VHM 1229 FO 4490 VHM 27 132 FO 4490 VHM 1229 FO 4490 VHM 28 134 FO 4490 VHM 1205 FO 4490 VHM 29 138 FO 4490 VHM 1205 FO 4490 VHM 29 138 FO 4490 VHM 1205 FO 4490 VHM 29 138 FO 4490 VHM 1205 FO 4490 VHM 29 138 FO 4490 VHM 1205 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM	DÍA	•	REFERENCIA	kg/día Centrifugas	REFERENCIA
3 121 FO 4490 VHM 1102 FO 4490 VHM 4 144 FO 4490 VHM 1082 FO 4490 VHM 5 130 FO 4490 VHM 1308 FO 4490 VHM 6 126 FO 4490 VHM 1285 FO 4490 VHM 7 129 FO 4490 VHM 1285 FO 4490 VHM 8 137 FO 4490 VHM 1296 FO 4490 VHM 9 128 FO 4490 VHM 1198 FO 4490 VHM 10 133 FO 4490 VHM 1191 FO 4490 VHM 11 157 FO 4490 VHM 1071 FO 4490 VHM 12 196 FO 4490 VHM 1037 FO 4490 VHM 13 196 FO 4490 VHM 1037 FO 4490 VHM 14 161 FO 4490 VHM 1157 FO 4490 VHM 15 173 FO 4490 VHM 1157 FO 4490 VHM 16 168 FO 4490 VHM 976 FO 4490 VHM 17 158 FO 4490 VHM 978 FO 4490 VHM 18 147 FO 4490 VHM 743 FO 4490 VHM 19 162 FO 4490 VHM 1076 FO 4490 VHM 20 179 FO 4490 VHM 1076 FO 4490 VHM 21 184 FO 4490 VHM 1076 FO 4490 VHM 22 168 FO 4490 VHM 1076 FO 4490 VHM 23 157 FO 4490 VHM 1076 FO 4490 VHM 24 216 FO 4490 VHM 1094 FO 4490 VHM 25 174 FO 4490 VHM 1297 FO 4490 VHM 26 164 FO 4490 VHM 1229 FO 4490 VHM 27 132 FO 4490 VHM 1229 FO 4490 VHM 28 134 FO 4490 VHM 1225 FO 4490 VHM 29 138 FO 4490 VHM 1234 FO 4490 VHM 29 138 FO 4490 VHM 1205 FO 4490 VHM 29 138 FO 4490 VHM 1205 FO 4490 VHM 29 138 FO 4490 VHM 1205 FO 4490 VHM 29 138 FO 4490 VHM 1205 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM 29 138 FO 4490 VHM 1107 FO 4490 VHM	1	126	FO 4490 V HM	769	FO 4490 V HM
4 144 FO 4490 VHM 1082 FO 4490 VHM 5 130 FO 4490 VHM 1308 FO 4490 VHM 6 126 FO 4490 VHM 1285 FO 4490 VHM 7 129 FO 4490 VHM 1279 FO 4490 VHM 8 137 FO 4490 VHM 1296 FO 4490 VHM 9 128 FO 4490 VHM 1198 FO 4490 VHM 10 133 FO 4490 VHM 1191 FO 4490 VHM 11 157 FO 4490 VHM 1071 FO 4490 VHM 12 196 FO 4490 VHM 1037 FO 4490 VHM 13 196 FO 4490 VHM 1068 FO 4490 VHM 14 161 FO 4490 VHM 1157 FO 4490 VHM 15 173 FO 4490 VHM 976 FO 4490 VHM 16 168 FO 4490 VHM 978 FO 4490 VHM 17 158 FO 4490 VHM 743 FO 4490 VHM 18 147 FO 4490 VHM 74	2	114	FO 4490 V HM	762	FO 4490 V HM
5 130 FO 4490 VHM 1308 FO 4490 VHM 6 126 FO 4490 VHM 1285 FO 4490 VHM 7 129 FO 4490 VHM 1279 FO 4490 VHM 8 137 FO 4490 VHM 1296 FO 4490 VHM 9 128 FO 4490 VHM 1198 FO 4490 VHM 10 133 FO 4490 VHM 1191 FO 4490 VHM 11 157 FO 4490 VHM 1071 FO 4490 VHM 12 196 FO 4490 VHM 1037 FO 4490 VHM 13 196 FO 4490 VHM 1068 FO 4490 VHM 13 196 FO 4490 VHM 1157 FO 4490 VHM 14 161 FO 4490 VHM 1157 FO 4490 VHM 15 173 FO 4490 VHM 976 FO 4490 VHM 16 188 FO 4490 VHM 788 FO 4490 VHM 17 158 FO 4490 VHM 743 FO 4490 VHM 18 147 FO 4490 VHM 1	3	121	FO 4490 V HM	1102	FO 4490 V HM
6 126 FO 4490 V HM 1285 FO 4490 V HM 7 129 FO 4490 V HM 1279 FO 4490 V HM 8 137 FO 4490 V HM 1296 FO 4490 V HM 9 128 FO 4490 V HM 1198 FO 4490 V HM 10 133 FO 4490 V HM 1191 FO 4490 V HM 11 157 FO 4490 V HM 1071 FO 4490 V HM 12 196 FO 4490 V HM 1037 FO 4490 V HM 13 196 FO 4490 V HM 1037 FO 4490 V HM 14 161 FO 4490 V HM 1157 FO 4490 V HM 15 173 FO 4490 V HM 1157 FO 4490 V HM 16 168 FO 4490 V HM 976 FO 4490 V HM 17 158 FO 4490 V HM 998 FO 4490 V HM 18 147 FO 4490 V HM 743 FO 4490 V HM 19 162 FO 4490 V HM 1076 FO 4490 V HM 20 179 FO 4490 V HM 1076 FO 4490 V HM 21 184 FO 4490 V HM 1094 FO 4490 V HM 22 168 FO 4490 V HM 1094 FO 4490 V HM 23 157 FO 4490 V HM 1201 FO 4490 V HM 24 216 FO 4490 V HM 1297 FO 4490 V HM 25 174 FO 4490 V HM 1297 FO 4490 V HM 26 164 FO 4490 V HM 1297 FO 4490 V HM 27 132 FO 4490 V HM 1205 FO 4490 V HM 28 134 FO 4490 V HM 1205 FO 4490 V HM 29 138 FO 4490 V HM 1205 FO 4490 V HM 29 138 FO 4490 V HM 1205 FO 4490 V HM 29 138 FO 4490 V HM 1205 FO 4490 V HM 29 138 FO 4490 V HM 1207 FO 4490 V HM 29 138 FO 4490 V HM 1207 FO 4490 V HM 29 138 FO 4490 V HM 1207 FO 4490 V HM 29 138 FO 4490 V HM 1207 FO 4490 V HM	4	144	FO 4490 V HM	1082	FO 4490 V HM
7 129 FO 4490 VHM 1279 FO 4490 VHM 8 137 FO 4490 VHM 1296 FO 4490 VHM 9 128 FO 4490 VHM 1198 FO 4490 VHM 10 133 FO 4490 VHM 1191 FO 4490 VHM 11 157 FO 4490 VHM 1071 FO 4490 VHM 12 196 FO 4490 VHM 1037 FO 4490 VHM 13 196 FO 4490 VHM 1068 FO 4490 VHM 14 161 FO 4490 VHM 976 FO 4490 VHM 15 173 FO 4490 VHM 978 FO 4490 VHM 16 168 FO 4490 VHM 788 FO 4490 VHM 17 158 FO 4490 VHM 743 FO 4490 VHM 18 147 FO 4490 VHM 1076 FO 4490 VHM 20 179 FO 4490 VHM 1076 FO 4490 VHM 21 184 FO 4490 VHM 1201 FO 4490 VHM 22 168 FO 4490 VHM	5	130	FO 4490 V HM	1308	FO 4490 V HM
8 137 FO 4490 VHM 1296 FO 4490 VHM 9 128 FO 4490 VHM 1198 FO 4490 VHM 10 133 FO 4490 VHM 1191 FO 4490 VHM 11 157 FO 4490 VHM 1071 FO 4490 VHM 12 196 FO 4490 VHM 1037 FO 4490 VHM 13 196 FO 4490 VHM 1068 FO 4490 VHM 14 161 FO 4490 VHM 976 FO 4490 VHM 15 173 FO 4490 VHM 976 FO 4490 VHM 16 168 FO 4490 VHM 988 FO 4490 VHM 17 158 FO 4490 VHM 788 FO 4490 VHM 18 147 FO 4490 VHM 1076 FO 4490 VHM 19 162 FO 4490 VHM 1076 FO 4490 VHM 20 179 FO 4490 VHM 1201 FO 4490 VHM 21 184 FO 4490 VHM 1264 FO 4490 VHM 22 168 FO 4490 VHM <td< td=""><td>6</td><td>126</td><td>FO 4490 V HM</td><td>1285</td><td>FO 4490 V HM</td></td<>	6	126	FO 4490 V HM	1285	FO 4490 V HM
9 128 FO 4490 V HM 1198 FO 4490 V HM 10 133 FO 4490 V HM 1191 FO 4490 V HM 11 157 FO 4490 V HM 1071 FO 4490 V HM 12 196 FO 4490 V HM 1037 FO 4490 V HM 13 196 FO 4490 V HM 1068 FO 4490 V HM 14 161 FO 4490 V HM 976 FO 4490 V HM 15 173 FO 4490 V HM 976 FO 4490 V HM 16 168 FO 4490 V HM 788 FO 4490 V HM 17 158 FO 4490 V HM 743 FO 4490 V HM 18 147 FO 4490 V HM 1076 FO 4490 V HM 19 162 FO 4490 V HM 1076 FO 4490 V HM 20 179 FO 4490 V HM 1094 FO 4490 V HM 21 184 FO 4490 V HM 1094 FO 4490 V HM 22 168 FO 4490 V HM 1297 FO 4490 V HM 23 157 <td< td=""><td>7</td><td>129</td><td>FO 4490 V HM</td><td>1279</td><td>FO 4490 V HM</td></td<>	7	129	FO 4490 V HM	1279	FO 4490 V HM
10 133 FO 4490 V HM 1191 FO 4490 V HM 11 157 FO 4490 V HM 1071 FO 4490 V HM 12 196 FO 4490 V HM 1037 FO 4490 V HM 13 196 FO 4490 V HM 1068 FO 4490 V HM 14 161 FO 4490 V HM 1157 FO 4490 V HM 15 173 FO 4490 V HM 976 FO 4490 V HM 16 168 FO 4490 V HM 998 FO 4490 V HM 17 158 FO 4490 V HM 788 FO 4490 V HM 18 147 FO 4490 V HM 1076 FO 4490 V HM 19 162 FO 4490 V HM 1076 FO 4490 V HM 20 179 FO 4490 V HM 1094 FO 4490 V HM 21 184 FO 4490 V HM 1094 FO 4490 V HM 22 168 FO 4490 V HM 1264 FO 4490 V HM 23 157 FO 4490 V HM 1297 FO 4490 V HM 24 216 <	8	137	FO 4490 V HM	1296	FO 4490 V HM
11 157 FO 4490 V HM 1071 FO 4490 V HM 12 196 FO 4490 V HM 1037 FO 4490 V HM 13 196 FO 4490 V HM 1068 FO 4490 V HM 14 161 FO 4490 V HM 1157 FO 4490 V HM 15 173 FO 4490 V HM 976 FO 4490 V HM 16 168 FO 4490 V HM 978 FO 4490 V HM 17 158 FO 4490 V HM 788 FO 4490 V HM 18 147 FO 4490 V HM 743 FO 4490 V HM 19 162 FO 4490 V HM 1076 FO 4490 V HM 20 179 FO 4490 V HM 1201 FO 4490 V HM 21 184 FO 4490 V HM 1094 FO 4490 V HM 22 168 FO 4490 V HM 1264 FO 4490 V HM 23 157 FO 4490 V HM 1297 FO 4490 V HM 24 216 FO 4490 V HM 1205 FO 4490 V HM 25 174 <t< td=""><td>9</td><td>128</td><td>FO 4490 V HM</td><td>1198</td><td>FO 4490 V HM</td></t<>	9	128	FO 4490 V HM	1198	FO 4490 V HM
12	10	133	FO 4490 V HM	1191	FO 4490 V HM
13 196 FO 4490 V HM 1068 FO 4490 V HM 14 161 FO 4490 V HM 1157 FO 4490 V HM 15 173 FO 4490 V HM 976 FO 4490 V HM 16 168 FO 4490 V HM 998 FO 4490 V HM 17 158 FO 4490 V HM 788 FO 4490 V HM 18 147 FO 4490 V HM 1076 FO 4490 V HM 19 162 FO 4490 V HM 1076 FO 4490 V HM 20 179 FO 4490 V HM 1201 FO 4490 V HM 21 184 FO 4490 V HM 1094 FO 4490 V HM 22 168 FO 4490 V HM 1264 FO 4490 V HM 23 157 FO 4490 V HM 1297 FO 4490 V HM 24 216 FO 4490 V HM 1229 FO 4490 V HM 25 174 FO 4490 V HM 1205 FO 4490 V HM 26 164 FO 4490 V HM 1234 FO 4490 V HM 27 132 <	11	157	FO 4490 V HM	1071	FO 4490 V HM
14 161 FO 4490 V HM 1157 FO 4490 V HM 15 173 FO 4490 V HM 976 FO 4490 V HM 16 168 FO 4490 V HM 998 FO 4490 V HM 17 158 FO 4490 V HM 788 FO 4490 V HM 18 147 FO 4490 V HM 743 FO 4490 V HM 19 162 FO 4490 V HM 1076 FO 4490 V HM 20 179 FO 4490 V HM 1201 FO 4490 V HM 21 184 FO 4490 V HM 1094 FO 4490 V HM 22 168 FO 4490 V HM 1264 FO 4490 V HM 23 157 FO 4490 V HM 1297 FO 4490 V HM 24 216 FO 4490 V HM 1229 FO 4490 V HM 25 174 FO 4490 V HM 1205 FO 4490 V HM 26 164 FO 4490 V HM 1234 FO 4490 V HM 27 132 FO 4490 V HM 1234 FO 4490 V HM 29 138 <t< td=""><td>12</td><td>196</td><td>FO 4490 V HM</td><td>1037</td><td>FO 4490 V HM</td></t<>	12	196	FO 4490 V HM	1037	FO 4490 V HM
15 173 FO 4490 V HM 976 FO 4490 V HM 16 168 FO 4490 V HM 998 FO 4490 V HM 17 158 FO 4490 V HM 788 FO 4490 V HM 18 147 FO 4490 V HM 743 FO 4490 V HM 19 162 FO 4490 V HM 1076 FO 4490 V HM 20 179 FO 4490 V HM 1201 FO 4490 V HM 21 184 FO 4490 V HM 1094 FO 4490 V HM 22 168 FO 4490 V HM 1264 FO 4490 V HM 23 157 FO 4490 V HM 1297 FO 4490 V HM 24 216 FO 4490 V HM 1229 FO 4490 V HM 25 174 FO 4490 V HM 874 FO 4490 V HM 26 164 FO 4490 V HM 1234 FO 4490 V HM 27 132 FO 4490 V HM 1234 FO 4490 V HM 29 138 FO 4490 V HM 1117 FO 4490 V HM 30 150 <td< td=""><td>13</td><td>196</td><td>FO 4490 V HM</td><td>1068</td><td>FO 4490 V HM</td></td<>	13	196	FO 4490 V HM	1068	FO 4490 V HM
16 168 FO 4490 V HM 998 FO 4490 V HM 17 158 FO 4490 V HM 788 FO 4490 V HM 18 147 FO 4490 V HM 743 FO 4490 V HM 19 162 FO 4490 V HM 1076 FO 4490 V HM 20 179 FO 4490 V HM 1201 FO 4490 V HM 21 184 FO 4490 V HM 1094 FO 4490 V HM 22 168 FO 4490 V HM 1264 FO 4490 V HM 23 157 FO 4490 V HM 1297 FO 4490 V HM 24 216 FO 4490 V HM 1229 FO 4490 V HM 25 174 FO 4490 V HM 874 FO 4490 V HM 26 164 FO 4490 V HM 1205 FO 4490 V HM 27 132 FO 4490 V HM 1234 FO 4490 V HM 28 134 FO 4490 V HM 692 FO 4490 V HM 29 138 FO 4490 V HM 1117 FO 4490 V HM 30 150 <td< td=""><td>14</td><td>161</td><td>FO 4490 V HM</td><td>1157</td><td>FO 4490 V HM</td></td<>	14	161	FO 4490 V HM	1157	FO 4490 V HM
17 158 FO 4490 V HM 788 FO 4490 V HM 18 147 FO 4490 V HM 743 FO 4490 V HM 19 162 FO 4490 V HM 1076 FO 4490 V HM 20 179 FO 4490 V HM 1201 FO 4490 V HM 21 184 FO 4490 V HM 1094 FO 4490 V HM 22 168 FO 4490 V HM 1264 FO 4490 V HM 23 157 FO 4490 V HM 1297 FO 4490 V HM 24 216 FO 4490 V HM 1229 FO 4490 V HM 25 174 FO 4490 V HM 874 FO 4490 V HM 26 164 FO 4490 V HM 1205 FO 4490 V HM 27 132 FO 4490 V HM 1234 FO 4490 V HM 28 134 FO 4490 V HM 692 FO 4490 V HM 29 138 FO 4490 V HM 1117 FO 4490 V HM 30 150 FO 4490 V HM 1105 FO 4490 V HM	15	173	FO 4490 V HM	976	FO 4490 V HM
18 147 FO 4490 V HM 743 FO 4490 V HM 19 162 FO 4490 V HM 1076 FO 4490 V HM 20 179 FO 4490 V HM 1201 FO 4490 V HM 21 184 FO 4490 V HM 1094 FO 4490 V HM 22 168 FO 4490 V HM 1264 FO 4490 V HM 23 157 FO 4490 V HM 1297 FO 4490 V HM 24 216 FO 4490 V HM 1229 FO 4490 V HM 25 174 FO 4490 V HM 874 FO 4490 V HM 26 164 FO 4490 V HM 1205 FO 4490 V HM 27 132 FO 4490 V HM 1234 FO 4490 V HM 28 134 FO 4490 V HM 692 FO 4490 V HM 29 138 FO 4490 V HM 1117 FO 4490 V HM 30 150 FO 4490 V HM 1105 FO 4490 V HM	16	168	FO 4490 V HM	998	FO 4490 V HM
19 162 FO 4490 VHM 1076 FO 4490 VHM 20 179 FO 4490 VHM 1201 FO 4490 VHM 21 184 FO 4490 VHM 1094 FO 4490 VHM 22 168 FO 4490 VHM 1264 FO 4490 VHM 23 157 FO 4490 VHM 1297 FO 4490 VHM 24 216 FO 4490 VHM 1229 FO 4490 VHM 25 174 FO 4490 VHM 874 FO 4490 VHM 26 164 FO 4490 VHM 1205 FO 4490 VHM 27 132 FO 4490 VHM 1234 FO 4490 VHM 28 134 FO 4490 VHM 692 FO 4490 VHM 29 138 FO 4490 VHM 1117 FO 4490 VHM 30 150 FO 4490 VHM 1105 FO 4490 VHM	17	158	FO 4490 V HM	788	FO 4490 V HM
20 179 FO 4490 VHM 1201 FO 4490 VHM 21 184 FO 4490 VHM 1094 FO 4490 VHM 22 168 FO 4490 VHM 1264 FO 4490 VHM 23 157 FO 4490 VHM 1297 FO 4490 VHM 24 216 FO 4490 VHM 1229 FO 4490 VHM 25 174 FO 4490 VHM 874 FO 4490 VHM 26 164 FO 4490 VHM 1205 FO 4490 VHM 27 132 FO 4490 VHM 1234 FO 4490 VHM 28 134 FO 4490 VHM 692 FO 4490 VHM 29 138 FO 4490 VHM 1117 FO 4490 VHM 30 150 FO 4490 VHM 1105 FO 4490 VHM	18	147	FO 4490 V HM	743	FO 4490 V HM
21 184 FO 4490 VHM 1094 FO 4490 VHM 22 168 FO 4490 VHM 1264 FO 4490 VHM 23 157 FO 4490 VHM 1297 FO 4490 VHM 24 216 FO 4490 VHM 1229 FO 4490 VHM 25 174 FO 4490 VHM 874 FO 4490 VHM 26 164 FO 4490 VHM 1205 FO 4490 VHM 27 132 FO 4490 VHM 1234 FO 4490 VHM 28 134 FO 4490 VHM 692 FO 4490 VHM 29 138 FO 4490 VHM 1117 FO 4490 VHM 30 150 FO 4490 VHM 1105 FO 4490 VHM	19	162	FO 4490 V HM	1076	FO 4490 V HM
22 168 FO 4490 VHM 1264 FO 4490 VHM 23 157 FO 4490 VHM 1297 FO 4490 VHM 24 216 FO 4490 VHM 1229 FO 4490 VHM 25 174 FO 4490 VHM 874 FO 4490 VHM 26 164 FO 4490 VHM 1205 FO 4490 VHM 27 132 FO 4490 VHM 1234 FO 4490 VHM 28 134 FO 4490 VHM 692 FO 4490 VHM 29 138 FO 4490 VHM 1117 FO 4490 VHM 30 150 FO 4490 VHM 1105 FO 4490 VHM	20	179	FO 4490 V HM	1201	FO 4490 V HM
23 157 FO 4490 VHM 1297 FO 4490 VHM 24 216 FO 4490 VHM 1229 FO 4490 VHM 25 174 FO 4490 VHM 874 FO 4490 VHM 26 164 FO 4490 VHM 1205 FO 4490 VHM 27 132 FO 4490 VHM 1234 FO 4490 VHM 28 134 FO 4490 VHM 692 FO 4490 VHM 29 138 FO 4490 VHM 1117 FO 4490 VHM 30 150 FO 4490 VHM 1105 FO 4490 VHM	21	184	FO 4490 V HM	1094	FO 4490 V HM
24 216 FO 4490 VHM 1229 FO 4490 VHM 25 174 FO 4490 VHM 874 FO 4490 VHM 26 164 FO 4490 VHM 1205 FO 4490 VHM 27 132 FO 4490 VHM 1234 FO 4490 VHM 28 134 FO 4490 VHM 692 FO 4490 VHM 29 138 FO 4490 VHM 1117 FO 4490 VHM 30 150 FO 4490 VHM 1105 FO 4490 VHM	22	168	FO 4490 V HM	1264	FO 4490 V HM
25 174 FO 4490 V HM 874 FO 4490 V HM 26 164 FO 4490 V HM 1205 FO 4490 V HM 27 132 FO 4490 V HM 1234 FO 4490 V HM 28 134 FO 4490 V HM 692 FO 4490 V HM 29 138 FO 4490 V HM 1117 FO 4490 V HM 30 150 FO 4490 V HM 1105 FO 4490 V HM	23	157	FO 4490 V HM	1297	FO 4490 V HM
26 164 FO 4490 VHM 1205 FO 4490 VHM 27 132 FO 4490 VHM 1234 FO 4490 VHM 28 134 FO 4490 VHM 692 FO 4490 VHM 29 138 FO 4490 VHM 1117 FO 4490 VHM 30 150 FO 4490 VHM 1105 FO 4490 VHM	24	216	FO 4490 V HM	1229	FO 4490 V HM
27 132 FO 4490 VHM 1234 FO 4490 VHM 28 134 FO 4490 VHM 692 FO 4490 VHM 29 138 FO 4490 VHM 1117 FO 4490 VHM 30 150 FO 4490 VHM 1105 FO 4490 VHM	25	174	FO 4490 V HM	874	FO 4490 V HM
28 134 FO 4490 V HM 692 FO 4490 V HM 29 138 FO 4490 V HM 1117 FO 4490 V HM 30 150 FO 4490 V HM 1105 FO 4490 V HM	26	164	FO 4490 V HM	1205	FO 4490 V HM
29 138 FO 4490 VHM 1117 FO 4490 VHM 30 150 FO 4490 VHM 1105 FO 4490 VHM	27	132	FO 4490 V HM	1234	FO 4490 V HM
29 138 FO 4490 VHM 1117 FO 4490 VHM 30 150 FO 4490 VHM 1105 FO 4490 VHM	28	134	FO 4490 V HM	692	FO 4490 V HM
	29	138	FO 4490 V HM		FO 4490 V HM
31	30	150	FO 4490 V HM	1105	FO 4490 V HM
	31				

Total	4601,41	32495,26	
Medio	153,38	1083,18	
Mini	113,82	692,43	
Maxi	216,00	1307,93	

kg/día Mesas Espesadoras

kg/día Centrifugas

Anexo Cap. 3_ 5a balance consolidado de sólidos planta el salitre ampliada y optimizada – abril 2023

	П			88	24	22		82	<u>.</u>]	9		2 2	1	88	99	30	22	22	9	22	1	ı	22	2	2.5	-	98	- 65	8	-		П	7	22	
			dfa v/dfa	106,68	76861	1162	78.89	134,48	+	+	180.78	t	18	127,5	7031	1182	145.5	H	139,46	+	6101	121	1001	1437	701	136.2	1387	7201	1192	160	107.5	H	6861	135.72	78.89
		CugaST	Kg5Wm3.din	1,33	2.51	19"1	1,06	1.83	2.23	1,72	213	8	(6.1	1.69	(8'1	1.99	1,72	0671	8.	2.19	201	8	160	1,84	681	8271	76'1	1971	1.75	1.12	1,51		2.51	17.77	1.06
	region		KgMS/m3	1,94	3.63	212	1,44	2.45	3.27	2.53	329	212	12	2,33	244	217	2.65	2.42	2.54	3.14	100	2.21	273	2,61	2.62	2.46	2,53	2.42	217	1,44	961		3.63	2.47	1.44
	Bombeo a digestión	S.	100	32.8	9(0)	100	38.0	42.8	83.8	41.9	24.0	5.02	38.1	39,4	6(0	35.8	39.0	43.2	41.6	660	000	0.00	47.2	44.6	809	39.8	44.0	575	40.2	25.4	197	H	09'09	41.76	25.40
	B	ts .	100	480	87,6	52.6	35.3	57,3	79.0	+	84.4	t	49.7	54,4	55.4	48.9	60,0	H	59.1	+	107	41.4	0.89	63.4	60.5	55.0	185	553	49.8	328	45.8	I	87.60	58.30	32.80
		% Emisdo Digestión	8	100,00%	500001	500001	100,00%	100,00%	500001	900001	9000001	900001	900001	900001	%00'001	500001	100,00%	%00'001	100,00%	900'001	900001	900001	500001	900'001	%00'001	500001	%00'001	500001	500001	900'001	500001		-	-	-
		Volumen	m3/dia	2223	2271	2210	2235	2347	2270	2250	2142	2333	2329	2353	2413	2429	2426	2412	4	4	1107	2356	2308	2362	2373	2458	2390	2398	2395	2414	2347		2458	2333	2142
		SSV WAS	l o	3,56	989	6,48	529	6.71	+	+	428	+	٠	6,12	8.50	7.05	6,46		-	+	190	٠	5,40	80'9	262 1	829	689	893	5,43	522	534	Ц	18'6	6.64	۰
	ope	18 N/S	700 700	38 4,82	12 9.54	B 894	9301 7,31	Н	9902 907	+	9204 524	٠	t	9508 838	00501	0880	90 8,10	Н	╛	22 10.35	+	۰	10106 734	10153 8,16	97 10.85	124	13 922	11 222	727	2.16	10338 7.14	H	000	968 160	
	Clarificados Rechazado	WAS 3 Total	m3/dia	2962 9238	1232 933	201 9405	Н	Н	+	+	3107 9204	٠	╀	28.05	3300 105	3450 108	Н	Н	+	2895 8627	70.00	╀	3402 101	3311 101	26201 2650	3400 10304	3307 1011	31.88 96.41	3291 10000	3200 9900	103	H	37.50 1.0880.00	3227 9703.94	1
	Cariffor	WAS 2 W.	m3 Vlin m3	3011	3020	3103	3251 33	Н	+	3350 3	3119 3	t	t	3432 20	3650	3750 35	Н	Н	1	+	7 6787	t	3427 34	H	3,000	3603 34	3603	3324 31	3545 32	3550	3643	H	3750 37	3268	H
			-	H	H		Н	Н	+	+	+	╀	+	┞	Н		Ц	Н	4	+	+	╀	╀	⊦	Н	H	H	33	┞	H	Н	Н	Н	L	2000
		w.vs.	m3/d/a	3354	3126	3100	H		3300	t	2978	t	t	H	3550	H	3150	H	1	2905	t	t	-	H	3000	3301	3304			3150	33	H	3680	H	ŀ
		Flujo Recir cultudo	\$	35	æ	83	32	33	4	_	9 8	ļ	ļ	L	83	- 54	- 51	Ц	4	1	R	5	66	32	65	83	60	95	83	25	19	Ц	10	8	×
		Muld		224719	229135	Н	207445	Н	+	+	208380	+	٠	211888	211841	Н	207094	Н	+	+	110366	+	235568	229369	232870	235211	236025	238004	234714	233660	234845	Ц	238004	219181	190,089
			0 SSV(p1)	069	698	Н	625			+	10.62	╀	╀	H	18/9	Н	Н	Н	4	+	300	╀	5.84	6,32	4,47	5.04	6.74	203	585	654	522	Ц	=	2	-
		RAS 3	SST(91)	9,48	267	8.66	8.03	831	7,81	10.54	14.4)	88.6	6.6	96%	830	9679	9.30	8.82	10.05	9.75	970	8 I S	2.76	8,42	603	6,64	600	9,41	7.83	8.60	160	Ц	7	6	¢
		*	m3/dia	L			Ц				1	1	1	L		L	L	Ц			1	1	L			L		L	L			Ц	L		
				74523	Н	Н	Н	Н	+	+	70741	+	۰	۰	67132	Н	Н	Н	-	+	16331	┿	78927	27494	Н	23809	78317	80511	77645	76875	77214	Ц	80511	73392	44423
	Retornado		(f) SSV(g1)	528	521	527	6.21	6,43	4	+	2.18	╀	+	H	552	Н	Н	Н	4	+	990	╀	6.02	⊦	552	5,88	1.73	91'9	6,48	596	4/10	Ц	=	0	9
	Clarificado res Retornado	RAS 2	SST(g1)	7,44	7,23	810	8.75	8.94	937	7,33	838	2.19	8.14	9,54	2,63	828	8.08	7,62	12.94	14.77	100	10.05	8.34	887	2,55	7.87	10,73	8.56	8.84	834	6.20	Н	51	6	4
2023	Cla		m3/din	_	3	7	5	8	2		2 2		2	2	2	- 4	_	0	_	3		- 2	_	-	9	9	-	9	9	20	_	Н	2	4	×
ABRIL			0,1	19082	Н	71664	Н	69268	+	+	63630	۰	t	H	21232	21222	Н	Н	+	+	2661	t	t	H	28286	280.00	7817	22236	22565	77375	10122	H	81057	73557	25/219
IZADA.			(A) SSV(gA)	9708	208	5.22	Н	7,82	4	+	989	╀	╀	⊦	200	Ц	8.02	Н	4	+	91.9	╀	╀	⊦	868	000	6 7,58	109	472	482	4.38	Н	22	0	-
PIIMN		1878	SST(g/l)	96'9	2,19	2,06	9,41	10.91	11.30	17,10	980	10.31	2.05	9.78	22,77	7,29	10.36	200	2,36	10.14	100	2.61	5.62	10%	8.23	8.39	10,46	8.42	6.41	6.42	163	Н	12	6	4
ADAY			m3/dia	35	52	13	33	16	35	70	737036	8	63	28	22	4.0	39	63	92	10	200	2	90	61	3.5	99	36	88	90	01	3.0	H	30	32	3.0
AMPLI	Ц	Pechs	L	76135	2 26362	3 71013	4 68533	72191	5 72335	71004	73709	0 22718	t	72887	3 72977	14 72549	5 66339	6 73163	7 73415	+	7897	t	22 77850	t	7887	25 79365	29536	85262 23	28 79305	9 29410	30 80530	Н	30 80530	16 74432	66339
ALITRE	kdi		,g	L			H					ŀ	l	L		Н				+	t	t	ŀ	H		H			H			H	H	H	
PÁGINA 1 ANTA EL S	Beeden & kds	Volumen loab espesialar es Fia e	m3/dia	1140	1152	7411	1133	1080	0601	0801	1056	1174	1200	6811	9501	1052	1080	7601	1072	108	0801	1075	0601	1082	\$801	1052	6901	\$201	1080	2601	1801		1200	5601	1025
NA PA		Estracción 45 - 48	Em3	۰	0	0	0	0	0	0	0	0		۰	0	0	0	0	0	0		۰	0	۰	0	0	0	0	0	۰	0		0	0	c
sóuno	Decamacioin Fase I	Estracción 4,1 - 4,4	m3	۰	0	0	0	0	0	0	0			٥	0	0	0	0	0	0			0	٥	0	0	0	0	0		0	Н		0	
DO DE	Decaute		Emi	_	_										^			0									_					H	-	_	
SOLIDA	_	N TOTAL	m	ľ		0	Ĺ	0	9				ľ	ľ	0	0	_	0	٩					ľ	0	0	Ľ	0		0	0	Ц	Ĺ	_	0
E CON		Estracción S8,3	Emi	1272	1486	15:21	1358	1227	1133	340	9111	1482	1409	1011	1536	1516	1482	1451	1407	1281	971	1642	1483	1680	1091	1567	1475	1911	1495	1478	1509		1781	14.0)	1093
PÁGINA 1 - BALANCE CONSOLIDADO DE SÓLIDOS PLANTA EL SALITRE AMPLIADA Y OPTIMNIZADA - ABRIL 2023		Estracción SS 2	Emi	1436	1576	13.22	1336	1300	13.56	1302	6211	1343	1886	664	1480	1488	1454	1409	13.38	8291	1000	3.5	1436	8791	1587	1497	1453	1430	1454	1467	1425		82.91	1436	999
ANEXO - I		Estracción S8,1	Emi	1510	9681	1310	1408	1308	1436	1391	1516	66.5	438	860	1557	1530	1512	1439	1465	1923	2/10	1652	5151	9891	1647	1528	1478	1568	1651	1523	1531	H	1923	1496	860
A		W 58.3 Ex	2	24.6	Н	Н	Н	Н	340	4	+	126	╀	₽	Н	14.8				12	_	L	H	91	Н	49	L	186	L	3.7	5.7	H	9090	_	-
		W58.2 W	2	16,5	1	Н	2,8	Н	4	+	4	218	1	2,6	Н	4		П	43.1 5	т	_	٠	٠	2,5	Н	26.7	┝	14.6	┝	5.4 3	Н	H	43,13	_	22
		A 1.8. W	2	H	Н	Н	Н	Н	261	+	+	9.61	٠	┢	Н	Н	Н	Н	ч	0.6	╊	٠	۲	27	Н	291	Н	17.2	┝	60	Н	Н	40.86	13.72	۰
		TOTAL	Bondin	67,2	36.7	747	27,0	29.3	85.4	59.1	20.8	888	16.6	20.6	25.9	26.4	52.7	58.7	120.5	333	30,7	10.5	48.2	3.4	40.0	483	76,6	47,4	43	10.0	10.7	H	130,48	45.15	۰
	FreeII	Estracción Total	Emi	4207	41.58	4231	41.02	3838	30.54	40.33	3809	0.00	(39)	36.25	4564	45.43	4143	6002	420)	5381	00.00	15.80	4135	5013	25.80	4593	4106	6015	5143	4168	4807	Ħ	5381.44	⊢	۰
	December on Free I	87,6 B	Los	40,0	8.7	38.8	15.0	1.2	000	1.63.1	0.001	3.5	3.0	18.7	681	3.5	14.5	38.1	1.00	3,1	010	2.2	88	2,5	5.2	5.8	41.6	998	61	8.2	2.0	Н	Н	22.69	t
		in		37.5	1'9	33.7	39,3	41,4	000	46.2	500	444	3.0	32,0	281	35,4	5.6	33,4	78.6	90	000	9	69	E	30.0	89	91	0.5	=	61	130	Н	H	H	ŀ
		57,5	16	ľ	ĺ	3	É	4	9	ti.	1	1			ĺ	3		3	7.	ľ	ľ		ĺ		3	ĺ	3		ľ	ĺ	ľ		78.62	22.56	0.54
		57,4	16	37,1	3,9	36.2	6,4	16.4	51.3	15.5	57.0	21.6	0.9	3,9	4,8	0.01	32.5	33.6	62.8	1.5	98.3	16.3	49.7	8,4	6'02	38.3	42,1	6,8	0.9	4,4	9'01	H	62.81	22.00	100
				1.6	42.7	37,4	2.0	6.2	420	39.7	870	450	1	120	3.5	7.5	27,5	19.3	66.2	52.6	27.4	2.2	37,7	27	2.4	32.9	181	34.4	1.0	10.5	60	H	H	H	┞
		57,3	0												L																		66.15	21.64	0.85
		57,2	16	37,4	38.0	29.5	7.8	4.1	41.0	189	910	99.3	30.6	6.8	2.6	6.7	30,7	33	57.9	7.1	260	22	33.5	F	25.2	98	349	33.8	60	14	0.8		57.91	21.10	0.83
		-	_	31,8	173	35.8	8.5	22.7	7	13.4	5,000	4.6	61	120	19.2	6.6	31,5	35.8	143	11.5	380	0.1	4.3	8,1	2.7	35.2	40,2	101	6.0	0.8	1,4	H	92	H	H
		57,1	20	ı	ı	П	ı		1	1	1		ĺ		ı	Ш		П	ı	1	1		1			Ì				ı	l		49.86	150	0.83
		Pochs	L	H	H	Н	Н	Н	+	+	+		$^{+}$	H	Н	Н	Н	Н	+	8	6 00	t	H	H	Н	H	H	Н	H	H	Н	Н	om jojim	ŀ	Omjejm

Anexo Cap. 3_5b balance consolidado de sólidos planta el salitre ampliada y optimizada – abril 2023

		roduction Magas	all biogas ill	6684	999	6262	020	(00)	1003	CMC	2005	0.000	2112	9119	120	1287	1029	180	7400	000	0228	868	1003	502	5400	6006	6885	1283	1000	900	700	01.0000	0400	11.0000	
		£	de a	303	303	34.3	500.7	828	37.5	43.1	3			NIX.	313	32.1	880	818	222	SW:	187	87.8	6119	530	47,7	383	34.8	XTX.	980	300	39,3	1	2075	95.95	
		Sidentia Brancico de NIV	y	35,41%	20,176	95839	66,50%	59,15%	40,75%	B, 50%	41,00%	4	N. 165	40 (00)	00,73%	26,19%	25,07%	20,17%	40,91%	55,03%	46,65%	68,789	80,450%	57,31%	54,85%	25,40%	47,000	8/8/8	45,57%	G. N. W.	Ti offis	1	0.72	0.51	
		žķ.	H	600	010	130	000	010	0,10	0.12	3			6	100	110	0.12	110	+	010	+	0,10	6000	0.11	-	0.10	613	20	27	710	orto	1	0.12	110	
		Cucros	1283	450	1634	4884	9899	403	2227	5005	4001		NI S	4000	47.26	1000	2036	4500	4557	900	91.0	475	4818	202	4000	4053	38.86	1000	44.08	g go	877	1	701600	4887.12	
		-	Print	150	070	890	050	9570	0.52	U.SK	88		1	150	150	950	650	0.63	850	250	1500	650	950	050	0.54	0.54	2900	950	010	640	000	1	0.70		٠
		Restruieso de Birabacko	Period	0.68	69.0	94.0	24.0	510	890	0.68	990	3010	1	100	92.0	0.13	990	010	010	010	89.0	0.83	0.73	010	0.72	0.72	910	890	180		110	1	0.82	+	t
	Specific 72,5	à	P Is	1"	207	20%	10.4	17.0	10.1	21.4	2		SX.	180	1.77	17.6	35.X	16.6	18.4	17.0	941	188	180	1538	180	17.6	22.2	10.4	100	2	IND	1	25.50	18.57	
	dge	ts E	1 or	7.82 36.8	77.8	118 82.8	\$705 OK	178 31.1	31,3	30 37,	10.			00.	73.	171 32.3	48.4	818	73 31.5	N. S.	32.0	0.28	7.8 88.6	31.4	30, 33, 2	X2 X2,7	35,8	000	×	1.0	.91 X2.0	$\frac{1}{2}$	800 43.40		
		AOV BDCCOSH	regi	H	472	197	517	187	489	100	979	197		94.0	523	514	978	517	199	989	ť	187	181	442	439	424 7	1663	46.2	100	*	999	1	84600		00,100
		otinia G	13.002	100	30.1		188	-	77.1		10.		,,	,	30	_		9	1,29	173	9 9	-		*	2	101	9		<i>y</i> .	101	0,50	1	t	t	t
		St.	Kg SVnS.dx	-	-	-	8	17	1.4	0.07	1		1			-	-	-	-			-	-	CCB	0.92	1,0	-	-	=	3	88		1.08		ļ
		arga volicei ca	a STreet d'a	150	2,87	1,53	517	1,75	2,11	143	9/	8	97	1	1.76	1,52	183	1,73	1303	2,48	188	957	1,556	1,20	1,27	1.44	1,67	65	142	300	1.17		2.87	193	
		A Carp.	,	20,40%	20,78%	8000	#50 X	FLR2%	10,12%	M, 15%	2.54%	200	9	200	BCO4%	17,57%	1.5%	F,91%	RCON	P. Ton.	2112	16 50m	18.18%	11,44%	12,13%	14,58%	N, 48%	N 42%	0 K40	H, 20%	H, 87%	1	0.00	910	
				Ļ	L	⊦	H	H	Н	+	4	+	+	╀	╀	H	u	Н	4	4	╀	L	22	Н	_	_	Н	4	4	+	+	$\frac{1}{2}$	L	Ļ	ļ
		Digition	ab/da E	453	699	907	447	418	366	NIS	200			100	435	427	416	453	423	1	358	396	507	259	288	358	707	100	200	240	349		411	╀	
		Production biggs	nd biogas d				l						l							l							ı	ı				0	0 0	0.000.01	
		£	de	46.7	47.4	686	200	47.1	46.9	43.1	4005	×	200	107	42.2	43.2	103	980	42.2	5 1	210	907	400	39.6	36.9	33,5	38.2	948	87.4	27.4	57.5	1	53.52	41.62	
		Skienda Innoctób de NIV	y	41.93%	48,79%	40799	43700	25,52%	30000	0 X 1 20	TO Same		Series .	40 87%	26.25%	24,62%	67,28%	45,57%	43,91%	Siton	41.74%	420,07	\$4,01%	50,50%	41,05%	SOLDING	\$2,07%	11,110	4176%	807.102	47,28%	1	0.71	0.47	0,0
		AGN / B	ĺ	0,106	0010	0.103	0,100	5600	Н	+	+	3000	900	nin	۰	0110	0(120	0.114	+	5000	+	8600	0.094	CUIS	0.114	0.117	O.I.I.S	0131	0(10)	+	0,109	1	0.13	0.10	4
		Syderidal	1283	8136	6755	2005	5483	2018	5005	5876	5020		8100	7000	2005	1888	2396	9009	1109	0000	STRI	8166	1096	5164	5003	4870	4879	4880	1 1	200	2202	1	6142.00	-	
			PYYOR	H	22	27	187	15	Н	+	0,50	1	1	120	2	19	88	.01	+	2000	$^{+}$	95	33.		-	0.57	8	2		9	8	1	0.71		
		Resilente de Eliminados	H	H	00'0	2	7	y.	Н	+	+	1		╀	,	15	9	0	+	+	+	27	ř	0.70	-	0,72 0,3	ت پ	0,68	=	1	1	1	Н	٠	4
		ă.	PYSIGH	ON OLEM	90	94	0.0	23 0.7	13 0.68	24 0.68	0,68			0.0	20	4.3 0.7	930 85	0.0	24 0.70	13 0.70	90	91	0.0	28 0.7	3.5 0.7	1.1 0.7	26 0.7	34	80	100	0.7	1	26.20 0.82	2140 0.7	
IL 2023	Sgrace 72,2	ti	1/3	355.6	37.4	87.4	500	59.4	36.9	38.6	186	4		1	353	37,9 2	41.X	69.0	39,2	34.0	101	184	10.4	368	38.7	37,3 2	38.0	184	100	4004	400	1	61.80	27.44	
A - ABR	gg	Ę.		7.02	1,86	7,22	181	7,568	7.87	7,88	1,334		2	183	7.82	7,82	670	7,70	7,83	7,92	7.89	192	181	730	7,83	7.84	107	197	180	61.1	RGGS		SOU	7.80	
INIZAD		AOV TECODE	regt	543	534	655	106	534	567	\$15	200	4	949	an	129	612	-11	859	575	24	195	085	537	503	573	572	553	205	818	5000	374	1	711.00	39198	
YOPTIN		Orga valentea	Mac Syrind all	0,TO	1,28	100	69'0	160	1,15	0,07	138	2010	180	700	100	030	660	1,11	000	92	0.00	100	81'1	1.13	1.19	1,20	1,15	007	9071	CL CB	9670	1	138	101	0000
NEXO - BALANCE CONSOLIDADO DE SÓLIDOS PLANTA EL SALITRE AM PILADA Y OPTIMNIZADA - ABRIL 2023		agu valenica. Ong	Kg STrn3.db Kg	101	587	20	991	22	(9)	4.5	100		2 2	100	31	13	83	19	07	2 2	- 14	22	29	99	99	65	2	1.4	20	10	n		208	141	
LITRE AN		ė	Xg ST	ŀ	ŀ		ŀ	,	Н	1	1	1	-	1			-	-		1			-	_	1	,		1	-	6	-		ŀ	ł	ł
ANTAELSA		ell Distributio		13.23%	H	18,98%	11,47%	12,419	Н	+	1	1	INTO I	11.844	ł	13,00%	14,43%	Н	+	+	11070	14.83	14,859	1830	-	-	15024	183	+	+	SVOV		0.18	L	l
S PLAN		Digrace B	needa	707	289	33	350	191	293	310	100		8	100	325	318	350	565	XIX	200	╀	800	54.8	347	_	_	350	300	4	4	368		424	╀	
ÓLIDO		P. P. P.	9	ŀ	~	~	-	r	9		×	1	1	1	-	=	18	91	=	2	20	~	22	23	24	25	32	2	×	1	20		30	╀	+
O DE S		Produción Bogas	ra3 bogard	5032	6009	9755	8959	6758	6966	6170	5000	1000/	907.	7117	88.15	8527	1896	8948	8373	7840	8500	1925	1856	0261	8111	5507	(62)	1818	100	9779	6721	0101010	9681	7577.00	2000
OLIDA		£	dis	82.0	48,1	175	689	989	2777	46.2	40.7	550	100		202	40.2	42.1	5777	43.3	40.1	111	41.1	42.7	42.0	38,2	40.8	44.0	44.0	640	6470	44.3	1	54.13	48.46	
SCONS		Remotion de NIV	,	3521%	83,76%	345	£	40,000	36636	33,74%	4,28%	20100	2 XXX	100700	,	23,000%	46,40%	80768	50,00%	W.T.S.	STOLE STOLE	9.	0	315	42,46%	32,70%	\$2,00%	41,55m	É	#CMOR	40700	1	0.71	t	t
TANCI		, a	H	H	-	7	2	0 40	Н	+	7	2	3	1	t	H	97 0	90	20	8	177	2	9	89 8	-	_	2	ÿ.	3	t	t	1	H	╁	t
X0 - B/		d AGNUTAC		0.116	0,00	0,0	8	O.D.	21'O	O, IIS	8			100	0.05	0,129	0,0	0.0	O. II	0	D I	8	0.0	α v	O, ES	0,00	O, EL	2	0.0	3	O, ET	-	0.14	╀	ļ
ANE		Acatralia CaCOS	1287	5019	7152	6199	1669	6990	7112	1909	7433	1		0074	2100	1003	1963	0000	1001	1360	1897	8900	1870	1889	5500	5846	5802	57.87	0519	4317	2066		753900	203399	4
		and di acid	PATEN	0.58	0.51	09'0	0.66	1933	0.57	0.58	0.58			69.0	0.62	0,56	0.50	0.60	10.54	0.50	050	0,56	0,56	0.43	0,60	0,64	0.50	150	1910	ign	0.57		0.67	85.0	
	72.1	Resinion d Binistics	Priving	Ores	00'0	0,76	0,74	0.75	8970	0.68	0,66	1	I	12.0	0.74	0,73	0.66	0,79	0,70	0,10	D. CO.	0.82	0.73	0.70	0.72	0.72	0,76	390	181	1	EL II	1	0.82	0.72	
	distance 72,	à	18	288	220	297	02.7	288	25.5	25.8	W.		100	100	268	250	22.2	202	21.1	027	254	240	25.4	25.5	246	27.1	767	14.5	- 52	+477	23.4]	2830		
		ts E	10	£23 49.4	92 43.2	31 44.0	04 48.7	074 47.0	677 68	01	9870			0 47	537 057	82 44,5	70 44.5	1,5 44,2		96.0	+	91 42.X	157 10		602 405	80 42.5	00 99	90	41.2	4	96	1	8.23 59.40		
		MOV HECOSH	raci	۳	7,7	7,7	18	125	Τ,	1,0	1	1	020	T	ľ	1-	. 48	F	7	7	T	8 8	1,7	1.	1	1-	SCO 7,0	-1	101	1	1	1		813.48 7.8	Ľ
																								ш			ш	-1	П	ı	П	1		181	
		a Carpavelinica	A KgSver3da	190	177	0.70	100	1,1	127	000	1	1		100	101	0.08	0.00	(10.	O.S.	1	ľ	S.	Ĭ	100	1.1.	0.0	ď	80	8)				L	L	l
		Orga volicei ca	Ng STrnS.du.	0.92	×	1610	080	1,47	1,79	1	2	1	9		140	1,22	1.42	175	95"		122	1,25	183	121	1,58	1,35	22	120	=	crus	100		182	1.86	
		Deviburie Or & Carp.	2						1,000	NO.	+	+	H-455	+	٠	⊢	Н	н	-	-	+	۰	н	15.22	14%	67%	S.	910	400	500	g	1	2	0.14	
				1	ď	=	1	ľ	, II	1	1	1	1	1	ľ	zi.	ř	ď	1	1	1	ź	ř	#	4	ti ti	=	1	1		í	1	L	L	1
		Digrace A	red/ds	256	285	253	312	232	310	IST.	200	1	100	140	347	341	826	(0)	317	200	334	107	100	327	359	336	NII.	2				-	350	318	
		Dieronia wa y man	m3/dia	351	383	200	199	579	1065	\$20	100	S.	231	181	183	224	1923	17.8	271	105	318	342	161	505	308	23	206	92	249	8	418		1066	236	
		TOTAL	TOTAL	5987	8000	030	9376	STIR	1000	980	8	1000	0000	800	10318	10056	10073	10637	8239	KES	8555	9276	02101	026	10488	10182	5000	orne	100	246	020			090	
		OTESTICO III	10,000	2474	2384	2002	2350	2389	2596	2551	2386		2,000	2446	2862	2781	7577	2000	2000	100	2110	2371	9187	2316	2631	2500	2484	2627	2447	2640	2307	1		2476	
		2010 010	m38tt m		0	ľ	Ĺ	0	0 3																			0			0	1	0		
		CERCOLIFE OTENIOOLG	H	H	L	L	L			4	4	4	1	L	L	L	Ш	Ш	┙	1	L	L	Ш	Ш			Ц	_	1	1	1	1			L
	Meas Esperadora		40.5 m	L	0	L	L	Н	111	+	+		2548	Tuni.	╀	2515	Н	Н	156	+	╀	1143	Ц	2041	_	_	2403	2625	2447	7007	2303	1	-	1586	٠
	Mean	OTGEROOLE	ng/gn	٥	0	0	0	0	0	0	۰	-			0	0	0	0	0	0		0	0	0	0	0	٥	۰			0		o		
		OTICEBOOLD	1,050	٥	٥	0	0	٥	0	0	٥				0	٥	0	0	0	0	0	т	0	0	0	0	0	٥	0		0	1	0	-	
		oresionic ore	и проди		1808	2367	2286	2155			103		1	L	L	99	0	0	0	0 0			1667							5747	2307	1		1830	
		OTTERNOTE OTTE																														1	-	2375	۰
		Tresticota one	0 70	2	15	2	70	7	93	1	al.	Ī	287	ſ	- 01	13	28	Į.	2	ľ	1 1	Ž,	Ĺ	. 61	,		0	1	0	2	1	1	2713	96	
	ш	8	8	ľ	ıñ	۴	۴	ŕ	×	4	-1	Ŧ	4	18	۲	۱٩	ž.	Ä	~	Ŧ	ŕ	ŕ	ŭ	×	-	1	1	1	1	1	0	1	15	ľ	1

Anexo Cap. 3_ 5c balance consolidado de sólidos planta el salitre ampliada y optimizada – abril 2023

				0.3	10	0.3	63	0.3	6	6	6	9 5	10	10	10	103	0.3	03	6	6 6	10	63	03	0.3	03	0.3	50	6	63						
	I	tienpo de retencion de os dipositero	ą.	386	101	909	184	163	38.4	363	I	100	11.1	168	35.5	35.7	35.4	33.6	16,1	4	18.8	164	31.4	191	364	34.5	360	38.0	33.9		16.0			121	
	L	- 6.9	l	05'98	87.16	8778	83,58	10,04	84,18	14.2	4 74	11.03	87.78	87.10	5575	8778	69'86	10,04	19.68	20,43	95.58	17.52	19713	88,45	91'68	11.19	91,18	62.87	10.88	20.05	6070				
	ſ	STa		H	t	H	H	Н	H	+	t	t	t	t	t	П	П		Ħ	Ť	L	a	Н	H	H	Н	-	H	+	t	t		99	91	Γ
	ļ	CogaSTa	24	TEAST	10.10	25.49	Ш	18,13	130	90001	4979		81.8	30,00	15'08	3751	1878	10.34	12°50	4	100	53,00	14/301	Ц	2003	87,39	80,08	106,68	87.09	4	63.08		210444		
		Carp SV Brekale	29.0	10.12	11.04	0.15	31.56	56.34	53.99	28.28	971	20.37	27.12	8717	90.68	12'57	42'04	62.33	41,5	0110	41.45	67,53	871.7	31.00	82,74	11.133	58.0K	30,04	25.00	200	15.43				
	l	\$ t	5 Tes	12.90		33 58 (0)	0.33	48 80,45		80 94 30			27.18 11.75		SP 55 99	10.00	22.76 55	65 104,19	46. 55.35		90'011 51	33 58.66	10,000 00	42 8039	57 103,94		86 805,16			-1	81.00				
	l	g to	Tee	8 200.08	t	911 9	П	0,75 0.4,48	П	t	80.18	Т	11877	Г	Г	0.73 118.80	Ш	П	0.70 05.46	0.00	0.68 161.	10.	П	П	2 M3,57	П		П	1	181	Т		1	•9	Γ
	_	TSAS S		0.68	ł	0.76	Н	Н	H	+	990	t	ł	H	91/0	-	Н	-	Н	t	2	0.82	0,73	Н	0,72	0.72	0,76	20	608	6/11	O,T			0.82	
		MANTO	radica	87	9	0.7	4.0	4.0	4.8	4.80	87	1	9.7	87	4.30	430	4.90	4.80	4.8	8 6	4.80	4.8	4.80	430	4.30	430	4.80	4.8	4.30	8.4	91			8.7	ľ
		Miderda	,	475	f	586	245	160	430	375	67	1	15	12.7	348	508	122	600	425		1965	4000	430	376	5 7%	400	5.9%	340	289	ď.	188		1	0,68	I
	ł	u XX	TROOPE	5115	1171	5350	5720	5510	5634	5198	5850	1000	2386	1833	5653	1155	5431	5507	5856	2044	5674	57.14	6096	1041	4758	4753	4745	4154	5121	3213	1001	H		2011.08	
		1	UNK red	138	13/4	133	23.6	181	183	181	000	101	11.1	11.8	150	113	683	265	110	200	1355	150	183	183	1342	193	133	703	O. Carlo	N.	970			800	ŀ
CORD INCIDENCE	l		5	0.56	0.40	150	0.56	0.57	653	950	0.36	130	0.58	450	150	150	0.54	0.59	658	200	150	650	450	0.52	950	0.57	0.58	150	0.65	460	0770	Ц		690	
	ŀ	S NO.		611		511	011	611	10.6	77	113	21	-	100	813	611	12.1	120	3		511	911	111	10.4	271	113	1.2	-	17.3	1	23			23,20	
	ļ	à	73			8	7		7						-							-	- 1												
		Ħ	10	200	ľ		15	38			1	ľ		ľ	*	38	40.1	11	36	Ï		15	36	310		31	38	35	2		-			40,67	ľ
		Inh. Producide Nagas	dis rid hogs/d	107		47.2	483	577	42.1	39.5	3		12.2	45.4	41.8	383	948	40.0	41.5	200	40.1	403	18 819	41.0	40,1	19.9	40.2	400	39.9	10.4	103			60.00	
	İ	S Distracts Remarks de NO	,	45.07%	10.100	65.18%	60,100	65,926	49,07%	15,19%	1,105	10.100	35,506	45,435	58,68%	10,40%	24,62%	60,16%	16,50%	10.10	18,130	64,326	10761	40,14%	56,196	50308	\$9,07%	11,69%	67,10%	10.00	12,17%	Ī	- 1	070	I
	ļ	NOV.		1000	H	010	н	Н	60'0	0.12	010	110	1170	110	11/0	010	60'0	0.11	010	400	010	60'0	60'0	0.11	0,12	1170	0.12	0.13	0,10	0	0/10			9170	ŀ
		Ak dinidal Ca003	plika	48.19	1708	8018	2103	993	5112	5243	ž	94.0	2248	3240	5171	6900	1908	8013	515.8	2002	51.5	2002	3116	4459	37.75	9777	4333	4041	4723	8113	4870			5483.50	Ļ
		Restinates de Distantes	M Polled	450	۰	150	Н	Н	Н	+	990	+	╀	۰	0.54	850	н	-	970	+	0.004	1970	Н	Ц	0.53	Н	4	Н	+	+	590		1	0,48	ł
	17.1	Sy Redi	11 Pinds	178 0.68	L	76 0.76	174 0.74	Ц	Ц	_	990	1	133 0.71	L	50.74	140 651	_	166 0,79	18%	010	203 048	54 0.82	226 0.73	184 0,10	5 0,72	_		ш		4	114			13,60 0.83	l
	Call State State 5	ä	173	22.8	90	11 978	13,1	XII	1.15	31.5	911	1	31.0	93	1.00	98	OW	33,4	OR	CN.	313	31.7 18	767	33,4	11 8.00	20.5	31.3	9.6	38.6	9	V.N.		İ	96.00	ŀ
	ł	жо на	75	364 7.85	۰	508 7.15	450 7.87	447 7,87	Н	+	550 784	+	578 7.82	٠	554 1,87	510 7.82	н	552 7,70	н	458	543 7.85	465 7,54	188 188	4T6 TAT	17.83	Н	-	Н	+	†	447 8,15			24,00 8,15	
	ŀ			L	t	H	Н	Н	H	+	+	t	t	t	H	H	Н		Н	t	H	H	Н	Н	-	Н		Н	+	+	+			Ī	t
	ļ	a Orgavelenica	Ag Syrud da	190	1	593	1973	940	n (18	900		490	083	160	840	160	3//3	roe	900	900	017	101	103	601	401	031	100	100	101	100	(03			3	
		handenge	KgSTes3.46	8610	101	-	0.73	126	1,53	136	-		1	133	1,55	1,28	181	1,34	143	100	ŕ	1,28	951	188	1,50	138	1,44	1,18	133		=			2,03	
	İ	Darkholds & Orga	,	12.948	14.00%	13.84%	12.71%	13.03%	14.8%	15.6%	4.800	1000	1,900	11.65%	13,00%	14.77%	14.77%	3.80%	14.00%	1000	14,66%	14.40%	14.23%	14.75%	14.85	28.71	14.77%	14.800	27.7	100	40.0	Ī	İ	6.15	
		Dipateel	eg/da	L	L	L	ш	Н	Н	+		+	₽	316	H	Н	346	-	Н		340		Ц	Н	340	Н	-	Н	4	+	177		Į	350	ļ
	1	ę.	nd linguist no	ľ	ľ	ľ	1	-		1	1	T	ľ	ľ	ľ	-	Н	-	Н	t	H	H	Н	Н	0258	0228		Н	+	+	080			0258	ł
	ļ	Producti Ngas	de able	911			47.8	-	43.6	*	910	1 91		416	-	177		42.2 6305	Ц	1	42.3	115 702	1971 2317	10.8 7.01	181	Ц		Ш	4	4	4		-		L
	ŀ	Bikinda Remeden		35,526 47	ALOPE AKT	57.5 Pt. 51		н	н		10.185		۰		46,976 43.3		17,59% 41,8	-		11000	35.536 43	67,65% 41		49,108. 46	375, 35	н			-		34.67% 43.8	H		51,15 51,15	
	ŀ	NOV BY	H	0000	۰	5 1170	0.10	6,11	н	6000	1		1170	1170	0,11	0.12	н	6,11	н		- 13	6.11	6 110	4 210	0.012	н	0.13	110	0.12	-	100	H	ı	603	ŀ
	İ	Medical Cool	rated	62.18	62.28	1999	0642	6524	eV76	62.89	1146	34.11	245	1183	2035	6180	43.14	62.04	3466	1461	1103	7023	1163	Н	1546	3838	98.03	26.53	6207	0579	9969	Ī	i	1466.50	
	Ì		PYTHA	600	0.64	0.58	650	90'0	950	600	0.0	00	970	9/0	gro	1570	0/0	0.08	970	200	0.56	650	45'0	16.0	96'0	0.58	0/0	950	970	900	970	l		90'0	ł
	l	Resiliai cao de Dánizacios	Pilitidal	0.68	L	0.76	0,74	0,75	0,68	970	990	0.11	0.71	0,72	0,74	0,73	0.65	0,79	0,10	0.00	970	0.82	140	0,10	0,72	0.72	0,76	0.68	0.81	0,17	0,17			0.82	
	franc II.	š.	te ta	44.0 25.6	414 355	44.9 25.9	440 259	46.4 27.1		45.2 Xu6			45.0 34.9	3	48.3 35.6	178 0791	45.4 36.2	43.4 39.6		200	43.5 35.1	413 34.6	100 000	7.85 38.6 21.0	42.6 25.9	43.2 25.1	42.6. 25.4	44.0 36.0	44.2 27.8	0.00	41.8.11.6	Н		8,03 48,00 31,60	
	Ì	¥.		1,66	180	1.16	7.50	101	1,546	+		1	1,118	1,18	1,50	7.82	7,14	7.66	1,10	CW.	7.56	1.93			181 1	7.82	7,87	1.63	7.88	130	8.03	ļ			
	ŀ	West Criticons		247	1	100	993	1	Н	†	162	140	L		800		642	114	174	976	115	113	766	141	7.8.7	123	150	134	166		ř	H		815,50	t
		Orgavolenic	Ng Syrink da	6900	1	0.17		100	Ш	9670		99.0	0,76	100	640	5870	140	100	0,66		-	101	1111	601	1,15	101	101	Ш	0.95	990	033	U		131	
		Organistical Organ	Ng STeshala	101		100	0.74	137	188	65			101	Ē	1,38	1,16	1,44	1,10	140		191	1,24	1,56	136	1.59	1,40	137	177	-	E C	101			1,87	I
	l	Dariholds & Orga	,	2560		1,1000	234%	%107	14100	47.76	457	10100	2,65%	5777	wery.	9557	93331	247.0	11.110	14030	9117	\$107.	2617	2007	W118.	1415%			3338	2000	1,000	ı		9110	
	ŀ	Dipaceti		H	t	H	Н	Н	Н	8 1	2		2		-	*	8	,		9	Ŀ	_	4	£	95	348	124	Н	4	100	4	H		360	
		Profee olde Nages	ad Negard ad/d	150	ľ	C B	10.	144	100	113	1	1	16	101	100	103	071	100	13173 3.	I	95	542 3	141	416	1111			15610	1	1	_	H		157.14	ı
	ŀ	ti Pod	Tre salk	113	111	21.2 85	212 85	21.2 89	31,0 100		20.8			20.8			20.8			100			20.8			203				20X		Н		31.48	
	ŀ	Bidenda Remedika deNY					58,90%		43,90%		2		1,000	0.00	47,000	15,30%	10.7721	73,00% ;	54,5%	2000	Stories	17,07%				26,85% 2				0.000		H			
	ŀ	MOY	Γ	000	g o	0.0	0.0	0.0	110	10	000		110	110	110	10.04	30	0.11	00	200	08.0	or to			5 100				10	90	000	H	ı	M 0	l
	ı	Abstrated CuCO3	Page 1	27.82		3948	3956	4000	355	600		1107	2827	11.17	4128	4002	400	4000	40.31	1	01.0	2607	5517	1221	36.62	388	3000	30.15	2016	20.14	3057	١		4633,00	
	l	Restiniento de Dintracion	PYTHA	150	10.0	98.0	550	0.00	950	0.53	60.0		20.0	0.42	960	550	22.0	0.0	250	2 3 0	0.0	020	99.0	0.99	0.52	н	-	ш	150	10.0	96.0			980	
			Pilnos	0.68	0000	9170	0,74	0,75		0.08			120	0,72			6970			000	0.68	0.82	14.0	0,10		0.72				COL	N OUT			0.82	
	drotter 13.4	72	12 12		47.6	1.04 7.4.8	34.6		11.1	7	10.5	5	35.9	34.3 70.5	100 196		24.0 23.4	14.2	15.4	2		16.1	22.8 22.7	37.0	37,2 89,4	17.18	16.0	11.5	34.9	11.4	16.8	Н		7,94 38.80 22.00	
	I	NOV SECOSES PER	-	7,79		8.7.15	1,72	E 7,74	1,10	431 7.78	181	01.0	1	11.1	497.1	1,70,	21.9	7.50	1/46	9 11 1	11.1			Į	Ī	17.1		181	0 7.83	4.03	3	H		00 7,94	
	ŀ		707	100	192	159	40	3.0	7				100	1	46.	34	482	43	7	2 5	ľ	2	107	38	457	17		Ħ				H		9170	I
	ا	a Orgavelenica	Ng SYrindala	134	1	186	1,23	3,03	2,56	1	1	991	П	П	ı	П	188		100	740	17	1,59	177	2,14	3,09	191		Ш	1		1			335	
	ĺ	Orgavelinica	Ng STead da	113	-	2.48	161	2,10	3,76	2.97	907	35	238	370	2,67	2,35	289	3,64	2,15	244	1.10	2.44	3.13	300	2,58	2,65	330	3/46	2,39	138	170			4,12	
	и	- 0	r				H	H	H										t	1	35.5%	ļ					,				36176	H	ı		Ī
	ŀ	Darihoide & Orga		25,592	28.185	20,11%	20,000	45.4	35,16/16	20,33%	8000	N 16s	100	28,00%	27,36%	27,17%	27,21%	7,14	27,01%	ŀ	þ	27,62%	97%	29,13%	27,54%	5585K	27.61%	27,53%	7,43%	200	3	U	J	3	

ANEXO - CUADRO RESUMEN DESHIDRATACIÓN POR CENTRIFUGA

Anexo Cap. 3_6 resumen deshidratación por centrifuga

		nex —	_	_	ч	۶.	<u>ی</u>	_`		_		•••				-3		uı	<u>u</u>	<u>.</u>	_		'''	P		_					ļu							
	W L. Digerido	ţţ	84,8	84,2	84,7	86,4	104,3	8,86	96,2	94,7	82,7	0,96	93,6	87,4	94,9	102,4	93,6	88,5	62,7	61,1	101,6	96,5	86,4	91,1	95,5	105,1	65,0	104,0	101,6	58,6	6,76	2,06		2690,5		89,68	105,06	58,61
	ST (promedio	digestores) g/l	39,1	38,5	37,8	37,4	38,6	37,4	37,4	38,4	2,78	38,2	37,5	37,1	38,4	38,1	40,7	37,3	36,4	37,5	37,4	37,7	37,2	36,2	39,1	37,6	37,2	38,2	38,7	36,8	2,78	38,5				37,85	40,67	36,23
BIOSOLIDO fase 2	Biosolido	m3/dìa	189,46	231,31	223,15	318,16	361,00	373,48	246,12	261,84	275,96	368,68	329,78	343,58	377,90	298,59	197,53	231,43	237,14	224,73	313,88	321,24	267,47	312,60	308,76	321,77	279,96	293,02	308,99	210,61	277,27	345,69				288,37	377,90	189,46
BIOS	Biosolido	Ton/día	183,78	224,37	216,46	308,62	350,17	362,28	238,74	253,98	267,68	357,62	319,89	333,27	366,56	289,63	191,60	224,49	230,03	217,99	304,46	311,60	259,45	303,22	299,50	312,12	271,56	284,23	299,72	204,29	268,95	335,32		8391,580	8391,580	279,72	366,56	183,78
	Densidad	g/cm3	1,02	0,99	1,01	1,02	1,00	1,06	1,02	0,99	1,00	0,97	1,00	1,00	0,99	1,00	1,00	0,97	1,00	1,01	1,00	1,02	1,02	1,02	1,01	1,00	0,98	96'0	1,02	0,98	96'0	1,01				1,00	1,06	96'0
	Sequedad	(%)	26,88	26,02	26,32	26,35	24,96	24,86	28,16	27,30	25,18	26,44	27,47	26,98	24,59	25,43	26,82	26,24	24,61	25,63	26,71	22,84	24,34	26,52	24,73	24,78	23,56	23,02	23,82	25,54	23,88	23,40				25,44	28,16	22,84
ГОВО	m³ TOTAL	LPD/DIA	2169,56	2188,60	2242,79	2310,22	2700,82	2645,84	2570,82	2468,48	2194,68	2510,07	2498,57	2358,27	2473,70	2689,05	2300,91	2371,60	1720,00	1628,67	2719,96	2562,03	2326,04	2513,15	2442,17	2796,72	1750,13	2721,31	2622,81	1594,00	2583,37	2358,89		71033		2367,77	2796,72	1594,00
ГО	gr polimero/	m3 Lodo	354,36	348,04	491,16	468,37	484,27	485,51	497,34	524,88	545,89	474,30	428,84	439,92	431,64	430,17	424,11	420,98	457,86	455,96	395,71	468,81	470,35	502,76	531,04	439,54	499,14	442,73	470,32	434,40	432,40	468,62				457,31	545,89	348,04
	Polimero	Ton/dia	0,769	0,762	1,102	1,082	1,308	1,285	1,279	1,296	1,198	1,191	1,071	1,037	1,068	1,157	0,976	0,998	0,788	0,743	1,076	1,201	1,094	1,264	1,297	1,229	0,874	1,205	1,234	0,692	1,117	1,105		32,49526		1,08	1,31	69'0
POLIMERO:	Kg polimero/	Ton MS	15,56	13,05	19,34	13,31	14,97	14,27	19,02	18,69	17,77	12,59	12,20	11,54	11,85	15,71	18,99	16,95	13,91	13,29	13,24	16,88	17,33	15,71	17,51	15,89	13,65	18,41	17,28	13,27	17,39	14,09				15,46	19,34	11,54
a .	G	2	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM	FO 4490 VHM						
	FЕСНА		01-04-23	02-04-23	03-04-23	04-04-23	05-04-23	06-04-23	07-04-23	08-04-23	09-04-23	10-04-23	11-04-23	12-04-23	13-04-23	14-04-23	15-04-23	16-04-23	17-04-23	18-04-23	19-04-23	20-04-23	21-04-23	22-04-23	23-04-23	24-04-23	25-04-23	26-04-23	27-04-23	28-04-23	29-04-23	30-04-23		TOTALES		MEDIO	MAXIMO	MINIMO

MES: Abril 2023

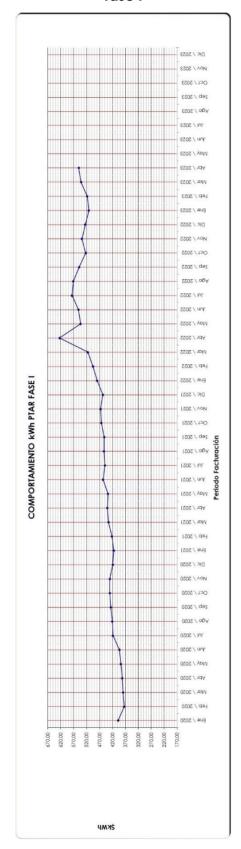
Anexo Cap. 3_7 Consumo Biogás

_			_			۱	16	- ^	U		_(41	<i>.</i>		_	_	_	_	<u>ار</u>	13	<u> </u>			_	,,,	<u> </u>	<u>ر</u> و	<i>_</i>	_				_	
		TOTAL	2330,01	3884,8	2934,91	2214,28	1089,45	14,17	16,72	10,39	15,01	14,46	15,53	13,2	18,58	16,76	16,06	8,89	757,43	34,23	17,99	17.1	6,63	0	0	0	17,09	7,51	1114,83	12,29	14,62	0		
	AS (nm3/DIA)	10FIT002C_FT_TO T.Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
5	QUEMADO BIOGAS (nm3/DIA)	1 OFTT002B_FT_TO 1	2239,57	2206,33	2934,91	2193,58	1047,16	14,17	16,72	10,39	15,01	14,46	15,53	13,2	18,58	16,76	16,06	8,89	651,65	34,23	17,99	17.1	6,63	0	0	0	17,09	7,51	12,33	9,37	13,66	0		
		110FIT002A_FT_TO	90,44	1678,47	0	20,7	42,29	0	0	0	0	0	0	0	0	0	0	0	105,78	0	0	0	0	0	00'00	0	0	0	1102,5	2,92	96'0	0		
	GAS NATURAL (nm3/DIA)	TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
		11 FIT 002E_FT_TOT. Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	(3/DIA)	111F1002A F TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	CONSUMO GAS NATURAL (nm3/DIA)	11FIT002C_FT_TOT 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	CONSUM	11FIT002B_FT_TOT. 1 Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
CALDERAS		TOT_TO02A_FT_TOT I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
- 1	BIOGAS TOTAL (nm3/DIA)	TOTAL	0.0	0'0	0.0	0'0	0'0	0.0	0'0	0'0	0.0	0'0	0'0	0,0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0		
		111FIT001E_FT_TOT	0'0	0'0	0,0	0'0	0'0	0,0	0'0	0'0	0'0	0'0	0'0	0,0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0		L
	m3/DIA)	111FIT001D_FT_T OT.Total	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0,0	0'0	0'0	0,0	0'0	0'0	0,0	0'0	0'0	0,0	0,0	0'0		
	CONSUMO CALDERA BIOGAS (nm3/DIA)	111FIT001C_FT_TO T.Total	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0		
	CONSUMO	Total Total Total Total Total T. Total T. Total	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0		
		111FIT001A_FT_TOT Total	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	0'0		
	PRODUCCION TOTAL	BIOGAS	21814	21989	20331	21362	22236	23675	22556	22878	22738	24058	23005	25566	29556	29245	34594	34299	33391	37494	36759	38463	39788	37695	35389	37797	37901	35855	38968	38714	32096	31070		

Anexo Cap 3_8 Características fisicoquímicas del agua cruda

		Temp	ာ့	16,3	15,4	16,2	15.6	17.8	la,o	c'ci	15.4	16,6	15,8	16,1	17,2	17,3	17,2	16,8	15,6	16,3	17,3	6'91	15,9	16,8	16,6	17,3	18,1	18,1	17,3	17,6	16,6	15,8	16,6		16,61	15,30	18,10
		REDOX	am	-141	-116	-108	86-	-140	971-	9	817	-143	-103	-66	-109	-107	-126	-113	-184	-142	-106	66-	-132	-193	-140	-152	-92	-180	-131	-109	-110	-121	96-		-123,80	-193,00	-92,00
		SSD	md	5,0	4,5	5,0	5.5	000	000	3 3	33	4,0	5,0	5,0	20	4,5	3,0	1,2	2,5	1,7	9'0	2,5	2,5	2,0	4,5	6,5	4.5	4.5	20	20	4,0	6,0	20		3,65	00'0	6,50
		SSD	am	1,2	1,5	2,0	2,5	CO S	on:	2 5	07	0,1	1,5	1,5	1,2	1,5	2,0	1,2	0,7	2,0	1,0	1,0	1,0	0,7	1,4	1,6	1,4	2,0	2,5	8.1	2,0	2,0	8'0		1,60	00'0	6,50
_		мооба	mg-02/l	614	611	929	541	204	300	700	187	809	604	558	579	909	260	528	289	404	314	456	443	397	638	099	291	575	495	720	552	594	202		531	281	720
		DQOAM	mg-02/l	453	470	468	462	915	202	32)	2.00	208	417	41	448	456	989	447	488	333	184	422	380	340	202	808	422	403	419	436	423	418	372		395	41	612
		DBO5 PM	mg-02/1	255	263	254	260	211	5	200	138	244	296	267	218	242	246	248	287	132	128	061	208	198	268	291	243	238	308	245	253	284	246		523	128	296
		DBO5 AM	mg-O2/l	230	206	202	215	293	20	174	8	119	153	213	900	239	237	221	249	991	06	951	128	155	206	176	204	061	123	208	217	224	204		190	83	293
		TURBIEDAD	PM(NTU)	148	138	158	145	173	8/	70 10	7/5	133	153	163	145	137	144	129	187	124	16	12.5	128	131	148	173	157	145	126	145	150	171	144		139	82	187
		TURBEDAD	AM(NTU)	120	113	118	130	215	Q (Ŗ.	101	74	102	112	110	116	116	122	123	- 26	92	95	68	88	100	91	165	118	106	Ш	115	111	100		110	70	215
ă		SFPM	mg/L	350	213	263	407	430	320	661	8	187	260	250	200	991	303	314	270	170	144	223	300	144	343	174	343	340	274	244	280	90	333		255,8	90,0	430,0
V CRU		SFAM	ng/L	333	300	287	267	0.1	98	007	245	260	120	193	254	230	280	350	340	143	470	244	136	263	150	260	263	330	224	061	246	283	306		246,6	86,0	470,0
AGU/		SVPM	mg/L	487	980	520	383	420	700	0/7	30)	280	463	447	307	206	323	433	467	337	363	317	333	453	430	823	280	019	443	543	393	657	200		434,9	0'0.22	823,0
TRE.		STPM	mg/L	837	763	783	790	980	/89	COB	445	467	723	697	203	673	099	747	737	507	203	540	633	265	773	266	623	950	717	787	683	747	833		690,7	Н	0'266
SALI		SVAM	T/Zur	180	387	283	393	500	/77	010	·8	160	280	350	313	287	393	537	417	161	450	313	262	340	330	273	283	313	443	229	267	310	202		336,9	160,0	Н
AR EI		STAM	mg/L	523	687	570	099	920	513	90	430	430	410	543	292	517	673	887	757	340	006	557	433	603	480	533	98	633	(99	867	513	593	413		583,5	313,0	920,0
о Р		TURB/DBC	PM	850	0.52	0.62	056	0.82	9¢n	con o	(db)	0.55	0.52	0.61	090	150	650	052	990	094	1.00	990	0.62	990	0.55	020	990	190	190	020	020	090	020		9'0	0,5	6'0
ATOR		TURBYDBO	WV	0,52	0,55	85'0	090	0,73	1870	or o	(9°0	0,62	0.67	0,53	0,53	0,49	0'49	0,55	0,49	85'0	0.84	190	00'00	0,57	0,49	0,52	0.81	0,62	090	0,53	0,53	050	0,49		9'0	0,5	8'0
ABOR		TURB/SST	FM	690	690	290	0.74	860	/6n	ocn o	SSD	0,72	0,78	0,72	92'0	120	580	0.74	00'0	680	860	990	060	120	990	650	0,77	<i>19</i> 0	0,72	990	690	0,73	0,72		8'0	9'0	1,0
ANEXO No. 9 (PAGINA 1) LABORATORIO PTAR EL SALITRE - AGUA CRUDA	$\left \cdot \right $	TURB/SST	WV	1,10	1,11	101	100	0/0	800	nen	980	0.74	131	095	107	880	180	124	102	147	+90	083	0.74	082	0.81	094	143	660	072	093	0.71	102	820		1,0	9'0	1,5
NA 1		SSFPM	mg/l	40,0	34,0	61,0	39,0	0.08	081	19,0	2000	39,0	30,0	33,0	47,0	29,0	29,0	32,0	53,0	41,0	22,0	52,0	25,0	45,0	48,0	72,0	400	33,0	32,0	43.0	26,0	39,0	30,0		38,4	14,0	89,0
(PAC		SSV/SST	P.M.	0.81	0.85	0,74	08'0	0.70	0.83	6000	01.78	0,79	0.85	0,85	0,75	0.85	0.83	0.82	08'0	17'0	92'0	0,72	0.83	92'0	0,79	0.75	080	0.85	0.82	0.81	88'0	0.83	0.85		8'0	0,7	6'0
8. 80.		SVPM	mg/l	175	186	175	157	20)	0	1/	13	146	167	192	143	165	141	142	214	66	7.1	136	811	139	177	221	163	185	#	181	161	196	171		154,0	71,0	221,0
ANEXC		SSFAM	ng/l	18,0	31,0	16,0	25.0	72.0	180	0.12	27.0	33,0	24,0	13,0	10,0	27,0	23,0	48.0	21,0	12,0	400	300	35,0	28.0	21,0	19,0	17,0	19,0	27,0	19,0	35,0	21.0	26,0		26,1	10,0	72,0
		SSV/SST	AM	0.83	0,70	98'0	0.81	0.76	0,72	C('n)	0,77	0,67	00'00	0.89	06'0	08'0	0.84	0,51	0.83	0.82	99'0	0,74	0,71	0.74	0.83	080	0.85	0.84	0.82	0.84	0.78	0.81	080		8'0	0,5	6'0
B0G0		SSVAM	mg/1	91	71	101	105	2.54	47	90	16	67	54	105	93	105	120	90	100	\$	92	88	98	81	102	78	88	100	121	100	127	88	102		8,88	47,0	234,0
LITRE		SSTPM	l/2m	215	220	236	961	967	3 8	8 8	56	185	197	225	190	161	170	174	267	140	93	188	143	184	225	293	203	218	9/1	224	217	235	201		192,4	85,0	296,0
S EL SA		SSTAM	mg/l	109	102	117	130	300	9 5	í i	811	100	78	118	103	132	143	86	121	99	119	115	121	109	123	25	115	611	28	119	162	109	128		119,9	65,0	306,0
OUALE		COND.	Srl	906	816	921	920	000	678	900	9	818	980	898	883	872	882	516	818	280	199	8#9	064	899	811	861	873	948	282	823	838	881	912		816	580	921
SRESIL		COND.	ηS	806	895	912	922	86	247	900	177	631	836	886	196	606	924	933	918	493	393	67.7	069	724	840	704	884	849	848	877	830	907	892		807	393	961
DE AGUAS		Alcal inidad PM	mg-CaCO3/I	243.0	267,0	258.0	258.0	182,0	2300	0,000	0WI	220,0	199,0	240,0	253,0	270,0	263,0	274,0	247,0	180,0	227,0	225,0	246,0	370,0	234,0	262,0	252,0	261,0	251,0	245,0	266,0	256,0	269,0		245,9	179,0	370,0
ENTO D 2023		pHpm		2'09	7,69	2'09	7,69	00%	60"/	1000	ē,	7,28	7,45	7,42	7,43	7,22	236	7,29	7,24	7,17	7,23	7,36	7,24	7,32	7,76	7,74	7,75	7,82	3,69	7,77	7,27	7,46	7,67		7,49	7,17	7,82
PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES EL SALITRE BOGOTA MES: ABRIL 2023		Alcali nidad AM	mg-CaCO3/I	263,0	183,0	263.0	259,0	215.0	1380	0,000	2070	0'681	224,0	191,0	265,0	250,0	276,0	297,0	268,0	174,0	115,0	265,0	2000	260,0	245,0	232,0	265,0	249,0	215,0	259,0	235,0	275,0	256,0		232,5	115,0	297,0
ITA DE		pHam	i	7,25	7,72	7,75	7,74	107	9/	0.10	817	7,10	7,31	7,35	7,33	7.50	7,38	7.42	7,37	7,17	7,14	7,35	7,35	7,29	7,40	7,82	7.89	7.75	7,30	7.79	7,70	7,41	7,48		7,49	7,10	
PLAN MES:		DIA	Unidad	-	2	3	-	~	9		ю	6	10	=	17	13	14	15	16	17	18	19	20	21	22	23	73	25	79	27	28	29	30	31	Medio	Mini	Mad

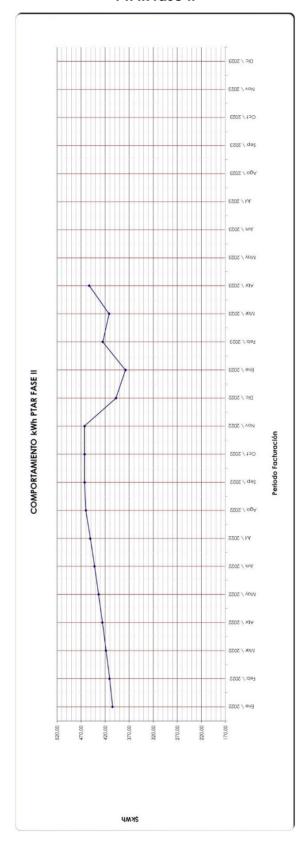
Anexo Cap. 3_9 Características fisicoquímicas del agua tratada


							•																					
							⋖	ANEXO	No. 9	(O No. 9 (PAGINA No. 2)	A No. 1	ຄ	LABC	ORATO	RIO PT,	LABORATORIO PTAR EL SALITRE - AGUA TRATADA	ALITRE	- AGU	A TRAI	ADA.								
DIA PH AM	AM Alcalinidad AM	M PH PM	Alcalinidad PM	COND.	COND.	SSTAM	SSV A.M.	SSWSST 8	SSTPM S	SSV PM SSV	SSV/SST STAM	MM SV AM	M ST PM	NA VS	TURBIEDAD	TURBIEDAD	DBO5 AM	DBOS PM	DQOAM	DQO PM	Turb/DBO	Turb/DBO	Turb / SST	Turb / SST	SSD	SSD TE	TEMP (°C) FI	FLOTANTES
ē	mg-CaCO3/I	L	mg-CaCO3/I	Sti	Sti	I/6m	l/gm	AM.	l/gm	Ld I/bm	P.M. mg	l/gm I/	l/gm	-	AM (NTU)	PM (NTU)	mg-02/I	mg-02/I	mg-02/1	mg-02/I	AM	Md	AM	PM	am	md	md	AM/PM
1 7,4.	L	8,01	253,0	206	915	10	6	06'0	14		0,64 330	H	H	220	9	2	21	19	71	99	0,29	0,26	09'0	96'0	0'0	0'0	18	
2 7,9		8,04	255,0	917	836	6	9	29'0	10	9	H	H	┞	H	S	4	16	17	29	43	0,31	0,24	95'0	0,40	0'0	0'0	17	
3 7.9.		8,07	270,0	925	832	17	6	0,53	11	5	0,45 423	3 120	413		4	4	19	20	47	43	0,21	0,20	0,24	0,36	0'0	0'0	18	
4 7,93	33 271,0	8,01	262,0	937	942	7	4	75'0	9	3		H	H	H	90	2	20	23	88	98	0,25	0,22	0,71	0,83	0'0	0'0	17	
5 7,83	L	8,01	232,0	946	834	8	2	0,63	12	8 0,4		H	H	┝	2	9	22	21	41	98	0,23	0,29	0,63	0,50	0'0	0'0	18	
6 7,82		7,83	179,0	629	646	1	7	0,64	12	7 0,	777 277	L			9	3	20	15	83	20	06,0	0,20	0,55	0,25	0'0	0'0	17	
7 7.8		7,28	240,0	782	844	10	4	0,40	2	3 0%	60 393	3 140			4	4	16	18	16	52	0,25	0,22	0,40	0,80	0'0	0'0	17	
8 7,2,		7,42	233,0	848	824	4	2	050	18	16 0,4					4	- 2	15	18	11	59	0,27	66,0	1,00	0,39	0'0	0'0	- 17	
9 7,47		7,54	201,0	629	629	17	15	98'0	4	3 0,	0,75 1133	Н	367		8	5	22	13	20	09	96,0	0,38	0,47	1,25	0'0	0'0	17	
10 7.35		7,66	202,0	797	849	3	5	1,67	3	3 1/		Н			7	9	12	21	80	59	0,58	0,29	2,33	2,00	0'0	0,0	17	
11 7,40		7,52	245,0	881	891	5	4	08'0	6	8 0,4			_	277	4	5	- 17	13	75	33	0,24	86,0	08'0	95'0	0'0	0'0	16	
12 7,63		7,73	256,0	893	910	6	8	68'0	7	9			_		5	4	16	17	43	43	0,31	0,24	95'0	0,57	0'0	0'0	16	
13 7,62		7,50	260,0	806	806	8	7	88'0	9	3 0,	0,50	_	_	250	23	4	16	16	48	48	1,69	0,25	3,38	0,67	0'0	0'0	17	
14 7,58		7,75	263,0	006	921	4	3	92'0	10	2 0,4		L	_		2	9	17	19	59	44	62'0	0,32	1,25	09'0	0'0	0'0	18	
15 7,58		7,52	270,0	916	947	- 11	2	0,45	28	17 0,6			_		2	4	18	18	39	38	0,28	0,22	0,45	0,14	0'0	0'0	- 17	
16 7,52		7,48	272,0	946	943	7	4	0,57	12	7 0,		_	_	-	2	5	19	21	36	20	0,26	0,24	1,20	0,42	0'0	0'0	16	
Н		7,27	174,0	775	929	15	6	09'0	7	4 0,	0,57 290	0 140	H	397	7	2	19	15	20	13	0,37	0,33	0,47	0,71	0'0	0'0	18	
18 7,19		7,24	140,0	200	480	9	3	050	9	2 0,	_	_	-		4	3	12	12	27	104	0,33	0,25	29'0	09'0	0'0	0'0	17	
19 7,48		7,59	230,0	638	762	15	11	0,73	8	5 0,4					10	2	15	20	96	47	29'0	0,25	0,67	0,63	0'0	0'0	18	
_		7,33	200,0	618	969	8	2	69'0	11	9		_	347	_	4	3	15	15	90	45	0,27	0,20	09'0	0,27	0'0	0'0	17	
21 7,38		7,68	211,0	763	709	5	3	09'0	9	5 0,4	0,83 417	7 123		223	4	4	12	11	64	53	0,33	96,0	0,80	0,67	0'0	0,0	19	
		8,00	218,0	707	795	19	18	96'0	10	6 0,4		Н	370		17	3	10	19	200	214	1,70	0,16	0,89	0,30	0'0	0,0	18	
_		8,01	230,0	832	822	6	9	29'0	8	5 0,6		4	_	-	4	4	13	6	191	120	0,31	0,44	0,44	0,50	0'0	0,0	17	
7		7,89	248,0	854	867	7	2	0,71	7	4 0,		\dashv	\dashv	4	4	4	10	15	66	80	0,40	0,27	0,57	0,57	0'0	0'0	18	
25 7,92		7,97	230,0	862	843	7	4	0,57	7	4 0,					4	3	13	15	87	96	0,31	0,20	0,57	0,43	0'0	0,0	17	
		7,99	223,0	840	793	6	8	68'0	8	5 0,6		_	_	33	4	2	15	17	92	83	0,27	0,29	0,44	0,63	0'0	0'0	18	
		8,14	235,0	795	845	8	2	0,63	9	4 0,		H	L	L	4	4	16	18	100	74	0,25	0,22	09'0	0,67	0'0	0'0	18	
28 7,93		7,55	245,0	980	843	8	2	69'0	6	4 0,	0,44 340	<i>L</i> 9 0	250	L	4	4	18	19	25	27	0,22	0,21	09'0	0,44	0'0	0'0	16	
29 7,52		7,64	258,0	828	875	5	3	09'0	6	8 0,4		_	_	277	4	5	18	18	100	80	0,22	0,28	08'0	95'0	0'0	0'0	16	
30 7,61		7,92	234,0	876	885	5	4	08'0	11	8 0,7	73 247	09 2	463	153	15	5	20	19	70	99	92'0	0,26	3,00	0,45	0'0	0'0	16	
31																												
Medio 7,65	35 234	7,72	232	820	822	6	9	1	6	. 9	377	7 167	405		9	4	16	17	89	09	0,42	0,27	0,85	0,58	00'0	00'0	17,17	
		7,24	140	200	480	,	,		,																			
						,	7		,		0/1		-	33	4	3	10	6	11	13	0,21	0,16	0,24	0,14	00'0	00'0	15,60	

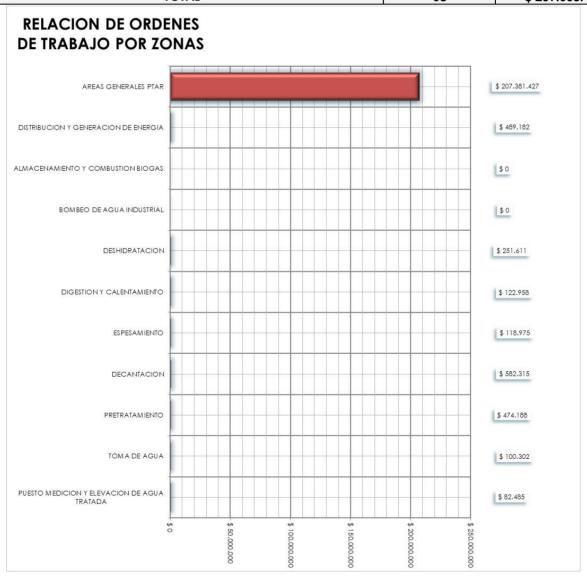
ANEXOS CAPÍTULO 4

Anexo Cap 4_ 1 Consumo de energía eléctrica desde Enero de 2020 PTAR fase I

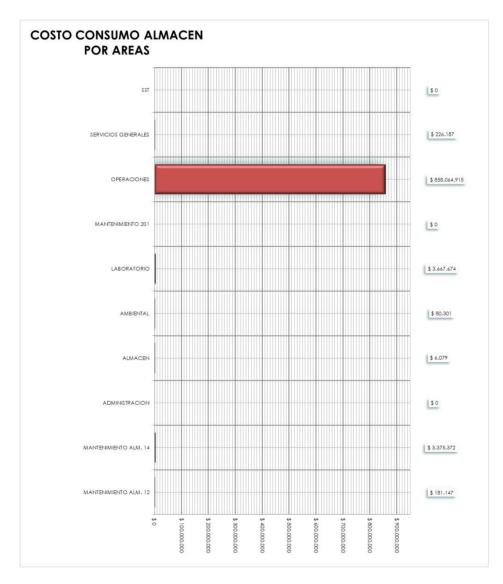
AÑO	PERIODO FACTURACION	CONSUMO ACTIVA	CONSUMO REACTIVA	TOTAL CONSUMO EN KWH	COSTO FACTURA	VALOR KWI
	Ene \ 2020	667.691,00	0,00		267.812.122,00	
	Feb \ 2020	650.550,00	0,00	650.550,00	249.609.330,00	374,
	Mar \ 2020	693.080,00	0,00		264.334.540,00	
	Abr \ 2020	691.660,00	0,00	691.660,00	264.741.730,00	
	May \ 2020	709.170,00	0,00	709.170,00	281.469.240,00	
2020	Jun \ 2020	696.440,00	0,00	696.440,00	270.102.340,00	393,
2020	Jul \ 2020	685.570,00	0,00	685.570,00	283.845.770,00	417,8
	Ago \ 2020	547.870,00	0,00	547.870,00	238.101.930,00	420,4
	Sep \ 2020	626.760,00	0,00	626.760,00	274.065.290,00	426,
	Oct \ 2020	694.950,00	0,00	694.950,00	308.019.680,00	
	Nov \ 2020	650.150,00	0,00	650.150,00	285.339.150,00	430,
	Dic \ 2020	693.260,00	17.975,00	693.260,00	297.557.770,00	418,9
Total 2020		8.007.151,00	<i>17975</i>	8.007.151,00	3.284.998.892,00	405,0
	Ene \ 2021	477.060,00	0,00	477.060,00	205.513.380,00	415,
	Feb \ 2021	545.170,00	0,00	545.170,00	234.202.251,00	421,9
	Mar \ 2021	623.310,00	0,00	623.310,00	260.686.170,00	435,0
	Abr \ 2021	530.690,00	0,00		232.391.250.00	
	May \ 2021	522.700,00	40,00		232.643.280,00	437,
2021	Jun \ 2021	480.310,00	30,00	480.310,00	223.131.160,00	456,
2021	Jul \ 2021	476.900,00	5,00		218.143.070,00	
	Ago \ 2021	430.470,00	20,00		196.958.750,00	
	Sep \ 2021	153.380,00	900,00		69.705.640,00	
	Oct \ 2021	123.190,00	1.980,00	123.190,00	58.084.080,00	
	Nov \ 2021	128.610,00	2,970,00		60.758.120,00	
	Dic \ 2021	107.260,00	2.700,00		50.461.570,00	·
Total 2021		4.599.050,00	8645	4.599.050,00	2.042.678.721,00	445,5
	Ene \ 2022	116.830,00	1.730,00		56.669.840,00	
	Feb \ 2022	95.000,00	1.570,00		47.464.070,00	495,0
	Mar \ 2022	101.820,00	1.345,00		52.791.150,00	
	Abr \ 2022	68.480,00	610,00		35.633.040,00	<u> </u>
	May \ 2022	64.610,00	805,00		35.626.460,00	
2022	Jun \ 2022	125.800,00	1.415,00		70.313.370,00	
2022	Jul \ 2022	73.650,00	1.800,00		43.182.090,00	
	Ago \ 2022	59.200,00	775,00		34.768.140,00	
	Sep \ 2022	64.060,00	440,00		35.319.780,00	
	Oct \ 2022	79.650,00	1.180,00		42.283.660,00	
	Nov \ 2022	74.790,00	1.400,00		41.231.760,00	
	Dic \ 2022	79.300,00	230,00		42.854.530,00	
Total 2022		1.003.190,00	13300	1.003.190,00	538.137.890,00	541,2
	Ene \ 2023	76.820,00	685,00		39.869.120,00	
	Feb \ 2023	37.550,00	2.050,00		20.007.270,00	<u> </u>
	Mar \ 2023	55.640,00	1.835,00	\	32.444.910,00	
	Abr \ 2023	51.040,00	1.945,00		29.945.990,00	
	May \ 2023	0,00	0,00	(0,00	
	Jun \ 2023	0,00	0,00	{	0,00	
2023	Jul \ 2023	0,00	0,00		0,00	
	Ago \ 2023	0,00	0,00		0,00	
	Sep \ 2023	0,00	0.00		0.00	
	Oct \ 2023	0,00	0,00		0,00	
	Nov \ 2023	0,00	0,00		0,00	
	Dic \ 2023	0,00	0,00		0,00	
	DIC \ 2023	0,00	0,00	0,00	0,00	: 0,


Anexo Cap 4_ 2 Costo energía eléctrica comprada por KWH desde enero 2020 PTAR fase I

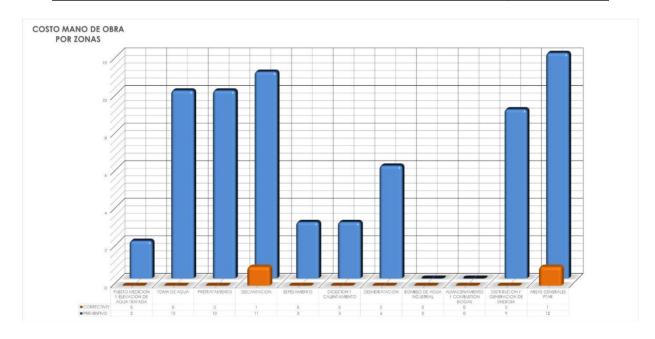
Anexo Cap 4_ 3 Consumo de energía eléctrica desde diciembre de 2022 PTAR fase II


AÑO	PERIODO FACTURACION	CONSUMO ACTIVA	CONSUMO REACTIVA	TOTAL CONSUMO EN KWH	COSTO FACTURA	VALOR KWH
	Ene \ 2022	1.423.040,00	0,00	1.423.040,00	575.978.286,08	404,75
	Feb \ 2022	1.280.000,00	0,00	1.280.000,00	525.853.824,00	410,82
	Mar \ 2022	2.560.517,00	0,00	2.560.517,00	1.070.854.554,76	418,22
	Abr \ 2022	2.880.000,00	0,00	2.880.000,00	1.226.148.480,00	425,75
	May \ 2022	2.710.000,00	0,00	2.710.000,00	1.174.539.474,00	433,41
2022	Jun \ 2022	3.200.000,00	0,00	3.200.000,00	1.414.648.320,00	442,08
2022	Jul \ 2022	3.040.000,00	0,00	3.040.000,00	1.370.794.368,00	450,92
	Ago \ 2022	3.200.000,00	0,00	3.200.000,00	1.429.923.602,00	459,94
	Sep \ 2022	4.320.000,00	0,00	4.320.000,00	1.998.851.904,00	462,70
	Oct \ 2022	2.560.000,00	0,00	2.560.000,00	1.184.504.832,00	462,70
	Nov \ 2022	3.520.000,00	0,00	3.520.000,00	1.628.694.140,00	462,70
	Dic \ 2022	2.600.592,00	0,00	2.600.592,00	1.043.636.770,00	397,34
Total 2022		33.294.149,00	0	33.294.149,00	14.644.428.554,84	435,94
	Ene \ 2023	3.066.288,00	0,00	3.066.288,00	1.170.663.990,00	377,83
	Feb \ 2023	3.324.672,00	0,00	3.324.672,00	1.416.216.230,00	425,08
	Mar \ 2023	3.879.376,00	0,00	3.879.376,00	1.623.525.530,00	411,69
	Abr \ 2023	1.964.304,00	16,00	1.964.304,00	890.722.260,00	453,05
	May \ 2023	0,00	0,00	0,00	0,00	
2023	Jun \ 2023	0,00	0,00	0,00	0,00	0,00
2023	Jul \ 2023	0,00	0,00	0,00	0,00	0,00
	Ago \ 2023	0,00	0,00	0,00	0,00	0,00
	Sep \ 2023	0,00	0,00	0,00	0,00	0,00
	Oct \ 2023	0,00	0,00	0,00	0,00	0,00
	Nov \ 2023	0,00	0,00	0,00	0,00	0,00
	Dic \ 2023	0,00	0,00		0,00	0,00
Total 2022		12.234.640,00	16	12.234.640,00	5.101.128.010,00	151,60

Anexo Cap 4_ 4 Costo energía eléctrica comprada por KWH desde diciembre de 2022 PTAR fase II


Anexo Cap 4_5 Descripción del mantenimiento por zonas

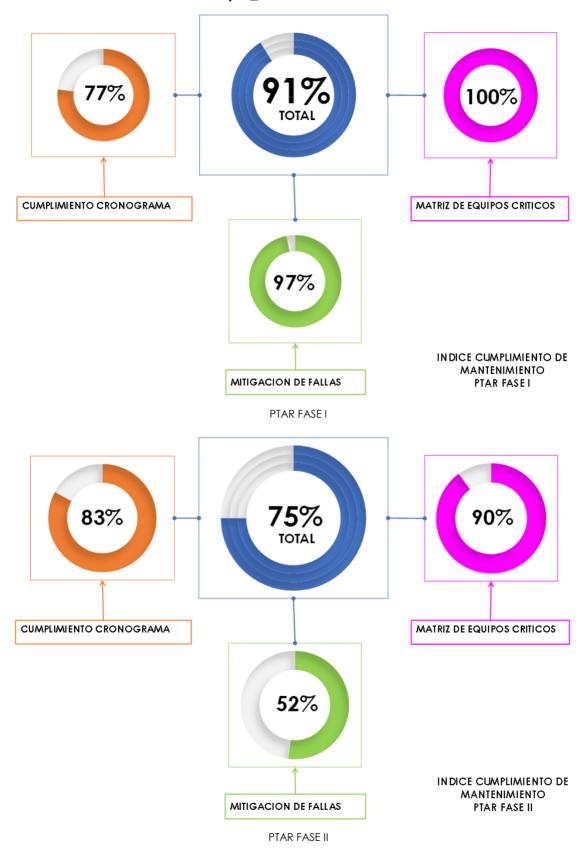
	DESCRIPCION DEL MANTENIMIENTO X 01 AL 30 DE ABRIL DE 2023	ZONAS	
ZONA	DESCRIPCION	ORDENES DE TRABAJO	TOTAL MANTENIMIENTO
00	PUESTO MEDICION Y ELEVACION DE AGUA TRATADA	2	\$ 82.485
01	TOMA DE AGUA	10	\$ 100.302
02	PRETRATAMIENTO	10	\$ 474.188
05	DECANTACION	12	\$ 582.315
08	ESPESAMIENTO	3	\$ 118.975
10	DIGESTION Y CALENTAMIENTO	3	\$ 122.958
12	DESHIDRATACION	6	\$ 251.611
14	BOMBEO DE AGUA INDUSTRIAL	0	\$0
15	ALMACENAMIENTO Y COMBUSTION BIOGAS	0	\$0
18	DISTRIBUCION Y GENERACION DE ENERGIA	9	\$ 489.182
30	AREAS GENERALES PTAR	13	\$ 207.381.427
	TOTAL	68	\$ 209.603.443


Anexo Cap 4_ 6 Consolidado costo total por áreas

DESCRIPCION DEL MANTENI	MIENTO X ZONAS
01 AL 30 DE ABRIL	DE 2023
DESCRIPCION	SALIDA ALMACEN
MANTENIMIENTO ALM. 12	\$ 181.147
MANTENIMIENTO ALM. 14	\$ 3.375.372
A DMINISTRA CION	\$0
ALMACEN	\$ 6.079
AMBIENTAL	\$ 80.301
LABORATORIO	\$ 3.667.674
MANTENIMIENTO 201	\$0
OPERACIONES .	\$ 858.064.915
SERVICIOS GENERALES	\$ 226.187
SST	\$0
TOTAL	\$ 865.601.675

Anexo Cap 4_ 7 Órdenes de Trabajo por Zonas PTAR fase I

	DESCRIPCION DEL MANTENIMIENTO X ZONAS 01 AL 30 DE ABRIL DE 2023		
ZONA	DESCRIPCION	_	ENES ZADAS
		PTR1	PTR2
00	PUESTO MEDICION Y ELEVACION DE AGUA TRATADA	0	2
01	TOMA DE AGUA	0	10
02	PRETRATA MIENTO	0	10
05	DECANTACION	1	11
08	ESPESA MIENTO	0	3
10	DIGESTION Y CALENTAMIENTO	0	3
12	DESHIDRATACION	0	6
14	BOMBEO DE AGUA INDUSTRIAL	0	0
15	ALMACENAMIENTO Y COMBUSTION BIOGAS	0	0
18	DISTRIBUCION Y GENERACION DE ENERGIA	0	9
30	AREAS GENERALES PTAR	1	12
	2314101	2	66
	TOTALES	6	8


Anexo Cap 4_8 Órdenes de Trabajo generadas PTAR fase II abril 2023

	ORDENES DE TRABAJ	IO REALIZADAS PTAR F	ASE II
	MECANICO	ELECTRICO	INSTRUMENTACION
PREVENTIVO	377	904	478
CORRECTIVO	85	192	39

Fuente: Elaboración propia formato Google Forms

Anexo Cap 4_ 9 Indicadores de Gestión

PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES " EL SALITRE"

Versión	Α
Código	
Página	

CONTROL DE DOCUMENTOS

Documento	Nombre documento	Responsable
	Gestión Financiera Capítulo 2.	Ancizar Ramírez Mosquera
	Informe de Operaciones Capítulo 3 y anexos Cap. 3	Hader Fabián Gómez Montenegro
	Informe Electromecánico Capítulo 4 y anexos Cap. 4	Gilson Raul Alfonso Maldonado
Informe Mensual	Informe Ambiental Capítulo 5	Catalina Del Mar López Pinto
abril 2023	Informe Gestión Social Capítulo 5	Alexandra Barriga Suarez
	Informe Calidad Capítulo 6	Angie Katherine Acuña Gomez
	Informe Salud Ocupacional Capítulo 7	Jennifer Andrea Torres Parra
	Recopilación / edición informe Anexos Cap. 4	Juan Pablo Méndez Peña

Control de modificaciones

Página, numeral o capítulo modificado	Revisión No.	Fecha de la modificación	Descripción de la modificación

Emisor:	Aprobado por:	Fecha elaboración del formato:
PTAR EL SALITRE	Yamid Garcia Zuñiga	mayo 2023